Update of LabelTensor class and fix Simplex domain (#362)
*Implement new methods in LabelTensor and fix operators
This commit is contained in:
committed by
Nicola Demo
parent
fdb8f65143
commit
7528f6ef74
@@ -1,3 +1,6 @@
|
||||
from sympy.strategies.branch import condition
|
||||
|
||||
from . import LabelTensor
|
||||
from .utils import check_consistency, merge_tensors
|
||||
|
||||
class Collector:
|
||||
@@ -51,7 +54,7 @@ class Collector:
|
||||
already_sampled = []
|
||||
# if we have sampled the condition but not all variables
|
||||
else:
|
||||
already_sampled = [self.data_collections[loc].input_points]
|
||||
already_sampled = [self.data_collections[loc]['input_points']]
|
||||
# if the condition is ready but we want to sample again
|
||||
else:
|
||||
self.is_conditions_ready[loc] = False
|
||||
@@ -63,10 +66,24 @@ class Collector:
|
||||
] + already_sampled
|
||||
pts = merge_tensors(samples)
|
||||
if (
|
||||
sorted(self.data_collections[loc].input_points.labels)
|
||||
==
|
||||
sorted(self.problem.input_variables)
|
||||
set(pts.labels).issubset(sorted(self.problem.input_variables))
|
||||
):
|
||||
pts = pts.sort_labels()
|
||||
if sorted(pts.labels)==sorted(self.problem.input_variables):
|
||||
self.is_conditions_ready[loc] = True
|
||||
values = [pts, condition.equation]
|
||||
self.data_collections[loc] = dict(zip(keys, values))
|
||||
else:
|
||||
raise RuntimeError('Try to sample variables which are not in problem defined in the problem')
|
||||
|
||||
def add_points(self, new_points_dict):
|
||||
"""
|
||||
Add input points to a sampled condition
|
||||
|
||||
:param new_points_dict: Dictonary of input points (condition_name: LabelTensor)
|
||||
:raises RuntimeError: if at least one condition is not already sampled
|
||||
"""
|
||||
for k,v in new_points_dict.items():
|
||||
if not self.is_conditions_ready[k]:
|
||||
raise RuntimeError('Cannot add points on a non sampled condition')
|
||||
self.data_collections[k]['input_points'] = self.data_collections[k]['input_points'].vstack(v)
|
||||
@@ -28,3 +28,5 @@ class DataConditionInterface(ConditionInterface):
|
||||
if (key == 'data') or (key == 'conditionalvariable'):
|
||||
check_consistency(value, (LabelTensor, Graph, torch.Tensor))
|
||||
DataConditionInterface.__dict__[key].__set__(self, value)
|
||||
elif key in ('_condition_type', '_problem', 'problem', 'condition_type'):
|
||||
super().__setattr__(key, value)
|
||||
@@ -29,3 +29,5 @@ class DomainEquationCondition(ConditionInterface):
|
||||
elif key == 'equation':
|
||||
check_consistency(value, (EquationInterface))
|
||||
DomainEquationCondition.__dict__[key].__set__(self, value)
|
||||
elif key in ('_condition_type', '_problem', 'problem', 'condition_type'):
|
||||
super().__setattr__(key, value)
|
||||
@@ -21,7 +21,7 @@ class InputPointsEquationCondition(ConditionInterface):
|
||||
super().__init__()
|
||||
self.input_points = input_points
|
||||
self.equation = equation
|
||||
self.condition_type = 'physics'
|
||||
self._condition_type = 'physics'
|
||||
|
||||
def __setattr__(self, key, value):
|
||||
if key == 'input_points':
|
||||
@@ -30,3 +30,5 @@ class InputPointsEquationCondition(ConditionInterface):
|
||||
elif key == 'equation':
|
||||
check_consistency(value, (EquationInterface))
|
||||
InputPointsEquationCondition.__dict__[key].__set__(self, value)
|
||||
elif key in ('_condition_type', '_problem', 'problem', 'condition_type'):
|
||||
super().__setattr__(key, value)
|
||||
@@ -27,3 +27,5 @@ class InputOutputPointsCondition(ConditionInterface):
|
||||
if (key == 'input_points') or (key == 'output_points'):
|
||||
check_consistency(value, (LabelTensor, Graph, torch.Tensor))
|
||||
InputOutputPointsCondition.__dict__[key].__set__(self, value)
|
||||
elif key in ('_condition_type', '_problem', 'problem', 'condition_type'):
|
||||
super().__setattr__(key, value)
|
||||
|
||||
@@ -77,7 +77,7 @@ class Difference(OperationInterface):
|
||||
5
|
||||
|
||||
"""
|
||||
if mode != self.sample_modes:
|
||||
if mode not in self.sample_modes:
|
||||
raise NotImplementedError(
|
||||
f"{mode} is not a valid mode for sampling."
|
||||
)
|
||||
|
||||
@@ -76,7 +76,7 @@ class Exclusion(OperationInterface):
|
||||
5
|
||||
|
||||
"""
|
||||
if mode != self.sample_modes:
|
||||
if mode not in self.sample_modes:
|
||||
raise NotImplementedError(
|
||||
f"{mode} is not a valid mode for sampling."
|
||||
)
|
||||
|
||||
@@ -78,7 +78,7 @@ class Intersection(OperationInterface):
|
||||
5
|
||||
|
||||
"""
|
||||
if mode != self.sample_modes:
|
||||
if mode not in self.sample_modes:
|
||||
raise NotImplementedError(
|
||||
f"{mode} is not a valid mode for sampling."
|
||||
)
|
||||
|
||||
@@ -92,13 +92,12 @@ class SimplexDomain(DomainInterface):
|
||||
"""
|
||||
|
||||
span_dict = {}
|
||||
|
||||
for i, coord in enumerate(self.variables):
|
||||
sorted_vertices = sorted(vertices, key=lambda vertex: vertex[i])
|
||||
sorted_vertices = torch.sort(vertices[coord].tensor.squeeze())
|
||||
# respective coord bounded by the lowest and highest values
|
||||
span_dict[coord] = [
|
||||
float(sorted_vertices[0][i]),
|
||||
float(sorted_vertices[-1][i]),
|
||||
float(sorted_vertices.values[0]),
|
||||
float(sorted_vertices.values[-1]),
|
||||
]
|
||||
|
||||
return CartesianDomain(span_dict)
|
||||
|
||||
@@ -41,7 +41,10 @@ class Union(OperationInterface):
|
||||
|
||||
@property
|
||||
def variables(self):
|
||||
return list(set([geom.variables for geom in self.geometries]))
|
||||
variables = []
|
||||
for geom in self.geometries:
|
||||
variables+=geom.variables
|
||||
return list(set(variables))
|
||||
|
||||
def is_inside(self, point, check_border=False):
|
||||
"""
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
""" Module for LabelTensor """
|
||||
|
||||
from copy import deepcopy, copy
|
||||
import torch
|
||||
from torch import Tensor
|
||||
|
||||
@@ -35,12 +35,22 @@ class LabelTensor(torch.Tensor):
|
||||
{1: {"name": "space"['a', 'b', 'c'])
|
||||
|
||||
"""
|
||||
self.dim_names = None
|
||||
self.labels = labels
|
||||
|
||||
@property
|
||||
def labels(self):
|
||||
"""Property decorator for labels
|
||||
|
||||
:return: labels of self
|
||||
:rtype: list
|
||||
"""
|
||||
return self._labels[self.tensor.ndim-1]['dof']
|
||||
|
||||
@property
|
||||
def full_labels(self):
|
||||
"""Property decorator for labels
|
||||
|
||||
:return: labels of self
|
||||
:rtype: list
|
||||
"""
|
||||
@@ -65,6 +75,13 @@ class LabelTensor(torch.Tensor):
|
||||
self.update_labels_from_list(labels)
|
||||
else:
|
||||
raise ValueError(f"labels must be list, dict or string.")
|
||||
self.set_names()
|
||||
|
||||
def set_names(self):
|
||||
labels = self.full_labels
|
||||
self.dim_names = {}
|
||||
for dim in range(self.tensor.ndim):
|
||||
self.dim_names[labels[dim]['name']] = dim
|
||||
|
||||
def extract(self, label_to_extract):
|
||||
"""
|
||||
@@ -76,46 +93,63 @@ class LabelTensor(torch.Tensor):
|
||||
:raises TypeError: Labels are not ``str``.
|
||||
:raises ValueError: Label to extract is not in the labels ``list``.
|
||||
"""
|
||||
from copy import deepcopy
|
||||
if isinstance(label_to_extract, (str, int)):
|
||||
label_to_extract = [label_to_extract]
|
||||
if isinstance(label_to_extract, (tuple, list)):
|
||||
last_dim_label = self._labels[self.tensor.ndim - 1]['dof']
|
||||
if set(label_to_extract).issubset(last_dim_label) is False:
|
||||
raise ValueError('Cannot extract a dof which is not in the original LabelTensor')
|
||||
idx_to_extract = [last_dim_label.index(i) for i in label_to_extract]
|
||||
new_tensor = self.tensor
|
||||
new_tensor = new_tensor[..., idx_to_extract]
|
||||
new_labels = deepcopy(self._labels)
|
||||
last_dim_new_label = {self.tensor.ndim - 1: {
|
||||
'dof': label_to_extract,
|
||||
'name': self._labels[self.tensor.ndim - 1]['name']
|
||||
}}
|
||||
new_labels.update(last_dim_new_label)
|
||||
return self._extract_from_list(label_to_extract)
|
||||
elif isinstance(label_to_extract, dict):
|
||||
new_labels = (deepcopy(self._labels))
|
||||
new_tensor = self.tensor
|
||||
for k, v in label_to_extract.items():
|
||||
idx_dim = None
|
||||
for kl, vl in self._labels.items():
|
||||
if vl['name'] == k:
|
||||
idx_dim = kl
|
||||
break
|
||||
dim_labels = self._labels[idx_dim]['dof']
|
||||
if isinstance(label_to_extract[k], (int, str)):
|
||||
label_to_extract[k] = [label_to_extract[k]]
|
||||
if set(label_to_extract[k]).issubset(dim_labels) is False:
|
||||
raise ValueError('Cannot extract a dof which is not in the original LabelTensor')
|
||||
idx_to_extract = [dim_labels.index(i) for i in label_to_extract[k]]
|
||||
indexer = [slice(None)] * idx_dim + [idx_to_extract] + [slice(None)] * (self.tensor.ndim - idx_dim - 1)
|
||||
new_tensor = new_tensor[indexer]
|
||||
dim_new_label = {idx_dim: {
|
||||
'dof': label_to_extract[k],
|
||||
'name': self._labels[idx_dim]['name']
|
||||
}}
|
||||
new_labels.update(dim_new_label)
|
||||
return self._extract_from_dict(label_to_extract)
|
||||
else:
|
||||
raise ValueError('labels_to_extract must be str or list or dict')
|
||||
|
||||
def _extract_from_list(self, labels_to_extract):
|
||||
#Store locally all necessary obj/variables
|
||||
ndim = self.tensor.ndim
|
||||
labels = self.full_labels
|
||||
tensor = self.tensor
|
||||
last_dim_label = self.labels
|
||||
|
||||
#Verify if all the labels in labels_to_extract are in last dimension
|
||||
if set(labels_to_extract).issubset(last_dim_label) is False:
|
||||
raise ValueError('Cannot extract a dof which is not in the original LabelTensor')
|
||||
|
||||
#Extract index to extract
|
||||
idx_to_extract = [last_dim_label.index(i) for i in labels_to_extract]
|
||||
|
||||
#Perform extraction
|
||||
new_tensor = tensor[..., idx_to_extract]
|
||||
|
||||
#Manage labels
|
||||
new_labels = copy(labels)
|
||||
|
||||
last_dim_new_label = {ndim - 1: {
|
||||
'dof': list(labels_to_extract),
|
||||
'name': labels[ndim - 1]['name']
|
||||
}}
|
||||
new_labels.update(last_dim_new_label)
|
||||
return LabelTensor(new_tensor, new_labels)
|
||||
|
||||
def _extract_from_dict(self, labels_to_extract):
|
||||
labels = self.full_labels
|
||||
tensor = self.tensor
|
||||
ndim = tensor.ndim
|
||||
new_labels = deepcopy(labels)
|
||||
new_tensor = tensor
|
||||
for k, _ in labels_to_extract.items():
|
||||
idx_dim = self.dim_names[k]
|
||||
dim_labels = labels[idx_dim]['dof']
|
||||
if isinstance(labels_to_extract[k], (int, str)):
|
||||
labels_to_extract[k] = [labels_to_extract[k]]
|
||||
if set(labels_to_extract[k]).issubset(dim_labels) is False:
|
||||
raise ValueError('Cannot extract a dof which is not in the original LabelTensor')
|
||||
idx_to_extract = [dim_labels.index(i) for i in labels_to_extract[k]]
|
||||
indexer = [slice(None)] * idx_dim + [idx_to_extract] + [slice(None)] * (ndim - idx_dim - 1)
|
||||
new_tensor = new_tensor[indexer]
|
||||
dim_new_label = {idx_dim: {
|
||||
'dof': labels_to_extract[k],
|
||||
'name': labels[idx_dim]['name']
|
||||
}}
|
||||
new_labels.update(dim_new_label)
|
||||
return LabelTensor(new_tensor, new_labels)
|
||||
|
||||
def __str__(self):
|
||||
@@ -147,32 +181,42 @@ class LabelTensor(torch.Tensor):
|
||||
return []
|
||||
if len(tensors) == 1:
|
||||
return tensors[0]
|
||||
n_dims = tensors[0].ndim
|
||||
new_labels_cat_dim = []
|
||||
for i in range(n_dims):
|
||||
name = tensors[0].labels[i]['name']
|
||||
if i != dim:
|
||||
dof = tensors[0].labels[i]['dof']
|
||||
for tensor in tensors:
|
||||
dof_to_check = tensor.labels[i]['dof']
|
||||
name_to_check = tensor.labels[i]['name']
|
||||
if dof != dof_to_check or name != name_to_check:
|
||||
raise ValueError('dimensions must have the same dof and name')
|
||||
else:
|
||||
for tensor in tensors:
|
||||
new_labels_cat_dim += tensor.labels[i]['dof']
|
||||
name_to_check = tensor.labels[i]['name']
|
||||
if name != name_to_check:
|
||||
raise ValueError('dimensions must have the same dof and name')
|
||||
new_labels_cat_dim = LabelTensor._check_validity_before_cat(tensors, dim)
|
||||
|
||||
# Perform cat on tensors
|
||||
new_tensor = torch.cat(tensors, dim=dim)
|
||||
labels = tensors[0].labels
|
||||
|
||||
#Update labels
|
||||
labels = tensors[0].full_labels
|
||||
labels.pop(dim)
|
||||
new_labels_cat_dim = new_labels_cat_dim if len(set(new_labels_cat_dim)) == len(new_labels_cat_dim) \
|
||||
else range(new_tensor.shape[dim])
|
||||
labels[dim] = {'dof': new_labels_cat_dim,
|
||||
'name': tensors[1].labels[dim]['name']}
|
||||
'name': tensors[1].full_labels[dim]['name']}
|
||||
return LabelTensor(new_tensor, labels)
|
||||
|
||||
@staticmethod
|
||||
def _check_validity_before_cat(tensors, dim):
|
||||
n_dims = tensors[0].ndim
|
||||
new_labels_cat_dim = []
|
||||
# Check if names and dof of the labels are the same in all dimensions except in dim
|
||||
for i in range(n_dims):
|
||||
name = tensors[0].full_labels[i]['name']
|
||||
if i != dim:
|
||||
dof = tensors[0].full_labels[i]['dof']
|
||||
for tensor in tensors:
|
||||
dof_to_check = tensor.full_labels[i]['dof']
|
||||
name_to_check = tensor.full_labels[i]['name']
|
||||
if dof != dof_to_check or name != name_to_check:
|
||||
raise ValueError('dimensions must have the same dof and name')
|
||||
else:
|
||||
for tensor in tensors:
|
||||
new_labels_cat_dim += tensor.full_labels[i]['dof']
|
||||
name_to_check = tensor.full_labels[i]['name']
|
||||
if name != name_to_check:
|
||||
raise ValueError('Dimensions to concatenate must have the same name')
|
||||
return new_labels_cat_dim
|
||||
|
||||
def requires_grad_(self, mode=True):
|
||||
lt = super().requires_grad_(mode)
|
||||
lt.labels = self._labels
|
||||
@@ -204,7 +248,6 @@ class LabelTensor(torch.Tensor):
|
||||
out = LabelTensor(super().clone(*args, **kwargs), self._labels)
|
||||
return out
|
||||
|
||||
|
||||
def init_labels(self):
|
||||
self._labels = {
|
||||
idx_: {
|
||||
@@ -221,13 +264,14 @@ class LabelTensor(torch.Tensor):
|
||||
:type labels: dict
|
||||
:raises ValueError: dof list contain duplicates or number of dof does not match with tensor shape
|
||||
"""
|
||||
|
||||
tensor_shape = self.tensor.shape
|
||||
#Check dimensionality
|
||||
for k, v in labels.items():
|
||||
if len(v['dof']) != len(set(v['dof'])):
|
||||
raise ValueError("dof must be unique")
|
||||
if len(v['dof']) != tensor_shape[k]:
|
||||
raise ValueError('Number of dof does not match with tensor dimension')
|
||||
#Perform update
|
||||
self._labels.update(labels)
|
||||
|
||||
def update_labels_from_list(self, labels):
|
||||
@@ -237,6 +281,7 @@ class LabelTensor(torch.Tensor):
|
||||
:param labels: The label(s) to update.
|
||||
:type labels: list
|
||||
"""
|
||||
# Create a dict with labels
|
||||
last_dim_labels = {self.tensor.ndim - 1: {'dof': labels, 'name': self.tensor.ndim - 1}}
|
||||
self.update_labels_from_dict(last_dim_labels)
|
||||
|
||||
@@ -246,26 +291,103 @@ class LabelTensor(torch.Tensor):
|
||||
raise ValueError('tensors list must not be empty')
|
||||
if len(tensors) == 1:
|
||||
return tensors[0]
|
||||
labels = tensors[0].labels
|
||||
# Collect all labels
|
||||
labels = tensors[0].full_labels
|
||||
# Check labels of all the tensors in each dimension
|
||||
for j in range(tensors[0].ndim):
|
||||
for i in range(1, len(tensors)):
|
||||
if labels[j] != tensors[i].labels[j]:
|
||||
if labels[j] != tensors[i].full_labels[j]:
|
||||
labels.pop(j)
|
||||
break
|
||||
|
||||
# Sum tensors
|
||||
data = torch.zeros(tensors[0].tensor.shape)
|
||||
for i in range(len(tensors)):
|
||||
data += tensors[i].tensor
|
||||
new_tensor = LabelTensor(data, labels)
|
||||
return new_tensor
|
||||
|
||||
def last_dim_dof(self):
|
||||
return self._labels[self.tensor.ndim - 1]['dof']
|
||||
|
||||
def append(self, tensor, mode='std'):
|
||||
print(self.labels)
|
||||
print(tensor.labels)
|
||||
if mode == 'std':
|
||||
# Call cat on last dimension
|
||||
new_label_tensor = LabelTensor.cat([self, tensor], dim=self.tensor.ndim - 1)
|
||||
|
||||
elif mode=='cross':
|
||||
# Crete tensor and call cat on last dimension
|
||||
tensor1 = self
|
||||
tensor2 = tensor
|
||||
n1 = tensor1.shape[0]
|
||||
n2 = tensor2.shape[0]
|
||||
tensor1 = LabelTensor(tensor1.repeat(n2, 1), labels=tensor1.labels)
|
||||
tensor2 = LabelTensor(tensor2.repeat_interleave(n1, dim=0), labels=tensor2.labels)
|
||||
new_label_tensor = LabelTensor.cat([tensor1, tensor2], dim=self.tensor.ndim-1)
|
||||
else:
|
||||
raise ValueError('mode must be either "std" or "cross"')
|
||||
return new_label_tensor
|
||||
|
||||
@staticmethod
|
||||
def vstack(label_tensors):
|
||||
"""
|
||||
Stack tensors vertically. For more details, see
|
||||
:meth:`torch.vstack`.
|
||||
|
||||
:param list(LabelTensor) label_tensors: the tensors to stack. They need
|
||||
to have equal labels.
|
||||
:return: the stacked tensor
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
return LabelTensor.cat(label_tensors, dim=0)
|
||||
|
||||
def __getitem__(self, index):
|
||||
"""
|
||||
Return a copy of the selected tensor.
|
||||
"""
|
||||
|
||||
if isinstance(index, str) or (isinstance(index, (tuple, list)) and all(isinstance(a, str) for a in index)):
|
||||
return self.extract(index)
|
||||
|
||||
selected_lt = super().__getitem__(index)
|
||||
|
||||
try:
|
||||
len_index = len(index)
|
||||
except TypeError:
|
||||
len_index = 1
|
||||
|
||||
if isinstance(index, int) or len_index == 1:
|
||||
if selected_lt.ndim == 1:
|
||||
selected_lt = selected_lt.reshape(1, -1)
|
||||
if hasattr(self, "labels"):
|
||||
new_labels = deepcopy(self.full_labels)
|
||||
new_labels.pop(0)
|
||||
selected_lt.labels = new_labels
|
||||
elif len(index) == self.tensor.ndim:
|
||||
new_labels = deepcopy(self.full_labels)
|
||||
if selected_lt.ndim == 1:
|
||||
selected_lt = selected_lt.reshape(-1, 1)
|
||||
for j in range(selected_lt.ndim):
|
||||
if hasattr(self, "labels"):
|
||||
if isinstance(index[j], list):
|
||||
new_labels.update({j: {'dof': [new_labels[j]['dof'][i] for i in index[1]],
|
||||
'name':new_labels[j]['name']}})
|
||||
else:
|
||||
new_labels.update({j: {'dof': new_labels[j]['dof'][index[j]],
|
||||
'name':new_labels[j]['name']}})
|
||||
|
||||
selected_lt.labels = new_labels
|
||||
else:
|
||||
new_labels = deepcopy(self.full_labels)
|
||||
new_labels.update({0: {'dof': list[index], 'name': new_labels[0]['name']}})
|
||||
selected_lt.labels = self.labels
|
||||
|
||||
return selected_lt
|
||||
|
||||
def sort_labels(self, dim=None):
|
||||
def argsort(lst):
|
||||
return sorted(range(len(lst)), key=lambda x: lst[x])
|
||||
if dim is None:
|
||||
dim = self.tensor.ndim-1
|
||||
labels = self.full_labels[dim]['dof']
|
||||
sorted_index = argsort(labels)
|
||||
indexer = [slice(None)] * self.tensor.ndim
|
||||
indexer[dim] = sorted_index
|
||||
new_labels = deepcopy(self.full_labels)
|
||||
new_labels[dim] = {'dof': sorted(labels), 'name': new_labels[dim]['name']}
|
||||
return LabelTensor(self.tensor[indexer], new_labels)
|
||||
@@ -1,13 +1,11 @@
|
||||
"""
|
||||
Module for operators vectorize implementation. Differential operators are used to write any differential problem.
|
||||
These operators are implemented to work on different accelerators: CPU, GPU, TPU or MPS.
|
||||
These operators are implemented to work on different accellerators: CPU, GPU, TPU or MPS.
|
||||
All operators take as input a tensor onto which computing the operator, a tensor with respect
|
||||
to which computing the operator, the name of the output variables to calculate the operator
|
||||
for (in case of multidimensional functions), and the variables name on which the operator is calculated.
|
||||
"""
|
||||
|
||||
import torch
|
||||
from copy import deepcopy
|
||||
from pina.label_tensor import LabelTensor
|
||||
|
||||
|
||||
@@ -49,12 +47,12 @@ def grad(output_, input_, components=None, d=None):
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
|
||||
if len(output_.labels[output_.tensor.ndim-1]['dof']) != 1:
|
||||
if len(output_.labels) != 1:
|
||||
raise RuntimeError("only scalar function can be differentiated")
|
||||
if not all([di in input_.labels[input_.tensor.ndim-1]['dof'] for di in d]):
|
||||
if not all([di in input_.labels for di in d]):
|
||||
raise RuntimeError("derivative labels missing from input tensor")
|
||||
|
||||
output_fieldname = output_.labels[output_.ndim-1]['dof'][0]
|
||||
output_fieldname = output_.labels[0]
|
||||
gradients = torch.autograd.grad(
|
||||
output_,
|
||||
input_,
|
||||
@@ -65,24 +63,25 @@ def grad(output_, input_, components=None, d=None):
|
||||
retain_graph=True,
|
||||
allow_unused=True,
|
||||
)[0]
|
||||
new_labels = deepcopy(input_.labels)
|
||||
gradients.labels = new_labels
|
||||
|
||||
gradients.labels = input_.labels
|
||||
gradients = gradients.extract(d)
|
||||
new_labels[input_.tensor.ndim - 1]['dof'] = [f"d{output_fieldname}d{i}" for i in d]
|
||||
gradients.labels = new_labels
|
||||
gradients.labels = [f"d{output_fieldname}d{i}" for i in d]
|
||||
|
||||
return gradients
|
||||
|
||||
if not isinstance(input_, LabelTensor):
|
||||
raise TypeError
|
||||
|
||||
if d is None:
|
||||
d = input_.labels[input_.tensor.ndim-1]['dof']
|
||||
d = input_.labels
|
||||
|
||||
if components is None:
|
||||
components = output_.labels[output_.tensor.ndim-1]['dof']
|
||||
components = output_.labels
|
||||
|
||||
if output_.shape[output_.ndim-1] == 1: # scalar output ################################
|
||||
if output_.shape[1] == 1: # scalar output ################################
|
||||
|
||||
if components != output_.labels[output_.tensor.ndim-1]['dof']:
|
||||
if components != output_.labels:
|
||||
raise RuntimeError
|
||||
gradients = grad_scalar_output(output_, input_, d)
|
||||
|
||||
@@ -94,6 +93,7 @@ def grad(output_, input_, components=None, d=None):
|
||||
gradients = LabelTensor.cat(tensor_to_cat, dim=output_.tensor.ndim - 1)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
return gradients
|
||||
|
||||
|
||||
@@ -124,30 +124,27 @@ def div(output_, input_, components=None, d=None):
|
||||
raise TypeError
|
||||
|
||||
if d is None:
|
||||
d = input_.labels[input_.tensor.ndim-1]['dof']
|
||||
d = input_.labels
|
||||
|
||||
if components is None:
|
||||
components = output_.labels[output_.tensor.ndim-1]['dof']
|
||||
components = output_.labels
|
||||
|
||||
if output_.shape[output_.ndim-1] < 2 or len(components) < 2:
|
||||
if output_.shape[1] < 2 or len(components) < 2:
|
||||
raise ValueError("div supported only for vector fields")
|
||||
|
||||
if len(components) != len(d):
|
||||
raise ValueError
|
||||
|
||||
grad_output = grad(output_, input_, components, d)
|
||||
last_dim_dof = [None] * len(components)
|
||||
to_sum_tensors = []
|
||||
labels = [None] * len(components)
|
||||
tensors_to_sum = []
|
||||
for i, (c, d) in enumerate(zip(components, d)):
|
||||
c_fields = f"d{c}d{d}"
|
||||
last_dim_dof[i] = c_fields
|
||||
to_sum_tensors.append(grad_output.extract(c_fields))
|
||||
|
||||
div = LabelTensor.summation(to_sum_tensors)
|
||||
new_labels = deepcopy(input_.labels)
|
||||
new_labels[input_.tensor.ndim-1]['dof'] = ["+".join(last_dim_dof)]
|
||||
div.labels = new_labels
|
||||
return div
|
||||
tensors_to_sum.append(grad_output.extract(c_fields))
|
||||
labels[i] = c_fields
|
||||
div_result = LabelTensor.summation(tensors_to_sum)
|
||||
div_result.labels = ["+".join(labels)]
|
||||
return div_result
|
||||
|
||||
|
||||
def laplacian(output_, input_, components=None, d=None, method="std"):
|
||||
@@ -201,10 +198,10 @@ def laplacian(output_, input_, components=None, d=None, method="std"):
|
||||
return result
|
||||
|
||||
if d is None:
|
||||
d = input_.labels[input_.tensor.ndim-1]['dof']
|
||||
d = input_.labels
|
||||
|
||||
if components is None:
|
||||
components = output_.labels[output_.tensor.ndim-1]['dof']
|
||||
components = output_.labels
|
||||
|
||||
if method == "divgrad":
|
||||
raise NotImplementedError("divgrad not implemented as method")
|
||||
@@ -217,9 +214,9 @@ def laplacian(output_, input_, components=None, d=None, method="std"):
|
||||
# result = scalar_laplace(output_, input_, components, d) # TODO check (from 0.1)
|
||||
grad_output = grad(output_, input_, components=components, d=d)
|
||||
to_append_tensors = []
|
||||
for i, label in enumerate(grad_output.labels[grad_output.ndim-1]['dof']):
|
||||
for i, label in enumerate(grad_output.labels):
|
||||
gg = grad(grad_output, input_, d=d, components=[label])
|
||||
to_append_tensors.append(gg.extract([gg.labels[gg.tensor.ndim-1]['dof'][i]]))
|
||||
to_append_tensors.append(gg.extract([gg.labels[i]]))
|
||||
labels = [f"dd{components[0]}"]
|
||||
result = LabelTensor.summation(tensors=to_append_tensors)
|
||||
result.labels = labels
|
||||
@@ -236,21 +233,27 @@ def laplacian(output_, input_, components=None, d=None, method="std"):
|
||||
|
||||
# result = result.as_subclass(LabelTensor)
|
||||
# result.labels = labels
|
||||
result = torch.empty(
|
||||
input_.shape[0], len(components), device=output_.device
|
||||
)
|
||||
labels = [None] * len(components)
|
||||
to_append_tensors = [None] * len(components)
|
||||
for idx, (ci, di) in enumerate(zip(components, d)):
|
||||
|
||||
if not isinstance(ci, list):
|
||||
ci = [ci]
|
||||
if not isinstance(di, list):
|
||||
di = [di]
|
||||
|
||||
grad_output = grad(output_, input_, components=ci, d=di)
|
||||
result[:, idx] = grad(grad_output, input_, d=di).flatten()
|
||||
to_append_tensors[idx] = grad(grad_output, input_, d=di)
|
||||
labels[idx] = f"dd{ci[0]}dd{di[0]}"
|
||||
result = LabelTensor.cat(tensors=to_append_tensors, dim=output_.tensor.ndim-1)
|
||||
result.labels = labels
|
||||
return result
|
||||
|
||||
# TODO Fix advection operator
|
||||
|
||||
def advection(output_, input_, velocity_field, components=None, d=None):
|
||||
"""
|
||||
Perform advection operation. The operator works for vectorial functions,
|
||||
@@ -272,10 +275,10 @@ def advection(output_, input_, velocity_field, components=None, d=None):
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
if d is None:
|
||||
d = input_.labels[input_.tensor.ndim-1]['dof']
|
||||
d = input_.labels
|
||||
|
||||
if components is None:
|
||||
components = output_.labels[output_.tensor.ndim-1]['dof']
|
||||
components = output_.labels
|
||||
|
||||
tmp = (
|
||||
grad(output_, input_, components, d)
|
||||
|
||||
@@ -36,7 +36,15 @@ class AbstractProblem(metaclass=ABCMeta):
|
||||
|
||||
@property
|
||||
def input_pts(self):
|
||||
return self.collector.data_collections
|
||||
to_return = {}
|
||||
for k, v in self.collector.data_collections.items():
|
||||
if 'input_points' in v.keys():
|
||||
to_return[k] = v['input_points']
|
||||
return to_return
|
||||
|
||||
@property
|
||||
def _have_sampled_points(self):
|
||||
return self.collector.is_conditions_ready
|
||||
|
||||
def __deepcopy__(self, memo):
|
||||
"""
|
||||
@@ -165,3 +173,6 @@ class AbstractProblem(metaclass=ABCMeta):
|
||||
|
||||
# store data
|
||||
self.collector.store_sample_domains(n, mode, variables, locations)
|
||||
|
||||
def add_points(self, new_points_dict):
|
||||
self.collector.add_points(new_points_dict)
|
||||
|
||||
@@ -18,27 +18,27 @@ def test_init_inputoutput():
|
||||
Condition(input_points=example_input_pts, output_points=example_output_pts)
|
||||
with pytest.raises(ValueError):
|
||||
Condition(example_input_pts, example_output_pts)
|
||||
with pytest.raises(TypeError):
|
||||
with pytest.raises(ValueError):
|
||||
Condition(input_points=3., output_points='example')
|
||||
with pytest.raises(TypeError):
|
||||
with pytest.raises(ValueError):
|
||||
Condition(input_points=example_domain, output_points=example_domain)
|
||||
test_init_inputoutput()
|
||||
|
||||
|
||||
def test_init_locfunc():
|
||||
Condition(location=example_domain, equation=FixedValue(0.0))
|
||||
def test_init_domainfunc():
|
||||
Condition(domain=example_domain, equation=FixedValue(0.0))
|
||||
with pytest.raises(ValueError):
|
||||
Condition(example_domain, FixedValue(0.0))
|
||||
with pytest.raises(TypeError):
|
||||
Condition(location=3., equation='example')
|
||||
with pytest.raises(TypeError):
|
||||
Condition(location=example_input_pts, equation=example_output_pts)
|
||||
with pytest.raises(ValueError):
|
||||
Condition(domain=3., equation='example')
|
||||
with pytest.raises(ValueError):
|
||||
Condition(domain=example_input_pts, equation=example_output_pts)
|
||||
|
||||
|
||||
def test_init_inputfunc():
|
||||
Condition(input_points=example_input_pts, equation=FixedValue(0.0))
|
||||
with pytest.raises(ValueError):
|
||||
Condition(example_domain, FixedValue(0.0))
|
||||
with pytest.raises(TypeError):
|
||||
with pytest.raises(ValueError):
|
||||
Condition(input_points=3., equation='example')
|
||||
with pytest.raises(TypeError):
|
||||
with pytest.raises(ValueError):
|
||||
Condition(input_points=example_domain, equation=example_output_pts)
|
||||
|
||||
@@ -40,7 +40,6 @@ def test_constructor():
|
||||
LabelTensor(torch.tensor([[-.5, .5]]), labels=["x", "y"]),
|
||||
])
|
||||
|
||||
|
||||
def test_sample():
|
||||
# sampling inside
|
||||
simplex = SimplexDomain([
|
||||
|
||||
@@ -2,7 +2,6 @@ import torch
|
||||
import pytest
|
||||
|
||||
from pina.label_tensor import LabelTensor
|
||||
#import pina
|
||||
|
||||
data = torch.rand((20, 3))
|
||||
labels_column = {
|
||||
@@ -22,8 +21,7 @@ labels_all = labels_column | labels_row
|
||||
|
||||
@pytest.mark.parametrize("labels", [labels_column, labels_row, labels_all, labels_list])
|
||||
def test_constructor(labels):
|
||||
LabelTensor(data, labels)
|
||||
|
||||
print(LabelTensor(data, labels))
|
||||
|
||||
def test_wrong_constructor():
|
||||
with pytest.raises(ValueError):
|
||||
@@ -92,7 +90,7 @@ def test_extract_3D():
|
||||
))
|
||||
assert tensor2.ndim == tensor.ndim
|
||||
assert tensor2.shape == tensor.shape
|
||||
assert tensor.labels == tensor2.labels
|
||||
assert tensor.full_labels == tensor2.full_labels
|
||||
assert new.shape != tensor.shape
|
||||
|
||||
def test_concatenation_3D():
|
||||
@@ -104,9 +102,9 @@ def test_concatenation_3D():
|
||||
lt2 = LabelTensor(data_2, labels_2)
|
||||
lt_cat = LabelTensor.cat([lt1, lt2])
|
||||
assert lt_cat.shape == (70, 3, 4)
|
||||
assert lt_cat.labels[0]['dof'] == range(70)
|
||||
assert lt_cat.labels[1]['dof'] == range(3)
|
||||
assert lt_cat.labels[2]['dof'] == ['x', 'y', 'z', 'w']
|
||||
assert lt_cat.full_labels[0]['dof'] == range(70)
|
||||
assert lt_cat.full_labels[1]['dof'] == range(3)
|
||||
assert lt_cat.full_labels[2]['dof'] == ['x', 'y', 'z', 'w']
|
||||
|
||||
data_1 = torch.rand(20, 3, 4)
|
||||
labels_1 = ['x', 'y', 'z', 'w']
|
||||
@@ -116,9 +114,9 @@ def test_concatenation_3D():
|
||||
lt2 = LabelTensor(data_2, labels_2)
|
||||
lt_cat = LabelTensor.cat([lt1, lt2], dim=1)
|
||||
assert lt_cat.shape == (20, 5, 4)
|
||||
assert lt_cat.labels[0]['dof'] == range(20)
|
||||
assert lt_cat.labels[1]['dof'] == range(5)
|
||||
assert lt_cat.labels[2]['dof'] == ['x', 'y', 'z', 'w']
|
||||
assert lt_cat.full_labels[0]['dof'] == range(20)
|
||||
assert lt_cat.full_labels[1]['dof'] == range(5)
|
||||
assert lt_cat.full_labels[2]['dof'] == ['x', 'y', 'z', 'w']
|
||||
|
||||
data_1 = torch.rand(20, 3, 2)
|
||||
labels_1 = ['x', 'y']
|
||||
@@ -128,9 +126,9 @@ def test_concatenation_3D():
|
||||
lt2 = LabelTensor(data_2, labels_2)
|
||||
lt_cat = LabelTensor.cat([lt1, lt2], dim=2)
|
||||
assert lt_cat.shape == (20, 3, 5)
|
||||
assert lt_cat.labels[2]['dof'] == ['x', 'y', 'z', 'w', 'a']
|
||||
assert lt_cat.labels[0]['dof'] == range(20)
|
||||
assert lt_cat.labels[1]['dof'] == range(3)
|
||||
assert lt_cat.full_labels[2]['dof'] == ['x', 'y', 'z', 'w', 'a']
|
||||
assert lt_cat.full_labels[0]['dof'] == range(20)
|
||||
assert lt_cat.full_labels[1]['dof'] == range(3)
|
||||
|
||||
data_1 = torch.rand(20, 2, 4)
|
||||
labels_1 = ['x', 'y', 'z', 'w']
|
||||
@@ -140,7 +138,6 @@ def test_concatenation_3D():
|
||||
lt2 = LabelTensor(data_2, labels_2)
|
||||
with pytest.raises(ValueError):
|
||||
LabelTensor.cat([lt1, lt2], dim=2)
|
||||
|
||||
data_1 = torch.rand(20, 3, 2)
|
||||
labels_1 = ['x', 'y']
|
||||
lt1 = LabelTensor(data_1, labels_1)
|
||||
@@ -149,9 +146,9 @@ def test_concatenation_3D():
|
||||
lt2 = LabelTensor(data_2, labels_2)
|
||||
lt_cat = LabelTensor.cat([lt1, lt2], dim=2)
|
||||
assert lt_cat.shape == (20, 3, 5)
|
||||
assert lt_cat.labels[2]['dof'] == range(5)
|
||||
assert lt_cat.labels[0]['dof'] == range(20)
|
||||
assert lt_cat.labels[1]['dof'] == range(3)
|
||||
assert lt_cat.full_labels[2]['dof'] == range(5)
|
||||
assert lt_cat.full_labels[0]['dof'] == range(20)
|
||||
assert lt_cat.full_labels[1]['dof'] == range(3)
|
||||
|
||||
|
||||
def test_summation():
|
||||
@@ -165,7 +162,7 @@ def test_summation():
|
||||
assert lt_sum.ndim == lt_sum.ndim
|
||||
assert lt_sum.shape[0] == 20
|
||||
assert lt_sum.shape[1] == 3
|
||||
assert lt_sum.labels == labels_all
|
||||
assert lt_sum.full_labels == labels_all
|
||||
assert torch.eq(lt_sum.tensor, torch.ones(20,3)*2).all()
|
||||
lt1 = LabelTensor(torch.ones(20,3), labels_all)
|
||||
lt2 = LabelTensor(torch.ones(20,3), labels_all)
|
||||
@@ -174,29 +171,92 @@ def test_summation():
|
||||
assert lt_sum.ndim == lt_sum.ndim
|
||||
assert lt_sum.shape[0] == 20
|
||||
assert lt_sum.shape[1] == 3
|
||||
assert lt_sum.labels == labels_all
|
||||
assert lt_sum.full_labels == labels_all
|
||||
assert torch.eq(lt_sum.tensor, torch.ones(20,3)*2).all()
|
||||
|
||||
def test_append_3D():
|
||||
data_1 = torch.rand(20, 3, 4)
|
||||
labels_1 = ['x', 'y', 'z', 'w']
|
||||
lt1 = LabelTensor(data_1, labels_1)
|
||||
data_2 = torch.rand(50, 3, 4)
|
||||
labels_2 = ['x', 'y', 'z', 'w']
|
||||
lt2 = LabelTensor(data_2, labels_2)
|
||||
lt1 = lt1.append(lt2)
|
||||
assert lt1.shape == (70, 3, 4)
|
||||
assert lt1.labels[0]['dof'] == range(70)
|
||||
assert lt1.labels[1]['dof'] == range(3)
|
||||
assert lt1.labels[2]['dof'] == ['x', 'y', 'z', 'w']
|
||||
data_1 = torch.rand(20, 3, 2)
|
||||
labels_1 = ['x', 'y']
|
||||
lt1 = LabelTensor(data_1, labels_1)
|
||||
data_2 = torch.rand(20, 3, 2)
|
||||
labels_2 = ['z', 'w']
|
||||
lt2 = LabelTensor(data_2, labels_2)
|
||||
lt1 = lt1.append(lt2, mode='cross')
|
||||
lt1 = lt1.append(lt2)
|
||||
assert lt1.shape == (20, 3, 4)
|
||||
assert lt1.labels[0]['dof'] == range(20)
|
||||
assert lt1.labels[1]['dof'] == range(3)
|
||||
assert lt1.labels[2]['dof'] == ['x', 'y', 'z', 'w']
|
||||
assert lt1.full_labels[0]['dof'] == range(20)
|
||||
assert lt1.full_labels[1]['dof'] == range(3)
|
||||
assert lt1.full_labels[2]['dof'] == ['x', 'y', 'z', 'w']
|
||||
|
||||
def test_append_2D():
|
||||
data_1 = torch.rand(20, 2)
|
||||
labels_1 = ['x', 'y']
|
||||
lt1 = LabelTensor(data_1, labels_1)
|
||||
data_2 = torch.rand(20, 2)
|
||||
labels_2 = ['z', 'w']
|
||||
lt2 = LabelTensor(data_2, labels_2)
|
||||
lt1 = lt1.append(lt2, mode='cross')
|
||||
assert lt1.shape == (400, 4)
|
||||
assert lt1.full_labels[0]['dof'] == range(400)
|
||||
assert lt1.full_labels[1]['dof'] == ['x', 'y', 'z', 'w']
|
||||
|
||||
def test_vstack_3D():
|
||||
data_1 = torch.rand(20, 3, 2)
|
||||
labels_1 = {1:{'dof': ['a', 'b', 'c'], 'name': 'first'}, 2: {'dof': ['x', 'y'], 'name': 'second'}}
|
||||
lt1 = LabelTensor(data_1, labels_1)
|
||||
data_2 = torch.rand(20, 3, 2)
|
||||
labels_1 = {1:{'dof': ['a', 'b', 'c'], 'name': 'first'}, 2: {'dof': ['x', 'y'], 'name': 'second'}}
|
||||
lt2 = LabelTensor(data_2, labels_1)
|
||||
lt_stacked = LabelTensor.vstack([lt1, lt2])
|
||||
assert lt_stacked.shape == (40, 3, 2)
|
||||
assert lt_stacked.full_labels[0]['dof'] == range(40)
|
||||
assert lt_stacked.full_labels[1]['dof'] == ['a', 'b', 'c']
|
||||
assert lt_stacked.full_labels[2]['dof'] == ['x', 'y']
|
||||
assert lt_stacked.full_labels[1]['name'] == 'first'
|
||||
assert lt_stacked.full_labels[2]['name'] == 'second'
|
||||
|
||||
def test_vstack_2D():
|
||||
data_1 = torch.rand(20, 2)
|
||||
labels_1 = { 1: {'dof': ['x', 'y'], 'name': 'second'}}
|
||||
lt1 = LabelTensor(data_1, labels_1)
|
||||
data_2 = torch.rand(20, 2)
|
||||
labels_1 = { 1: {'dof': ['x', 'y'], 'name': 'second'}}
|
||||
lt2 = LabelTensor(data_2, labels_1)
|
||||
lt_stacked = LabelTensor.vstack([lt1, lt2])
|
||||
assert lt_stacked.shape == (40, 2)
|
||||
assert lt_stacked.full_labels[0]['dof'] == range(40)
|
||||
assert lt_stacked.full_labels[1]['dof'] == ['x', 'y']
|
||||
assert lt_stacked.full_labels[0]['name'] == 0
|
||||
assert lt_stacked.full_labels[1]['name'] == 'second'
|
||||
|
||||
def test_sorting():
|
||||
data = torch.ones(20, 5)
|
||||
data[:,0] = data[:,0]*4
|
||||
data[:,1] = data[:,1]*2
|
||||
data[:,2] = data[:,2]
|
||||
data[:,3] = data[:,3]*5
|
||||
data[:,4] = data[:,4]*3
|
||||
labels = ['d', 'b', 'a', 'e', 'c']
|
||||
lt_data = LabelTensor(data, labels)
|
||||
lt_sorted = LabelTensor.sort_labels(lt_data)
|
||||
assert lt_sorted.shape == (20,5)
|
||||
assert lt_sorted.labels == ['a', 'b', 'c', 'd', 'e']
|
||||
assert torch.eq(lt_sorted.tensor[:,0], torch.ones(20) * 1).all()
|
||||
assert torch.eq(lt_sorted.tensor[:,1], torch.ones(20) * 2).all()
|
||||
assert torch.eq(lt_sorted.tensor[:,2], torch.ones(20) * 3).all()
|
||||
assert torch.eq(lt_sorted.tensor[:,3], torch.ones(20) * 4).all()
|
||||
assert torch.eq(lt_sorted.tensor[:,4], torch.ones(20) * 5).all()
|
||||
|
||||
data = torch.ones(20, 4, 5)
|
||||
data[:,0,:] = data[:,0]*4
|
||||
data[:,1,:] = data[:,1]*2
|
||||
data[:,2,:] = data[:,2]
|
||||
data[:,3,:] = data[:,3]*3
|
||||
labels = {1: {'dof': ['d', 'b', 'a', 'c'], 'name': 1}}
|
||||
lt_data = LabelTensor(data, labels)
|
||||
lt_sorted = LabelTensor.sort_labels(lt_data, dim=1)
|
||||
assert lt_sorted.shape == (20,4, 5)
|
||||
assert lt_sorted.full_labels[1]['dof'] == ['a', 'b', 'c', 'd']
|
||||
assert torch.eq(lt_sorted.tensor[:,0,:], torch.ones(20,5) * 1).all()
|
||||
assert torch.eq(lt_sorted.tensor[:,1,:], torch.ones(20,5) * 2).all()
|
||||
assert torch.eq(lt_sorted.tensor[:,2,:], torch.ones(20,5) * 3).all()
|
||||
assert torch.eq(lt_sorted.tensor[:,3,:], torch.ones(20,5) * 4).all()
|
||||
117
tests/test_label_tensor/test_label_tensor_01.py
Normal file
117
tests/test_label_tensor/test_label_tensor_01.py
Normal file
@@ -0,0 +1,117 @@
|
||||
import torch
|
||||
import pytest
|
||||
|
||||
from pina import LabelTensor
|
||||
|
||||
data = torch.rand((20, 3))
|
||||
labels = ['a', 'b', 'c']
|
||||
|
||||
|
||||
def test_constructor():
|
||||
LabelTensor(data, labels)
|
||||
|
||||
|
||||
def test_wrong_constructor():
|
||||
with pytest.raises(ValueError):
|
||||
LabelTensor(data, ['a', 'b'])
|
||||
|
||||
|
||||
def test_labels():
|
||||
tensor = LabelTensor(data, labels)
|
||||
assert isinstance(tensor, torch.Tensor)
|
||||
assert tensor.labels == labels
|
||||
with pytest.raises(ValueError):
|
||||
tensor.labels = labels[:-1]
|
||||
|
||||
|
||||
def test_extract():
|
||||
label_to_extract = ['a', 'c']
|
||||
tensor = LabelTensor(data, labels)
|
||||
new = tensor.extract(label_to_extract)
|
||||
assert new.labels == label_to_extract
|
||||
assert new.shape[1] == len(label_to_extract)
|
||||
assert torch.all(torch.isclose(data[:, 0::2], new))
|
||||
|
||||
|
||||
def test_extract_onelabel():
|
||||
label_to_extract = ['a']
|
||||
tensor = LabelTensor(data, labels)
|
||||
new = tensor.extract(label_to_extract)
|
||||
assert new.ndim == 2
|
||||
assert new.labels == label_to_extract
|
||||
assert new.shape[1] == len(label_to_extract)
|
||||
assert torch.all(torch.isclose(data[:, 0].reshape(-1, 1), new))
|
||||
|
||||
|
||||
def test_wrong_extract():
|
||||
label_to_extract = ['a', 'cc']
|
||||
tensor = LabelTensor(data, labels)
|
||||
with pytest.raises(ValueError):
|
||||
tensor.extract(label_to_extract)
|
||||
|
||||
|
||||
def test_extract_order():
|
||||
label_to_extract = ['c', 'a']
|
||||
tensor = LabelTensor(data, labels)
|
||||
new = tensor.extract(label_to_extract)
|
||||
expected = torch.cat(
|
||||
(data[:, 2].reshape(-1, 1), data[:, 0].reshape(-1, 1)),
|
||||
dim=1)
|
||||
assert new.labels == label_to_extract
|
||||
assert new.shape[1] == len(label_to_extract)
|
||||
assert torch.all(torch.isclose(expected, new))
|
||||
|
||||
|
||||
def test_merge():
|
||||
tensor = LabelTensor(data, labels)
|
||||
tensor_a = tensor.extract('a')
|
||||
tensor_b = tensor.extract('b')
|
||||
tensor_c = tensor.extract('c')
|
||||
|
||||
tensor_bc = tensor_b.append(tensor_c)
|
||||
assert torch.allclose(tensor_bc, tensor.extract(['b', 'c']))
|
||||
|
||||
|
||||
def test_merge2():
|
||||
tensor = LabelTensor(data, labels)
|
||||
tensor_b = tensor.extract('b')
|
||||
tensor_c = tensor.extract('c')
|
||||
|
||||
tensor_bc = tensor_b.append(tensor_c)
|
||||
assert torch.allclose(tensor_bc, tensor.extract(['b', 'c']))
|
||||
|
||||
|
||||
def test_getitem():
|
||||
tensor = LabelTensor(data, labels)
|
||||
tensor_view = tensor['a']
|
||||
assert tensor_view.labels == ['a']
|
||||
assert torch.allclose(tensor_view.flatten(), data[:, 0])
|
||||
|
||||
tensor_view = tensor['a', 'c']
|
||||
assert tensor_view.labels == ['a', 'c']
|
||||
assert torch.allclose(tensor_view, data[:, 0::2])
|
||||
|
||||
def test_getitem2():
|
||||
tensor = LabelTensor(data, labels)
|
||||
tensor_view = tensor[:5]
|
||||
assert tensor_view.labels == labels
|
||||
assert torch.allclose(tensor_view, data[:5])
|
||||
|
||||
idx = torch.randperm(tensor.shape[0])
|
||||
tensor_view = tensor[idx]
|
||||
assert tensor_view.labels == labels
|
||||
|
||||
def test_slice():
|
||||
tensor = LabelTensor(data, labels)
|
||||
tensor_view = tensor[:5, :2]
|
||||
assert tensor_view.labels == labels[:2]
|
||||
assert torch.allclose(tensor_view, data[:5, :2])
|
||||
|
||||
tensor_view2 = tensor[3]
|
||||
|
||||
assert tensor_view2.labels == labels
|
||||
assert torch.allclose(tensor_view2, data[3])
|
||||
|
||||
tensor_view3 = tensor[:, 2]
|
||||
assert tensor_view3.labels == labels[2]
|
||||
assert torch.allclose(tensor_view3, data[:, 2].reshape(-1, 1))
|
||||
@@ -27,15 +27,15 @@ def test_grad_scalar_output():
|
||||
grad_tensor_s = grad(tensor_s, inp)
|
||||
true_val = 2*inp
|
||||
assert grad_tensor_s.shape == inp.shape
|
||||
assert grad_tensor_s.labels[grad_tensor_s.ndim-1]['dof'] == [
|
||||
f'd{tensor_s.labels[tensor_s.ndim-1]["dof"][0]}d{i}' for i in inp.labels[inp.ndim-1]['dof']
|
||||
assert grad_tensor_s.labels == [
|
||||
f'd{tensor_s.labels[0]}d{i}' for i in inp.labels
|
||||
]
|
||||
assert torch.allclose(grad_tensor_s, true_val)
|
||||
|
||||
grad_tensor_s = grad(tensor_s, inp, d=['x', 'y'])
|
||||
assert grad_tensor_s.shape == (20, 2)
|
||||
assert grad_tensor_s.labels[grad_tensor_s.ndim-1]['dof'] == [
|
||||
f'd{tensor_s.labels[tensor_s.ndim-1]["dof"][0]}d{i}' for i in ['x', 'y']
|
||||
assert grad_tensor_s.labels == [
|
||||
f'd{tensor_s.labels[0]}d{i}' for i in ['x', 'y']
|
||||
]
|
||||
assert torch.allclose(grad_tensor_s, true_val)
|
||||
|
||||
|
||||
@@ -67,10 +67,6 @@ class Poisson(SpatialProblem):
|
||||
truth_solution = poisson_sol
|
||||
|
||||
|
||||
# make the problem
|
||||
poisson_problem = Poisson()
|
||||
print(poisson_problem.input_pts)
|
||||
|
||||
def test_discretise_domain():
|
||||
n = 10
|
||||
poisson_problem = Poisson()
|
||||
@@ -94,14 +90,15 @@ def test_discretise_domain():
|
||||
assert poisson_problem.input_pts['D'].shape[0] == n
|
||||
|
||||
|
||||
# def test_sampling_few_variables():
|
||||
# n = 10
|
||||
# poisson_problem.discretise_domain(n,
|
||||
# 'grid',
|
||||
# locations=['D'],
|
||||
# variables=['x'])
|
||||
# assert poisson_problem.input_pts['D'].shape[1] == 1
|
||||
# assert poisson_problem._have_sampled_points['D'] is False
|
||||
def test_sampling_few_variables():
|
||||
n = 10
|
||||
poisson_problem = Poisson()
|
||||
poisson_problem.discretise_domain(n,
|
||||
'grid',
|
||||
locations=['D'],
|
||||
variables=['x'])
|
||||
assert poisson_problem.input_pts['D'].shape[1] == 1
|
||||
assert poisson_problem._have_sampled_points['D'] is False
|
||||
|
||||
|
||||
def test_variables_correct_order_sampling():
|
||||
@@ -117,13 +114,11 @@ def test_variables_correct_order_sampling():
|
||||
variables=['y'])
|
||||
assert poisson_problem.input_pts['D'].labels == sorted(
|
||||
poisson_problem.input_variables)
|
||||
|
||||
poisson_problem.discretise_domain(n,
|
||||
'grid',
|
||||
locations=['D'])
|
||||
assert poisson_problem.input_pts['D'].labels == sorted(
|
||||
poisson_problem.input_variables)
|
||||
|
||||
poisson_problem.discretise_domain(n,
|
||||
'grid',
|
||||
locations=['D'],
|
||||
|
||||
Reference in New Issue
Block a user