Simplify LabelTensor class, fix #395, add docstrings, and resolve Python 3.8 compatibility issue in tests

This commit is contained in:
FilippoOlivo
2025-01-21 10:44:35 +01:00
committed by Nicola Demo
parent 4bec5bfc9a
commit 7706ef12c3
2 changed files with 295 additions and 239 deletions

View File

@@ -4,18 +4,13 @@ import torch
from torch import Tensor
full_labels = False
MATH_FUNCTIONS = {torch.sin, torch.cos}
class LabelTensor(torch.Tensor):
"""Torch tensor with a label for any column."""
@staticmethod
def __new__(cls, x, labels, *args, **kwargs):
full = kwargs.pop("full", full_labels)
if isinstance(x, LabelTensor):
x.full = full
return x
return super().__new__(cls, x, *args, **kwargs)
@@ -34,7 +29,7 @@ class LabelTensor(torch.Tensor):
{1: {"name": "space"['a', 'b', 'c'])
"""
self.full = kwargs.get('full', full_labels)
super().__init__()
if labels is not None:
self.labels = labels
else:
@@ -95,51 +90,49 @@ class LabelTensor(torch.Tensor):
else:
raise ValueError("labels must be list, dict or string.")
def _init_labels_from_dict(self, labels):
def _init_labels_from_dict(self, labels: dict):
"""
Update the internal label representation according to the values
passed as input.
Update the internal label representation according to the values
passed as input.
:param labels: The label(s) to update.
:type labels: dict
:raises ValueError: dof list contain duplicates or number of dof
does not match with tensor shape
"""
:param labels: The label(s) to update.
:type labels: dict
:raises ValueError: If the dof list contains duplicates or the number of
dof does not match the tensor shape.
"""
tensor_shape = self.shape
# Set all labels if full_labels is True
if hasattr(self, 'full') and self.full:
labels = {
i: labels[i] if i in labels else {
'name': i, 'dof': range(tensor_shape[i])
}
for i in range(len(tensor_shape))
}
def validate_dof(dof_list, dim_size: int):
"""Validate the 'dof' list for uniqueness and size."""
if len(dof_list) != len(set(dof_list)):
raise ValueError("dof must be unique")
if len(dof_list) != dim_size:
raise ValueError(
f"Number of dof ({len(dof_list)}) does not match "
f"tensor shape ({dim_size})")
for k, v in labels.items():
# Init labels from str
if isinstance(v, str):
v = {'name': v, 'dof': range(tensor_shape[k])}
# Init labels from dict
elif isinstance(v, dict):
# Only name of the dimension if provided
if list(v.keys()) == ['name']:
v['dof'] = range(tensor_shape[k])
# Both name and dof are provided
elif sorted(list(v.keys())) == ['dof', 'name']:
dof_list = v['dof']
dof_len = len(dof_list)
if dof_len != len(set(dof_list)):
raise ValueError("dof must be unique")
if dof_len != tensor_shape[k]:
raise ValueError(
'Number of dof does not match tensor shape')
for dim, label in labels.items():
if isinstance(label, dict):
if 'name' not in label:
label['name'] = dim
if 'dof' not in label:
label['dof'] = range(tensor_shape[dim])
if 'dof' in label and 'name' in label:
dof = label['dof']
dof_list = dof if isinstance(dof, (list, range)) else [dof]
if not isinstance(dof_list, (list, range)):
raise ValueError(f"'dof' should be a list or range, not"
f" {type(dof_list)}")
validate_dof(dof_list, tensor_shape[dim])
else:
raise ValueError("Labels dictionary must contain either "
" both 'name' and 'dof' keys")
else:
raise ValueError('Illegal labels initialization')
# Assign labels values
self._labels[k] = v
raise ValueError(f"Invalid label format for {dim}: Expected "
f"list or dictionary, got {type(label)}")
# Assign validated label data to internal labels
self._labels[dim] = label
def _init_labels_from_list(self, labels):
"""
@@ -168,61 +161,54 @@ class LabelTensor(torch.Tensor):
:raises TypeError: Labels are not ``str``.
:raises ValueError: Label to extract is not in the labels ``list``.
"""
# Convert str/int to string
def find_names(labels):
dim_names = {}
for dim in labels.keys():
dim_names[labels[dim]['name']] = dim
return dim_names
def get_label_indices(dim_labels, labels_te):
if isinstance(labels_te, (int, str)):
labels_te = [labels_te]
return [dim_labels.index(label) for label in labels_te] if len(
labels_te) > 1 else slice(dim_labels.index(labels_te[0]),
dim_labels.index(labels_te[0]) + 1)
# Ensure labels_to_extract is a list or dict
if isinstance(labels_to_extract, (str, int)):
labels_to_extract = [labels_to_extract]
# Store useful variables
labels = copy(self._labels)
stored_keys = labels.keys()
dim_names = find_names(labels)
ndim = len(super().shape)
# Convert tuple/list to dict (having a list as input
# means that we want to extract a values from the last dimension)
if isinstance(labels_to_extract, (tuple, list)):
if not ndim - 1 in stored_keys:
raise ValueError(
"LabelTensor does not have labels in last dimension")
name = labels[ndim-1]['name']
labels_to_extract = {name: list(labels_to_extract)}
# Get the dimension names and the respective dimension index
dim_names = {labels[dim]['name']: dim for dim in labels.keys()}
ndim = super().ndim
tensor = self.tensor.as_subclass(torch.Tensor)
# If labels_to_extract is not dict then rise error
# Convert list/tuple to a dict for the last dimension if applicable
if isinstance(labels_to_extract, (list, tuple)):
last_dim = ndim - 1
dim_name = labels[last_dim]['name']
labels_to_extract = {dim_name: list(labels_to_extract)}
# Validate the labels_to_extract type
if not isinstance(labels_to_extract, dict):
raise ValueError('labels_to_extract must be str or list or dict')
raise ValueError(
"labels_to_extract must be a string, list, or dictionary.")
# Initialize list used to perform extraction
extractor = [slice(None)]*ndim
# Loop over labels_to_extract dict
# Perform the extraction for each specified dimension
for dim_name, labels_te in labels_to_extract.items():
# If label is not find raise value error
idx_dim = dim_names.get(dim_name, None)
if idx_dim is None:
if dim_name not in dim_names:
raise ValueError(
'Cannot extract label with is not in original labels')
f"Cannot extract labels for dimension '{dim_name}' as it is"
f" not present in the original labels.")
idx_dim = dim_names[dim_name]
dim_labels = labels[idx_dim]['dof']
labels_te = [labels_te] if isinstance(labels_te, (int, str)) else labels_te
if not isinstance(labels_te, range):
#If is done to keep the dimension if there is only one extracted label
extractor[idx_dim] = [dim_labels.index(i) for i in labels_te] \
if len(labels_te)>1 else slice(dim_labels.index(labels_te[0]), dim_labels.index(labels_te[0])+1)
else:
extractor[idx_dim] = slice(labels_te.start, labels_te.stop)
indices = get_label_indices(dim_labels, labels_te)
labels.update({idx_dim: {'dof': labels_te, 'name': dim_name}})
extractor = [slice(None)] * ndim
extractor[idx_dim] = indices
tensor = tensor[tuple(extractor)]
tensor = super().__getitem__(extractor).as_subclass(LabelTensor)
tensor._labels = labels
return tensor
labels[idx_dim] = {'dof': labels_te, 'name': dim_name}
return LabelTensor(tensor, labels)
def __str__(self):
"""
@@ -243,62 +229,82 @@ class LabelTensor(torch.Tensor):
the resulting tensor is of shape `(n+n',m,dof)`
:param tensors: tensors to concatenate
:type tensors: list(LabelTensor)
:type tensors: list of LabelTensor
:param dim: dimensions on which you want to perform the operation
(default 0)
(default is 0)
:type dim: int
:rtype: LabelTensor
:raises ValueError: either number dof or dimensions names differ
"""
if len(tensors) == 0:
return []
if len(tensors) == 1 or isinstance(tensors, LabelTensor):
return tensors[0]
if not tensors:
return [] # Handle empty list
if len(tensors) == 1:
return tensors[0] # Return single tensor as-is
# Perform cat on tensors
new_tensor = torch.cat(tensors, dim=dim)
# Perform concatenation
cat_tensor = torch.cat(tensors, dim=dim)
tensors_labels = [tensor.stored_labels for tensor in tensors]
# --------- Start definition auxiliary function ------
# Compute and update labels
def create_labels_cat(tensors, dim, tensor_shape):
stored_labels = [tensor.stored_labels for tensor in tensors]
keys = stored_labels[0].keys()
# Check label consistency across tensors, excluding the
# concatenation dimension
for key in tensors_labels[0].keys():
if key != dim:
if any(tensors_labels[i][key] != tensors_labels[0][key]
for i in range(len(tensors_labels))):
raise RuntimeError(
f"Tensors must have the same labels along all "
f"dimensions except {dim}.")
if any(not all(stored_labels[i][k] == stored_labels[0][k] for i in
range(len(stored_labels))) for k in keys if k != dim):
raise RuntimeError('tensors must have the same shape and dof')
# Copy and update the 'dof' for the concatenation dimension
cat_labels = {k: copy(v) for k, v in tensors_labels[0].items()}
# Copy labels from the first tensor and update the 'dof' for dimension `dim`
labels = copy(stored_labels[0])
if dim in labels:
labels_list = [tensor[dim]['dof'] for tensor in stored_labels]
last_dim_dof = range(tensor_shape[dim]) if all(isinstance(label, range)
for label in labels_list) else sum(labels_list, [])
labels[dim]['dof'] = last_dim_dof
return labels
# --------- End definition auxiliary function ------
# Update labels
if dim in tensors[0].stored_labels.keys():
new_tensor_shape = new_tensor.shape
labels = create_labels_cat(tensors, dim, new_tensor_shape)
# Update labels if the concatenation dimension has labels
if dim in tensors[0].stored_labels:
if dim in cat_labels:
cat_dofs = [label[dim]['dof'] for label in
tensors_labels]
cat_labels[dim]['dof'] = sum(cat_dofs, [])
else:
labels = tensors[0].stored_labels
new_tensor._labels = labels
return new_tensor
cat_labels = tensors[0].stored_labels
# Assign updated labels to the concatenated tensor
cat_tensor._labels = cat_labels
return cat_tensor
@staticmethod
def stack(tensors):
"""
Stacks a list of tensors along a new dimension.
:param tensors: A list of tensors to stack. All tensors must have the
same shape.
:type tensors: list of LabelTensor
:return: A new tensor obtained by stacking the input tensors,
with the updated labels.
:rtype: LabelTensor
"""
# Perform stacking in torch
new_tensor = torch.stack(tensors)
# Increase labels keys by 1
labels = tensors[0]._labels
labels = {key + 1: value for key, value in labels.items()}
if full_labels:
new_tensor.labels = labels
else:
new_tensor._labels = labels
new_tensor._labels = labels
return new_tensor
def requires_grad_(self, mode=True):
"""
Override the requires_grad_ method to update the labels in the new
tensor.
:param mode: A boolean value indicating whether the tensor should track
gradients.If `True`, the tensor will track gradients; if `
False`, it will not.
:type mode: bool, optional (default is `True`)
:return: The tensor itself with the updated `requires_grad` state and
retained labels.
:rtype: LabelTensor
"""
lt = super().requires_grad_(mode)
lt._labels = self._labels
return lt
@@ -324,39 +330,10 @@ class LabelTensor(torch.Tensor):
:return: A copy of the tensor.
:rtype: LabelTensor
"""
out = LabelTensor(super().clone(*args, **kwargs), deepcopy(self._labels))
out = LabelTensor(super().clone(*args, **kwargs),
deepcopy(self._labels))
return out
@staticmethod
def summation(tensors):
if len(tensors) == 0:
raise ValueError('tensors list must not be empty')
if len(tensors) == 1:
return tensors[0]
# Collect all labels
# Check labels of all the tensors in each dimension
if not all(tensor.shape == tensors[0].shape for tensor in tensors) or \
not all(tensor.full_labels[i] == tensors[0].full_labels[i] for
tensor in tensors for i in range(tensors[0].ndim - 1)):
raise RuntimeError('Tensors must have the same shape and labels')
last_dim_labels = []
data = torch.zeros(tensors[0].tensor.shape).to(tensors[0].device)
for tensor in tensors:
data += tensor.tensor
last_dim_labels.append(tensor.labels)
last_dim_labels = ['+'.join(items) for items in zip(*last_dim_labels)]
labels = {k: copy(v) for k, v in tensors[0].stored_labels.items()}
labels.update({
tensors[0].ndim - 1: {
'dof': last_dim_labels,
'name': tensors[0].name
}
})
return LabelTensor(data, labels)
def append(self, tensor, mode='std'):
if mode == 'std':
# Call cat on last dimension
@@ -390,132 +367,210 @@ class LabelTensor(torch.Tensor):
"""
return LabelTensor.cat(label_tensors, dim=0)
# ---------------------- Start auxiliary function definition -----
# This method is used to update labels
# This method is used to update labels
def _update_single_label(self, old_labels, to_update_labels, index, dim,
to_update_dim):
"""
TODO
:param old_labels: labels from which retrieve data
:param to_update_labels: labels to update
:param index: index of dof to retain
:param dim: label index
:return:
"""
old_dof = old_labels[to_update_dim]['dof']
if isinstance(index, slice):
to_update_labels.update({
dim: {
'dof': old_dof[index],
'name': old_labels[dim]['name']
}
})
return
if isinstance(index, int):
index = [index]
if isinstance(index, (list, torch.Tensor)):
to_update_labels.update({
dim: {
'dof': [old_dof[i] for i in index] if isinstance(old_dof, list) else index,
'name': old_labels[dim]['name']
}
})
return
raise NotImplementedError(f'Getitem not implemented for '
f'{type(index)} values')
# ---------------------- End auxiliary function definition -----
def __getitem__(self, index):
"""
TODO: Complete docstring
:param index:
Update the labels of the tensor by selecting only the labels
:param old_labels: labels from which retrieve data
:param to_update_labels: labels to update
:param index: index of dof to retain
:param dim: label index
:return:
"""
# Index are str --> call extract
if isinstance(index, str) or (isinstance(index, (tuple, list))
and all(
isinstance(a, str) for a in index)):
old_dof = old_labels[to_update_dim]['dof']
label_name = old_labels[dim]['name']
if isinstance(index, slice):
# Handle slicing
to_update_labels[dim] = {'dof': old_dof[index], 'name': label_name}
elif isinstance(index, int):
# Handle single integer index
to_update_labels[dim] = {'dof': [old_dof[index]],
'name': label_name}
elif isinstance(index, (list, torch.Tensor)):
# Handle lists or tensors
indices = [index] if isinstance(index, (int, str)) else index
to_update_labels[dim] = {
'dof': [old_dof[i] for i in indices] if isinstance(old_dof,
list) else indices,
'name': label_name
}
else:
raise NotImplementedError(
f"Unsupported index type: {type(index)}. Expected slice, int, "
f"list, or torch.Tensor."
)
def __getitem__(self, index):
""""
Override the __getitem__ method to handle the labels of the tensor.
Perform the __getitem__ operation on the tensor and update the labels.
:param index: The index used to access the item
:type index: Union[int, str, tuple, list]
:return: A tensor-like object with updated labels.
:rtype: LabelTensor
:raises KeyError: If an invalid label index is provided.
:raises IndexError: If an invalid index is accessed in the tensor.
"""
# Handle string index
if isinstance(index, str) or (isinstance(index, (tuple, list)) and all(
isinstance(i, str) for i in index)):
return self.extract(index)
# Store important variables
selected_lt = super().__getitem__(index)
stored_labels = self._labels
labels = copy(stored_labels)
# Retrieve selected tensor and labels
selected_tensor = super().__getitem__(index)
original_labels = self._labels
updated_labels = copy(original_labels)
# Put here because it is the most common case (int as index).
# Used by DataLoader -> put here for efficiency purpose
if isinstance(index, list):
if 0 in labels.keys():
self._update_single_label(stored_labels, labels, index,
0, 0)
selected_lt._labels = labels
return selected_lt
if isinstance(index, int):
labels.pop(0, None)
labels = {key - 1 if key > 0 else key: value for key, value in
labels.items()}
selected_lt._labels = labels
return selected_lt
if not isinstance(index, (tuple, torch.Tensor)):
# Ensure the index is iterable
if not isinstance(index, tuple):
index = [index]
# Ellipsis are used to perform operation on the last dimension
if index[0] == Ellipsis:
if len(self.shape) in labels:
self._update_single_label(stored_labels, labels, index, 0, 0)
selected_lt._labels = labels
return selected_lt
i = 0
for j, idx in enumerate(index):
if j in self.stored_labels.keys():
if isinstance(idx, int) or (
isinstance(idx, torch.Tensor) and idx.ndim == 0):
selected_lt = selected_lt.unsqueeze(j)
if idx != slice(None):
self._update_single_label(stored_labels, labels, idx, j, i)
else:
# Update labels based on the index
offset = 0
for dim, idx in enumerate(index):
if dim in self.stored_labels.keys():
if isinstance(idx, int):
labels = {key - 1 if key > j else key:
value for key, value in labels.items()}
selected_tensor = selected_tensor.unsqueeze(dim)
if idx != slice(None):
self._update_single_label(original_labels, updated_labels,
idx, dim, offset)
else:
# Adjust label keys if dimension is reduced (case of integer
# index on a non-labeled dimension)
if isinstance(idx, int):
updated_labels = {
key - 1 if key > dim else key: value
for key, value in updated_labels.items()
}
continue
i += 1
selected_lt._labels = labels
return selected_lt
offset += 1
# Update the selected tensor's labels
selected_tensor._labels = updated_labels
return selected_tensor
def sort_labels(self, dim=None):
"""
Sorts the labels along a specified dimension and returns a new tensor
with sorted labels.
:param dim: The dimension along which to sort the labels. If `None`,
the last dimension (`ndim - 1`) is used.
:type dim: int, optional
:return: A new tensor with sorted labels along the specified dimension.
:rtype: LabelTensor
"""
def arg_sort(lst):
return sorted(range(len(lst)), key=lambda x: lst[x])
if dim is None:
dim = self.ndim - 1
if self.shape[dim] == 1:
return self
labels = self.stored_labels[dim]['dof']
sorted_index = arg_sort(labels)
# Define an indexer to sort the tensor along the specified dimension
indexer = [slice(None)] * self.ndim
# Assigned the sorted index to the specified dimension
indexer[dim] = sorted_index
return self.__getitem__(tuple(indexer))
def __deepcopy__(self, memo):
"""
Creates a deep copy of the object.
:param memo: LabelTensor object to be copied.
:type memo: LabelTensor
:return: A deep copy of the original LabelTensor object.
:rtype: LabelTensor
"""
cls = self.__class__
result = cls(deepcopy(self.tensor), deepcopy(self.stored_labels))
return result
def permute(self, *dims):
"""
Permutes the dimensions of the tensor and the associated labels
accordingly.
:param dims: The dimensions to permute the tensor to.
:type dims: tuple, list
:return: A new object with permuted dimensions and reordered labels.
:rtype: LabelTensor
"""
# Call the base class permute method
tensor = super().permute(*dims)
# Update lables
labels = self._labels
keys_list = list(*dims)
labels = {
keys_list.index(k): labels[k]
for k in labels.keys()
}
# Assign labels to the new tensor
tensor._labels = labels
return tensor
def detach(self):
"""
Detaches the tensor from the computation graph and retains the stored
labels.
:return: A new tensor detached from the computation graph.
:rtype: LabelTensor
"""
lt = super().detach()
lt._labels = self.stored_labels
return lt
# Copy the labels to the new tensor only if present
if hasattr(self, "_labels"):
lt._labels = self.stored_labels
return lt
@staticmethod
def summation(tensors):
"""
Computes the summation of a list of tensors.
:param tensors: A list of tensors to sum. All tensors must have the same
shape and labels.
:type tensors: list of LabelTensor
:return: A new `LabelTensor` containing the element-wise sum of the
input tensors.
:rtype: LabelTensor
:raises ValueError: If the input `tensors` list is empty.
:raises RuntimeError: If the tensors have different shapes and/or
mismatched labels.
"""
if not tensors:
raise ValueError('The tensors list must not be empty.')
if len(tensors) == 1:
return tensors[0]
# Initialize result tensor and labels
data = torch.zeros_like(tensors[0].tensor).to(tensors[0].device)
last_dim_labels = []
# Accumulate tensors
for tensor in tensors:
data += tensor.tensor
last_dim_labels.append(tensor.labels)
# Construct last dimension labels
last_dim_labels = ['+'.join(items) for items in zip(*last_dim_labels)]
# Update the labels for the resulting tensor
labels = {k: copy(v) for k, v in tensors[0].stored_labels.items()}
labels[tensors[0].ndim - 1] = {
'dof': last_dim_labels,
'name': tensors[0].name
}
return LabelTensor(data, labels)

View File

@@ -7,7 +7,8 @@ data = torch.rand((20, 3))
labels_column = {1: {"name": "space", "dof": ['x', 'y', 'z']}}
labels_row = {0: {"name": "samples", "dof": range(20)}}
labels_list = ['x', 'y', 'z']
labels_all = labels_column | labels_row
labels_all = labels_column.copy()
labels_all.update(labels_row)
@pytest.mark.parametrize("labels",