Equation Class Tutorial (#287)
* Tutorial Equation 12 * .rst and readme fix for tutorial12 * small fix * modified rst --------- Co-authored-by: Dario Coscia <dariocoscia@Dario-Coscia.local>
This commit is contained in:
committed by
GitHub
parent
e2d000ab22
commit
7b86661c6e
@@ -10,9 +10,11 @@ Getting started with PINA
|
||||
:titlesonly:
|
||||
|
||||
Introduction to PINA for Physics Informed Neural Networks training <tutorials/tutorial1/tutorial.rst>
|
||||
Introduction to PINA Equation class <tutorials/tutorial12/tutorial.rst>
|
||||
PINA and PyTorch Lightning, training tips and visualizations <tutorials/tutorial11/tutorial.rst>
|
||||
Building custom geometries with PINA Location class <tutorials/tutorial6/tutorial.rst>
|
||||
|
||||
|
||||
Physics Informed Neural Networks
|
||||
--------------------------------
|
||||
.. toctree::
|
||||
|
||||
162
docs/source/_rst/tutorials/tutorial12/tutorial.rst
Normal file
162
docs/source/_rst/tutorials/tutorial12/tutorial.rst
Normal file
@@ -0,0 +1,162 @@
|
||||
Tutorial: The ``Equation`` Class
|
||||
================================
|
||||
|
||||
In this tutorial, we will show how to use the ``Equation`` Class in
|
||||
PINA. Specifically, we will see how use the Class and its inherited
|
||||
classes to enforce residuals minimization in PINNs.
|
||||
|
||||
Example: The Burgers 1D equation
|
||||
--------------------------------
|
||||
|
||||
We will start implementing the viscous Burgers 1D problem Class,
|
||||
described as follows:
|
||||
|
||||
.. math::
|
||||
|
||||
|
||||
\begin{equation}
|
||||
\begin{cases}
|
||||
\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} &= \nu \frac{\partial^2 u}{ \partial x^2}, \quad x\in(0,1), \quad t>0\\
|
||||
u(x,0) &= -\sin (\pi x)\\
|
||||
u(x,t) &= 0 \quad x = \pm 1\\
|
||||
\end{cases}
|
||||
\end{equation}
|
||||
|
||||
where we set :math:`\nu = \frac{0.01}{\pi}` .
|
||||
|
||||
In the class that models this problem we will see in action the
|
||||
``Equation`` class and one of its inherited classes, the ``FixedValue``
|
||||
class.
|
||||
|
||||
.. code:: ipython3
|
||||
|
||||
#useful imports
|
||||
from pina.problem import SpatialProblem, TimeDependentProblem
|
||||
from pina.equation import Equation, FixedValue, FixedGradient, FixedFlux
|
||||
from pina.geometry import CartesianDomain
|
||||
import torch
|
||||
from pina.operators import grad, laplacian
|
||||
from pina import Condition
|
||||
|
||||
|
||||
|
||||
.. code:: ipython3
|
||||
|
||||
class Burgers1D(TimeDependentProblem, SpatialProblem):
|
||||
|
||||
# define the burger equation
|
||||
def burger_equation(input_, output_):
|
||||
du = grad(output_, input_)
|
||||
ddu = grad(du, input_, components=['dudx'])
|
||||
return (
|
||||
du.extract(['dudt']) +
|
||||
output_.extract(['u'])*du.extract(['dudx']) -
|
||||
(0.01/torch.pi)*ddu.extract(['ddudxdx'])
|
||||
)
|
||||
|
||||
# define initial condition
|
||||
def initial_condition(input_, output_):
|
||||
u_expected = -torch.sin(torch.pi*input_.extract(['x']))
|
||||
return output_.extract(['u']) - u_expected
|
||||
|
||||
# assign output/ spatial and temporal variables
|
||||
output_variables = ['u']
|
||||
spatial_domain = CartesianDomain({'x': [-1, 1]})
|
||||
temporal_domain = CartesianDomain({'t': [0, 1]})
|
||||
|
||||
# problem condition statement
|
||||
conditions = {
|
||||
'gamma1': Condition(location=CartesianDomain({'x': -1, 't': [0, 1]}), equation=FixedValue(0.)),
|
||||
'gamma2': Condition(location=CartesianDomain({'x': 1, 't': [0, 1]}), equation=FixedValue(0.)),
|
||||
't0': Condition(location=CartesianDomain({'x': [-1, 1], 't': 0}), equation=Equation(initial_condition)),
|
||||
'D': Condition(location=CartesianDomain({'x': [-1, 1], 't': [0, 1]}), equation=Equation(burger_equation)),
|
||||
}
|
||||
|
||||
The ``Equation`` class takes as input a function (in this case it
|
||||
happens twice, with ``initial_condition`` and ``burger_equation``) which
|
||||
computes a residual of an equation, such as a PDE. In a problem class
|
||||
such as the one above, the ``Equation`` class with such a given input is
|
||||
passed as a parameter in the specified ``Condition``.
|
||||
|
||||
The ``FixedValue`` class takes as input a value of same dimensions of
|
||||
the output functions; this class can be used to enforced a fixed value
|
||||
for a specific condition, e.g. Dirichlet boundary conditions, as it
|
||||
happens for instance in our example.
|
||||
|
||||
Once the equations are set as above in the problem conditions, the PINN
|
||||
solver will aim to minimize the residuals described in each equation in
|
||||
the training phase.
|
||||
|
||||
Available classes of equations include also: - ``FixedGradient`` and
|
||||
``FixedFlux``: they work analogously to ``FixedValue`` class, where we
|
||||
can require a constant value to be enforced, respectively, on the
|
||||
gradient of the solution or the divergence of the solution; -
|
||||
``Laplace``: it can be used to enforce the laplacian of the solution to
|
||||
be zero; - ``SystemEquation``: we can enforce multiple conditions on the
|
||||
same subdomain through this class, passing a list of residual equations
|
||||
defined in the problem.
|
||||
|
||||
Defining a new Equation class
|
||||
-----------------------------
|
||||
|
||||
``Equation`` classes can be also inherited to define a new class. As
|
||||
example, we can see how to rewrite the above problem introducing a new
|
||||
class ``Burgers1D``; during the class call, we can pass the viscosity
|
||||
parameter :math:`\nu`:
|
||||
|
||||
.. code:: ipython3
|
||||
|
||||
class Burgers1DEquation(Equation):
|
||||
|
||||
def __init__(self, nu = 0.):
|
||||
"""
|
||||
Burgers1D class. This class can be
|
||||
used to enforce the solution u to solve the viscous Burgers 1D Equation.
|
||||
|
||||
:param torch.float32 nu: the viscosity coefficient. Default value is set to 0.
|
||||
"""
|
||||
self.nu = nu
|
||||
|
||||
def equation(input_, output_):
|
||||
return grad(output_, input_, d='x') +\
|
||||
output_*grad(output_, input_, d='t') -\
|
||||
self.nu*laplacian(output_, input_, d='x')
|
||||
|
||||
|
||||
super().__init__(equation)
|
||||
|
||||
Now we can just pass the above class as input for the last condition,
|
||||
setting :math:`\nu= \frac{0.01}{\pi}`:
|
||||
|
||||
.. code:: ipython3
|
||||
|
||||
class Burgers1D(TimeDependentProblem, SpatialProblem):
|
||||
|
||||
# define initial condition
|
||||
def initial_condition(input_, output_):
|
||||
u_expected = -torch.sin(torch.pi*input_.extract(['x']))
|
||||
return output_.extract(['u']) - u_expected
|
||||
|
||||
# assign output/ spatial and temporal variables
|
||||
output_variables = ['u']
|
||||
spatial_domain = CartesianDomain({'x': [-1, 1]})
|
||||
temporal_domain = CartesianDomain({'t': [0, 1]})
|
||||
|
||||
# problem condition statement
|
||||
conditions = {
|
||||
'gamma1': Condition(location=CartesianDomain({'x': -1, 't': [0, 1]}), equation=FixedValue(0.)),
|
||||
'gamma2': Condition(location=CartesianDomain({'x': 1, 't': [0, 1]}), equation=FixedValue(0.)),
|
||||
't0': Condition(location=CartesianDomain({'x': [-1, 1], 't': 0}), equation=Equation(initial_condition)),
|
||||
'D': Condition(location=CartesianDomain({'x': [-1, 1], 't': [0, 1]}), equation=Burgers1DEquation(0.01/torch.pi)),
|
||||
}
|
||||
|
||||
What’s next?
|
||||
------------
|
||||
|
||||
Congratulations on completing the ``Equation`` class tutorial of
|
||||
**PINA**! As we have seen, you can build new classes that inherits
|
||||
``Equation`` to store more complex equations, as the Burgers 1D
|
||||
equation, only requiring to pass the characteristic coefficients of the
|
||||
problem. From now on, you can: - define additional complex equation
|
||||
classes (e.g. ``SchrodingerEquation``, ``NavierStokeEquation``..) -
|
||||
define more ``FixedOperator`` (e.g. ``FixedCurl``)
|
||||
1
tutorials/README.md
vendored
1
tutorials/README.md
vendored
@@ -7,6 +7,7 @@ In this folder we collect useful tutorials in order to understand the principles
|
||||
| Description | Tutorial |
|
||||
|---------------|-----------|
|
||||
Introduction to PINA for Physics Informed Neural Networks training|[[.ipynb](tutorial1/tutorial.ipynb), [.py](tutorial1/tutorial.py), [.html](http://mathlab.github.io/PINA/_rst/tutorials/tutorial1/tutorial.html)]|
|
||||
Introduction to PINA `Equation` class|[[.ipynb](tutorial12/tutorial.ipynb), [.py](tutorial12/tutorial.py), [.html](http://mathlab.github.io/PINA/_rst/tutorials/tutorial12/tutorial.html)]|
|
||||
PINA and PyTorch Lightning, training tips and visualizations|[[.ipynb](tutorial11/tutorial.ipynb), [.py](tutorial11/tutorial.py), [.html](http://mathlab.github.io/PINA/_rst/tutorials/tutorial11/tutorial.html)]|
|
||||
Building custom geometries with PINA `Location` class|[[.ipynb](tutorial6/tutorial.ipynb), [.py](tutorial6/tutorial.py), [.html](http://mathlab.github.io/PINA/_rst/tutorials/tutorial6/tutorial.html)]|
|
||||
|
||||
|
||||
235
tutorials/tutorial12/tutorial.ipynb
vendored
Normal file
235
tutorials/tutorial12/tutorial.ipynb
vendored
Normal file
@@ -0,0 +1,235 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Tutorial: The `Equation` Class"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"In this tutorial, we will show how to use the `Equation` Class in PINA. Specifically, we will see how use the Class and its inherited classes to enforce residuals minimization in PINNs."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Example: The Burgers 1D equation"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"We will start implementing the viscous Burgers 1D problem Class, described as follows:\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"$$\n",
|
||||
"\\begin{equation}\n",
|
||||
"\\begin{cases}\n",
|
||||
"\\frac{\\partial u}{\\partial t} + u \\frac{\\partial u}{\\partial x} &= \\nu \\frac{\\partial^2 u}{ \\partial x^2}, \\quad x\\in(0,1), \\quad t>0\\\\\n",
|
||||
"u(x,0) &= -\\sin (\\pi x)\\\\\n",
|
||||
"u(x,t) &= 0 \\quad x = \\pm 1\\\\\n",
|
||||
"\\end{cases}\n",
|
||||
"\\end{equation}\n",
|
||||
"$$\n",
|
||||
"\n",
|
||||
"where we set $ \\nu = \\frac{0.01}{\\pi}$.\n",
|
||||
"\n",
|
||||
"In the class that models this problem we will see in action the `Equation` class and one of its inherited classes, the `FixedValue` class. "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#useful imports\n",
|
||||
"from pina.problem import SpatialProblem, TimeDependentProblem\n",
|
||||
"from pina.equation import Equation, FixedValue, FixedGradient, FixedFlux\n",
|
||||
"from pina.geometry import CartesianDomain\n",
|
||||
"import torch\n",
|
||||
"from pina.operators import grad, laplacian\n",
|
||||
"from pina import Condition\n",
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"class Burgers1D(TimeDependentProblem, SpatialProblem):\n",
|
||||
"\n",
|
||||
" # define the burger equation\n",
|
||||
" def burger_equation(input_, output_):\n",
|
||||
" du = grad(output_, input_)\n",
|
||||
" ddu = grad(du, input_, components=['dudx'])\n",
|
||||
" return (\n",
|
||||
" du.extract(['dudt']) +\n",
|
||||
" output_.extract(['u'])*du.extract(['dudx']) -\n",
|
||||
" (0.01/torch.pi)*ddu.extract(['ddudxdx'])\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
" # define initial condition\n",
|
||||
" def initial_condition(input_, output_):\n",
|
||||
" u_expected = -torch.sin(torch.pi*input_.extract(['x']))\n",
|
||||
" return output_.extract(['u']) - u_expected\n",
|
||||
"\n",
|
||||
" # assign output/ spatial and temporal variables\n",
|
||||
" output_variables = ['u']\n",
|
||||
" spatial_domain = CartesianDomain({'x': [-1, 1]})\n",
|
||||
" temporal_domain = CartesianDomain({'t': [0, 1]})\n",
|
||||
"\n",
|
||||
" # problem condition statement\n",
|
||||
" conditions = {\n",
|
||||
" 'gamma1': Condition(location=CartesianDomain({'x': -1, 't': [0, 1]}), equation=FixedValue(0.)),\n",
|
||||
" 'gamma2': Condition(location=CartesianDomain({'x': 1, 't': [0, 1]}), equation=FixedValue(0.)),\n",
|
||||
" 't0': Condition(location=CartesianDomain({'x': [-1, 1], 't': 0}), equation=Equation(initial_condition)),\n",
|
||||
" 'D': Condition(location=CartesianDomain({'x': [-1, 1], 't': [0, 1]}), equation=Equation(burger_equation)),\n",
|
||||
" }"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"\n",
|
||||
"The `Equation` class takes as input a function (in this case it happens twice, with `initial_condition` and `burger_equation`) which computes a residual of an equation, such as a PDE. In a problem class such as the one above, the `Equation` class with such a given input is passed as a parameter in the specified `Condition`. \n",
|
||||
"\n",
|
||||
"The `FixedValue` class takes as input a value of same dimensions of the output functions; this class can be used to enforced a fixed value for a specific condition, e.g. Dirichlet boundary conditions, as it happens for instance in our example.\n",
|
||||
"\n",
|
||||
"Once the equations are set as above in the problem conditions, the PINN solver will aim to minimize the residuals described in each equation in the training phase. "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Available classes of equations include also:\n",
|
||||
"- `FixedGradient` and `FixedFlux`: they work analogously to `FixedValue` class, where we can require a constant value to be enforced, respectively, on the gradient of the solution or the divergence of the solution;\n",
|
||||
"- `Laplace`: it can be used to enforce the laplacian of the solution to be zero;\n",
|
||||
"- `SystemEquation`: we can enforce multiple conditions on the same subdomain through this class, passing a list of residual equations defined in the problem.\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Defining a new Equation class"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"`Equation` classes can be also inherited to define a new class. As example, we can see how to rewrite the above problem introducing a new class `Burgers1D`; during the class call, we can pass the viscosity parameter $\\nu$:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"class Burgers1DEquation(Equation):\n",
|
||||
" \n",
|
||||
" def __init__(self, nu = 0.):\n",
|
||||
" \"\"\"\n",
|
||||
" Burgers1D class. This class can be\n",
|
||||
" used to enforce the solution u to solve the viscous Burgers 1D Equation.\n",
|
||||
" \n",
|
||||
" :param torch.float32 nu: the viscosity coefficient. Default value is set to 0.\n",
|
||||
" \"\"\"\n",
|
||||
" self.nu = nu \n",
|
||||
" \n",
|
||||
" def equation(input_, output_):\n",
|
||||
" return grad(output_, input_, d='x') +\\\n",
|
||||
" output_*grad(output_, input_, d='t') -\\\n",
|
||||
" self.nu*laplacian(output_, input_, d='x')\n",
|
||||
"\n",
|
||||
" \n",
|
||||
" super().__init__(equation)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Now we can just pass the above class as input for the last condition, setting $\\nu= \\frac{0.01}{\\pi}$:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"class Burgers1D(TimeDependentProblem, SpatialProblem):\n",
|
||||
"\n",
|
||||
" # define initial condition\n",
|
||||
" def initial_condition(input_, output_):\n",
|
||||
" u_expected = -torch.sin(torch.pi*input_.extract(['x']))\n",
|
||||
" return output_.extract(['u']) - u_expected\n",
|
||||
"\n",
|
||||
" # assign output/ spatial and temporal variables\n",
|
||||
" output_variables = ['u']\n",
|
||||
" spatial_domain = CartesianDomain({'x': [-1, 1]})\n",
|
||||
" temporal_domain = CartesianDomain({'t': [0, 1]})\n",
|
||||
"\n",
|
||||
" # problem condition statement\n",
|
||||
" conditions = {\n",
|
||||
" 'gamma1': Condition(location=CartesianDomain({'x': -1, 't': [0, 1]}), equation=FixedValue(0.)),\n",
|
||||
" 'gamma2': Condition(location=CartesianDomain({'x': 1, 't': [0, 1]}), equation=FixedValue(0.)),\n",
|
||||
" 't0': Condition(location=CartesianDomain({'x': [-1, 1], 't': 0}), equation=Equation(initial_condition)),\n",
|
||||
" 'D': Condition(location=CartesianDomain({'x': [-1, 1], 't': [0, 1]}), equation=Burgers1DEquation(0.01/torch.pi)),\n",
|
||||
" }"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# What's next?"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Congratulations on completing the `Equation` class tutorial of **PINA**! As we have seen, you can build new classes that inherits `Equation` to store more complex equations, as the Burgers 1D equation, only requiring to pass the characteristic coefficients of the problem. \n",
|
||||
"From now on, you can:\n",
|
||||
"- define additional complex equation classes (e.g. `SchrodingerEquation`, `NavierStokeEquation`..)\n",
|
||||
"- define more `FixedOperator` (e.g. `FixedCurl`)"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "pina",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.1.0"
|
||||
},
|
||||
"orig_nbformat": 4
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
142
tutorials/tutorial12/tutorial.py
vendored
Normal file
142
tutorials/tutorial12/tutorial.py
vendored
Normal file
@@ -0,0 +1,142 @@
|
||||
#!/usr/bin/env python
|
||||
# coding: utf-8
|
||||
|
||||
# # Tutorial: The `Equation` Class
|
||||
|
||||
# In this tutorial, we will show how to use the `Equation` Class in PINA. Specifically, we will see how use the Class and its inherited classes to enforce residuals minimization in PINNs.
|
||||
|
||||
# # Example: The Burgers 1D equation
|
||||
|
||||
# We will start implementing the viscous Burgers 1D problem Class, described as follows:
|
||||
#
|
||||
#
|
||||
# $$
|
||||
# \begin{equation}
|
||||
# \begin{cases}
|
||||
# \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} &= \nu \frac{\partial^2 u}{ \partial x^2}, \quad x\in(0,1), \quad t>0\\
|
||||
# u(x,0) &= -\sin (\pi x)\\
|
||||
# u(x,t) &= 0 \quad x = \pm 1\\
|
||||
# \end{cases}
|
||||
# \end{equation}
|
||||
# $$
|
||||
#
|
||||
# where we set $ \nu = \frac{0.01}{\pi}$.
|
||||
#
|
||||
# In the class that models this problem we will see in action the `Equation` class and one of its inherited classes, the `FixedValue` class.
|
||||
|
||||
# In[7]:
|
||||
|
||||
|
||||
#useful imports
|
||||
from pina.problem import SpatialProblem, TimeDependentProblem
|
||||
from pina.equation import Equation, FixedValue, FixedGradient, FixedFlux
|
||||
from pina.geometry import CartesianDomain
|
||||
import torch
|
||||
from pina.operators import grad, laplacian
|
||||
from pina import Condition
|
||||
|
||||
|
||||
# In[6]:
|
||||
|
||||
|
||||
class Burgers1D(TimeDependentProblem, SpatialProblem):
|
||||
|
||||
# define the burger equation
|
||||
def burger_equation(input_, output_):
|
||||
du = grad(output_, input_)
|
||||
ddu = grad(du, input_, components=['dudx'])
|
||||
return (
|
||||
du.extract(['dudt']) +
|
||||
output_.extract(['u'])*du.extract(['dudx']) -
|
||||
(0.01/torch.pi)*ddu.extract(['ddudxdx'])
|
||||
)
|
||||
|
||||
# define initial condition
|
||||
def initial_condition(input_, output_):
|
||||
u_expected = -torch.sin(torch.pi*input_.extract(['x']))
|
||||
return output_.extract(['u']) - u_expected
|
||||
|
||||
# assign output/ spatial and temporal variables
|
||||
output_variables = ['u']
|
||||
spatial_domain = CartesianDomain({'x': [-1, 1]})
|
||||
temporal_domain = CartesianDomain({'t': [0, 1]})
|
||||
|
||||
# problem condition statement
|
||||
conditions = {
|
||||
'gamma1': Condition(location=CartesianDomain({'x': -1, 't': [0, 1]}), equation=FixedValue(0.)),
|
||||
'gamma2': Condition(location=CartesianDomain({'x': 1, 't': [0, 1]}), equation=FixedValue(0.)),
|
||||
't0': Condition(location=CartesianDomain({'x': [-1, 1], 't': 0}), equation=Equation(initial_condition)),
|
||||
'D': Condition(location=CartesianDomain({'x': [-1, 1], 't': [0, 1]}), equation=Equation(burger_equation)),
|
||||
}
|
||||
|
||||
|
||||
#
|
||||
# The `Equation` class takes as input a function (in this case it happens twice, with `initial_condition` and `burger_equation`) which computes a residual of an equation, such as a PDE. In a problem class such as the one above, the `Equation` class with such a given input is passed as a parameter in the specified `Condition`.
|
||||
#
|
||||
# The `FixedValue` class takes as input a value of same dimensions of the output functions; this class can be used to enforced a fixed value for a specific condition, e.g. Dirichlet boundary conditions, as it happens for instance in our example.
|
||||
#
|
||||
# Once the equations are set as above in the problem conditions, the PINN solver will aim to minimize the residuals described in each equation in the training phase.
|
||||
|
||||
# Available classes of equations include also:
|
||||
# - `FixedGradient` and `FixedFlux`: they work analogously to `FixedValue` class, where we can require a constant value to be enforced, respectively, on the gradient of the solution or the divergence of the solution;
|
||||
# - `Laplace`: it can be used to enforce the laplacian of the solution to be zero;
|
||||
# - `SystemEquation`: we can enforce multiple conditions on the same subdomain through this class, passing a list of residual equations defined in the problem.
|
||||
#
|
||||
|
||||
# # Defining a new Equation class
|
||||
|
||||
# `Equation` classes can be also inherited to define a new class. As example, we can see how to rewrite the above problem introducing a new class `Burgers1D`; during the class call, we can pass the viscosity parameter $\nu$:
|
||||
|
||||
# In[13]:
|
||||
|
||||
|
||||
class Burgers1DEquation(Equation):
|
||||
|
||||
def __init__(self, nu = 0.):
|
||||
"""
|
||||
Burgers1D class. This class can be
|
||||
used to enforce the solution u to solve the viscous Burgers 1D Equation.
|
||||
|
||||
:param torch.float32 nu: the viscosity coefficient. Default value is set to 0.
|
||||
"""
|
||||
self.nu = nu
|
||||
|
||||
def equation(input_, output_):
|
||||
return grad(output_, input_, d='x') + output_*grad(output_, input_, d='t') - self.nu*laplacian(output_, input_, d='x')
|
||||
|
||||
|
||||
super().__init__(equation)
|
||||
|
||||
|
||||
# Now we can just pass the above class as input for the last condition, setting $\nu= \frac{0.01}{\pi}$:
|
||||
|
||||
# In[14]:
|
||||
|
||||
|
||||
class Burgers1D(TimeDependentProblem, SpatialProblem):
|
||||
|
||||
# define initial condition
|
||||
def initial_condition(input_, output_):
|
||||
u_expected = -torch.sin(torch.pi*input_.extract(['x']))
|
||||
return output_.extract(['u']) - u_expected
|
||||
|
||||
# assign output/ spatial and temporal variables
|
||||
output_variables = ['u']
|
||||
spatial_domain = CartesianDomain({'x': [-1, 1]})
|
||||
temporal_domain = CartesianDomain({'t': [0, 1]})
|
||||
|
||||
# problem condition statement
|
||||
conditions = {
|
||||
'gamma1': Condition(location=CartesianDomain({'x': -1, 't': [0, 1]}), equation=FixedValue(0.)),
|
||||
'gamma2': Condition(location=CartesianDomain({'x': 1, 't': [0, 1]}), equation=FixedValue(0.)),
|
||||
't0': Condition(location=CartesianDomain({'x': [-1, 1], 't': 0}), equation=Equation(initial_condition)),
|
||||
'D': Condition(location=CartesianDomain({'x': [-1, 1], 't': [0, 1]}), equation=Burgers1DEquation(0.01/torch.pi)),
|
||||
}
|
||||
|
||||
|
||||
# # What's next?
|
||||
|
||||
# Congratulations on completing the `Equation` class tutorial of **PINA**! As we have seen, you can build new classes that inherits `Equation` to store more complex equations, as the Burgers 1D equation, only requiring to pass the characteristic coefficients of the problem.
|
||||
# From now on, you can:
|
||||
# - define additional complex equation classes (e.g. `SchrodingerEquation`, `NavierStokeEquation`..)
|
||||
# - define more `FixedOperator` (e.g. `FixedCurl`)
|
||||
Reference in New Issue
Block a user