Bug fix and add additional tests for Dataset and DataModule (#517)

This commit is contained in:
Filippo Olivo
2025-03-25 12:18:27 +01:00
committed by FilippoOlivo
parent 79a7199985
commit 80c257da4d
4 changed files with 143 additions and 16 deletions

View File

@@ -217,12 +217,11 @@ class PinaSampler:
parameter and the environment in which the code is running.
"""
def __new__(cls, dataset, shuffle):
def __new__(cls, dataset):
"""
Instantiate and initialize the sampler.
:param PinaDataset dataset: The dataset from which to sample.
:param bool shuffle: Whether to shuffle the dataset.
:return: The sampler instance.
:rtype: :class:`torch.utils.data.Sampler`
"""
@@ -231,12 +230,9 @@ class PinaSampler:
torch.distributed.is_available()
and torch.distributed.is_initialized()
):
sampler = DistributedSampler(dataset, shuffle=shuffle)
sampler = DistributedSampler(dataset)
else:
if shuffle:
sampler = RandomSampler(dataset)
else:
sampler = SequentialSampler(dataset)
sampler = SequentialSampler(dataset)
return sampler
@@ -496,8 +492,6 @@ class PinaDataModule(LightningDataModule):
:return: The dataloader for the given split.
:rtype: torch.utils.data.DataLoader
"""
shuffle = self.shuffle if split == "train" else False
# Suppress the warning about num_workers.
# In many cases, especially for PINNs,
# serial data loading can outperform parallel data loading.
@@ -511,7 +505,7 @@ class PinaDataModule(LightningDataModule):
)
# Use custom batching (good if batch size is large)
if self.batch_size is not None:
sampler = PinaSampler(dataset, shuffle)
sampler = PinaSampler(dataset)
if self.automatic_batching:
collate = Collator(
self.find_max_conditions_lengths(split),

View File

@@ -167,9 +167,15 @@ class PinaDataset(Dataset, ABC):
:return: A dictionary containing all the data in the dataset.
:rtype: dict
"""
index = list(range(len(self)))
return self.fetch_from_idx_list(index)
to_return_dict = {}
for condition, data in self.conditions_dict.items():
len_condition = len(
data["input"]
) # Length of the current condition
to_return_dict[condition] = self._retrive_data(
data, list(range(len_condition))
) # Retrieve the data from the current condition
return to_return_dict
def fetch_from_idx_list(self, idx):
"""
@@ -306,3 +312,13 @@ class PinaGraphDataset(PinaDataset):
)
for k, v in data.items()
}
@property
def input(self):
"""
Return the input data for the dataset.
:return: Dictionary containing the input points.
:rtype: dict
"""
return {k: v["input"] for k, v in self.conditions_dict.items()}

View File

@@ -238,3 +238,94 @@ def test_dataloader_labels(input_, output_, automatic_batching):
assert data["data"]["input"].labels == ["u", "v", "w"]
assert isinstance(data["data"]["target"], torch.Tensor)
assert data["data"]["target"].labels == ["u", "v", "w"]
def test_get_all_data():
input = torch.stack([torch.zeros((1,)) + i for i in range(1000)])
target = input
problem = SupervisedProblem(input, target)
datamodule = PinaDataModule(
problem,
train_size=0.7,
test_size=0.2,
val_size=0.1,
batch_size=64,
shuffle=False,
repeat=False,
automatic_batching=None,
num_workers=0,
pin_memory=False,
)
datamodule.setup("fit")
datamodule.setup("test")
assert len(datamodule.train_dataset.get_all_data()["data"]["input"]) == 700
assert torch.isclose(
datamodule.train_dataset.get_all_data()["data"]["input"], input[:700]
).all()
assert len(datamodule.val_dataset.get_all_data()["data"]["input"]) == 100
assert torch.isclose(
datamodule.val_dataset.get_all_data()["data"]["input"], input[900:]
).all()
assert len(datamodule.test_dataset.get_all_data()["data"]["input"]) == 200
assert torch.isclose(
datamodule.test_dataset.get_all_data()["data"]["input"], input[700:900]
).all()
def test_input_propery_tensor():
input = torch.stack([torch.zeros((1,)) + i for i in range(1000)])
target = input
problem = SupervisedProblem(input, target)
datamodule = PinaDataModule(
problem,
train_size=0.7,
test_size=0.2,
val_size=0.1,
batch_size=64,
shuffle=False,
repeat=False,
automatic_batching=None,
num_workers=0,
pin_memory=False,
)
datamodule.setup("fit")
datamodule.setup("test")
input_ = datamodule.input
assert isinstance(input_, dict)
assert isinstance(input_["train"], dict)
assert isinstance(input_["val"], dict)
assert isinstance(input_["test"], dict)
assert torch.isclose(input_["train"]["data"], input[:700]).all()
assert torch.isclose(input_["val"]["data"], input[900:]).all()
assert torch.isclose(input_["test"]["data"], input[700:900]).all()
def test_input_propery_graph():
problem = SupervisedProblem(input_graph, output_graph)
datamodule = PinaDataModule(
problem,
train_size=0.7,
test_size=0.2,
val_size=0.1,
batch_size=64,
shuffle=False,
repeat=False,
automatic_batching=None,
num_workers=0,
pin_memory=False,
)
datamodule.setup("fit")
datamodule.setup("test")
input_ = datamodule.input
assert isinstance(input_, dict)
assert isinstance(input_["train"], dict)
assert isinstance(input_["val"], dict)
assert isinstance(input_["test"], dict)
assert isinstance(input_["train"]["data"], list)
assert isinstance(input_["val"]["data"], list)
assert isinstance(input_["test"]["data"], list)
assert len(input_["train"]["data"]) == 70
assert len(input_["val"]["data"]) == 10
assert len(input_["test"]["data"]) == 20

View File

@@ -31,7 +31,7 @@ conditions_dict_single = {
max_conditions_lengths_single = {"data": 100}
# Problem with multiple conditions
conditions_dict_single_multi = {
conditions_dict_multi = {
"data_1": {
"input": input_,
"target": output_,
@@ -49,7 +49,7 @@ max_conditions_lengths_multi = {"data_1": 100, "data_2": 50}
"conditions_dict, max_conditions_lengths",
[
(conditions_dict_single, max_conditions_lengths_single),
(conditions_dict_single_multi, max_conditions_lengths_multi),
(conditions_dict_multi, max_conditions_lengths_multi),
],
)
def test_constructor(conditions_dict, max_conditions_lengths):
@@ -66,7 +66,7 @@ def test_constructor(conditions_dict, max_conditions_lengths):
"conditions_dict, max_conditions_lengths",
[
(conditions_dict_single, max_conditions_lengths_single),
(conditions_dict_single_multi, max_conditions_lengths_multi),
(conditions_dict_multi, max_conditions_lengths_multi),
],
)
def test_getitem(conditions_dict, max_conditions_lengths):
@@ -110,3 +110,29 @@ def test_getitem(conditions_dict, max_conditions_lengths):
]
)
assert all([d["input"].edge_attr.shape[0] == 1200 for d in data.values()])
def test_input_single_condition():
dataset = PinaDatasetFactory(
conditions_dict_single,
max_conditions_lengths=max_conditions_lengths_single,
automatic_batching=True,
)
input_ = dataset.input
assert isinstance(input_, dict)
assert isinstance(input_["data"], list)
assert all([isinstance(d, Data) for d in input_["data"]])
def test_input_multi_condition():
dataset = PinaDatasetFactory(
conditions_dict_multi,
max_conditions_lengths=max_conditions_lengths_multi,
automatic_batching=True,
)
input_ = dataset.input
assert isinstance(input_, dict)
assert isinstance(input_["data_1"], list)
assert all([isinstance(d, Data) for d in input_["data_1"]])
assert isinstance(input_["data_2"], list)
assert all([isinstance(d, Data) for d in input_["data_2"]])