Implement Graph Neural Operator #231

This commit is contained in:
FilippoOlivo
2025-02-04 18:11:06 +01:00
committed by Nicola Demo
parent e63c3d9061
commit 86fe41261b
4 changed files with 259 additions and 0 deletions

View File

@@ -10,6 +10,7 @@ __all__ = [
"AveragingNeuralOperator",
"LowRankNeuralOperator",
"Spline",
"GNO"
]
from .feed_forward import FeedForward, ResidualFeedForward
@@ -20,3 +21,4 @@ from .base_no import KernelNeuralOperator
from .avno import AveragingNeuralOperator
from .lno import LowRankNeuralOperator
from .spline import Spline
from .gno import GNO

173
pina/model/gno.py Normal file
View File

@@ -0,0 +1,173 @@
import torch
from torch.nn import Tanh
from .layers import GraphIntegralLayer
from .base_no import KernelNeuralOperator
class GraphNeuralKernel(torch.nn.Module):
"""
TODO add docstring
"""
def __init__(
self,
width,
edge_features,
n_layers=2,
internal_n_layers=0,
internal_layers=None,
internal_func=None,
external_func=None,
shared_weights=False
):
"""
The Graph Neural Kernel constructor.
:param width: The width of the kernel.
:type width: int
:param edge_features: The number of edge features.
:type edge_features: int
:param n_layers: The number of kernel layers.
:type n_layers: int
:param internal_n_layers: The number of layers the FF Neural Network internal to each Kernel Layer.
:type internal_n_layers: int
:param internal_layers: Number of neurons of hidden layers(s) in the FF Neural Network inside for each Kernel Layer.
:type internal_layers: list | tuple
:param internal_func: The activation function used inside the computation of the representation of the edge features in the Graph Integral Layer.
:param external_func: The activation function applied to the output of the Graph Integral Layer.
:type external_func: torch.nn.Module
:param shared_weights: If ``True`` the weights of the Graph Integral Layers are shared.
"""
super().__init__()
if external_func is None:
external_func = Tanh
if internal_func is None:
internal_func = Tanh
if shared_weights:
self.layers = GraphIntegralLayer(
width=width,
edges_features=edge_features,
n_layers=internal_n_layers,
layers=internal_layers,
internal_func=internal_func,
external_func=external_func)
self.n_layers = n_layers
self.forward = self.forward_shared
else:
self.layers = torch.nn.ModuleList(
[GraphIntegralLayer(
width=width,
edges_features=edge_features,
n_layers=internal_n_layers,
layers=internal_layers,
internal_func=internal_func,
external_func=external_func
)
for _ in range(n_layers)]
)
def forward(self, x, edge_index, edge_attr):
"""
The forward pass of the Graph Neural Kernel used when the weights are not shared.
:param x: The input batch.
:type x: torch.Tensor
:param edge_index: The edge index.
:type edge_index: torch.Tensor
:param edge_attr: The edge attributes.
:type edge_attr: torch.Tensor
"""
for layer in self.layers:
x = layer(x, edge_index, edge_attr)
return x
def forward_shared(self, x, edge_index, edge_attr):
"""
The forward pass of the Graph Neural Kernel used when the weights are shared.
:param x: The input batch.
:type x: torch.Tensor
:param edge_index: The edge index.
:type edge_index: torch.Tensor
:param edge_attr: The edge attributes.
:type edge_attr: torch.Tensor
"""
for _ in range(self.n_layers):
x = self.layers(x, edge_index, edge_attr)
return x
class GNO(KernelNeuralOperator):
"""
TODO add docstring
"""
def __init__(
self,
lifting_operator,
projection_operator,
edge_features,
n_layers=10,
internal_n_layers=0,
inner_size=None,
internal_layers=None,
internal_func=None,
external_func=None,
shared_weights=True
):
"""
The Graph Neural Operator constructor.
:param lifting_operator: The lifting operator mapping the node features to its hidden dimension.
:type lifting_operator: torch.nn.Module
:param projection_operator: The projection operator mapping the hidden representation of the nodes features to the output function.
:type projection_operator: torch.nn.Module
:param edge_features: Number of edge features.
:type edge_features: int
:param n_layers: The number of kernel layers.
:type n_layers: int
:param internal_n_layers: The number of layers the Feed Forward Neural Network internal to each Kernel Layer.
:type internal_n_layers: int
:param internal_layers: Number of neurons of hidden layers(s) in the FF Neural Network inside for each Kernel Layer.
:type internal_layers: list | tuple
:param internal_func: The activation function used inside the computation of the representation of the edge features in the Graph Integral Layer.
:type internal_func: torch.nn.Module
:param external_func: The activation function applied to the output of the Graph Integral Kernel.
:type external_func: torch.nn.Module
:param shared_weights: If ``True`` the weights of the Graph Integral Layers are shared.
:type shared_weights: bool
"""
if internal_func is None:
internal_func = Tanh
if external_func is None:
external_func = Tanh
super().__init__(
lifting_operator=lifting_operator,
integral_kernels=GraphNeuralKernel(
width=lifting_operator.out_features,
edge_features=edge_features,
internal_n_layers=internal_n_layers,
internal_layers=internal_layers,
external_func=external_func,
internal_func=internal_func,
n_layers=n_layers,
shared_weights=shared_weights
),
projection_operator=projection_operator
)
def forward(self, x):
"""
The forward pass of the Graph Neural Operator.
:param x: The input batch.
:type x: torch_geometric.data.Batch
"""
x, edge_index, edge_attr = x.x, x.edge_index, x.edge_attr
x = self.lifting_operator(x)
x = self.integral_kernels(x, edge_index, edge_attr)
x = self.projection_operator(x)
return x

View File

@@ -15,6 +15,7 @@ __all__ = [
"AVNOBlock",
"LowRankBlock",
"RBFBlock",
"GraphIntegralLayer"
]
from .convolution_2d import ContinuousConvBlock
@@ -31,3 +32,4 @@ from .embedding import PeriodicBoundaryEmbedding, FourierFeatureEmbedding
from .avno_layer import AVNOBlock
from .lowrank_layer import LowRankBlock
from .rbf_layer import RBFBlock
from .graph_integral_kernel import GraphIntegralLayer

View File

@@ -0,0 +1,82 @@
import torch
from torch_geometric.nn import MessagePassing
class GraphIntegralLayer(MessagePassing):
"""
TODO: Add documentation
"""
def __init__(
self,
width,
edges_features,
n_layers=0,
layers=None,
internal_func=None,
external_func=None
):
"""
Initialize the Graph Integral Layer, inheriting from the MessagePassing class of PyTorch Geometric.
:param width: The width of the hidden representation of the nodes features
:type width: int
:param edges_features: The number of edge features.
:type edges_features: int
:param n_layers: The number of layers in the Feed Forward Neural Network used to compute the representation of the edges features.
:type n_layers: int
"""
from pina.model import FeedForward
super(GraphIntegralLayer, self).__init__(aggr='mean')
self.width = width
self.dense = FeedForward(input_dimensions=edges_features,
output_dimensions=width ** 2,
n_layers=n_layers,
layers=layers,
func=internal_func)
self.W = torch.nn.Linear(width, width)
self.func = external_func()
def message(self, x_j, edge_attr):
"""
This function computes the message passed between the nodes of the graph. Overwrite the default message function defined in the MessagePassing class.
:param x_j: The node features of the neighboring.
:type x_j: torch.Tensor
:param edge_attr: The edge features.
:type edge_attr: torch.Tensor
:return: The message passed between the nodes of the graph.
:rtype: torch.Tensor
"""
x = self.dense(edge_attr).view(-1, self.width, self.width)
return torch.einsum('bij,bj->bi', x, x_j)
def update(self, aggr_out, x):
"""
This function updates the node features of the graph. Overwrite the default update function defined in the MessagePassing class.
:param aggr_out: The aggregated messages.
:type aggr_out: torch.Tensor
:param x: The node features.
:type x: torch.Tensor
:return: The updated node features.
:rtype: torch.Tensor
"""
aggr_out = aggr_out + self.W(x)
return aggr_out
def forward(self, x, edge_index, edge_attr):
"""
The forward pass of the Graph Integral Layer.
:param x: Node features.
:type x: torch.Tensor
:param edge_index: Edge index.
:type edge_index: torch.Tensor
:param edge_attr: Edge features.
:type edge_attr: torch.Tensor
:return: Output of a single iteration over the Graph Integral Layer.
:rtype: torch.Tensor
"""
return self.func(
self.propagate(edge_index, x=x, edge_attr=edge_attr)
)