Add Graph class and tests for Graph and Collector + Dataloader refactoring
This commit is contained in:
committed by
Nicola Demo
parent
4fdb5641d4
commit
e63c3d9061
334
pina/graph.py
334
pina/graph.py
@@ -1,118 +1,240 @@
|
||||
""" Module for Loss class """
|
||||
from logging import warning
|
||||
|
||||
import logging
|
||||
from torch_geometric.nn import MessagePassing, InstanceNorm, radius_graph
|
||||
from torch_geometric.data import Data
|
||||
import torch
|
||||
from . import LabelTensor
|
||||
from torch_geometric.data import Data
|
||||
from torch_geometric.utils import to_undirected
|
||||
|
||||
|
||||
class Graph:
|
||||
"""
|
||||
PINA Graph managing the PyG Data class.
|
||||
Class for the graph construction.
|
||||
"""
|
||||
def __init__(self, data):
|
||||
self.data = data
|
||||
|
||||
@staticmethod
|
||||
def _build_triangulation(**kwargs):
|
||||
logging.debug("Creating graph with triangulation mode.")
|
||||
|
||||
# check for mandatory arguments
|
||||
if "nodes_coordinates" not in kwargs:
|
||||
raise ValueError("Nodes coordinates must be provided in the kwargs.")
|
||||
if "nodes_data" not in kwargs:
|
||||
raise ValueError("Nodes data must be provided in the kwargs.")
|
||||
if "triangles" not in kwargs:
|
||||
raise ValueError("Triangles must be provided in the kwargs.")
|
||||
|
||||
nodes_coordinates = kwargs["nodes_coordinates"]
|
||||
nodes_data = kwargs["nodes_data"]
|
||||
triangles = kwargs["triangles"]
|
||||
|
||||
|
||||
|
||||
def less_first(a, b):
|
||||
return [a, b] if a < b else [b, a]
|
||||
|
||||
list_of_edges = []
|
||||
|
||||
for triangle in triangles:
|
||||
for e1, e2 in [[0, 1], [1, 2], [2, 0]]:
|
||||
list_of_edges.append(less_first(triangle[e1],triangle[e2]))
|
||||
|
||||
array_of_edges = torch.unique(torch.Tensor(list_of_edges), dim=0) # remove duplicates
|
||||
array_of_edges = array_of_edges.t().contiguous()
|
||||
print(array_of_edges)
|
||||
|
||||
# list_of_lengths = []
|
||||
|
||||
# for p1,p2 in array_of_edges:
|
||||
# x1, y1 = tri.points[p1]
|
||||
# x2, y2 = tri.points[p2]
|
||||
# list_of_lengths.append((x1-x2)**2 + (y1-y2)**2)
|
||||
|
||||
# array_of_lengths = np.sqrt(np.array(list_of_lengths))
|
||||
|
||||
# return array_of_edges, array_of_lengths
|
||||
|
||||
return Data(
|
||||
x=nodes_data,
|
||||
pos=nodes_coordinates.T,
|
||||
|
||||
edge_index=array_of_edges,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def _build_radius(**kwargs):
|
||||
logging.debug("Creating graph with radius mode.")
|
||||
|
||||
# check for mandatory arguments
|
||||
if "nodes_coordinates" not in kwargs:
|
||||
raise ValueError("Nodes coordinates must be provided in the kwargs.")
|
||||
if "nodes_data" not in kwargs:
|
||||
raise ValueError("Nodes data must be provided in the kwargs.")
|
||||
if "radius" not in kwargs:
|
||||
raise ValueError("Radius must be provided in the kwargs.")
|
||||
|
||||
nodes_coordinates = kwargs["nodes_coordinates"]
|
||||
nodes_data = kwargs["nodes_data"]
|
||||
radius = kwargs["radius"]
|
||||
|
||||
edges_data = kwargs.get("edge_data", None)
|
||||
loop = kwargs.get("loop", False)
|
||||
batch = kwargs.get("batch", None)
|
||||
|
||||
logging.debug(f"radius: {radius}, loop: {loop}, "
|
||||
f"batch: {batch}")
|
||||
|
||||
edge_index = radius_graph(
|
||||
x=nodes_coordinates.tensor,
|
||||
r=radius,
|
||||
loop=loop,
|
||||
batch=batch,
|
||||
)
|
||||
|
||||
logging.debug(f"edge_index computed")
|
||||
return Data(
|
||||
x=nodes_data.tensor,
|
||||
pos=nodes_coordinates.tensor,
|
||||
edge_index=edge_index,
|
||||
edge_attr=edges_data,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def build(mode, **kwargs):
|
||||
def __init__(self,
|
||||
x,
|
||||
pos,
|
||||
edge_index,
|
||||
edge_attr=None,
|
||||
build_edge_attr=False,
|
||||
undirected=False,
|
||||
additional_params=None):
|
||||
"""
|
||||
Constructor for the `Graph` class.
|
||||
Constructor for the Graph class.
|
||||
:param x: The node features.
|
||||
:type x: torch.Tensor or list[torch.Tensor]
|
||||
:param pos: The node positions.
|
||||
:type pos: torch.Tensor or list[torch.Tensor]
|
||||
:param edge_index: The edge index.
|
||||
:type edge_index: torch.Tensor or list[torch.Tensor]
|
||||
:param edge_attr: The edge attributes.
|
||||
:type edge_attr: torch.Tensor or list[torch.Tensor]
|
||||
:param build_edge_attr: Whether to build the edge attributes.
|
||||
:type build_edge_attr: bool
|
||||
:param undirected: Whether to build an undirected graph.
|
||||
:type undirected: bool
|
||||
:param additional_params: Additional parameters.
|
||||
:type additional_params: dict
|
||||
"""
|
||||
if mode == "radius":
|
||||
graph = Graph._build_radius(**kwargs)
|
||||
elif mode == "triangulation":
|
||||
graph = Graph._build_triangulation(**kwargs)
|
||||
self.data = []
|
||||
x, pos, edge_index = Graph._check_input_consistency(x, pos, edge_index)
|
||||
|
||||
# Check input dimension consistency and store the number of graphs
|
||||
data_len = self._check_len_consistency(x, pos)
|
||||
|
||||
# Initialize additional_parameters (if present)
|
||||
if additional_params is not None:
|
||||
if not isinstance(additional_params, dict):
|
||||
raise TypeError("additional_params must be a dictionary.")
|
||||
for param, val in additional_params.items():
|
||||
# Check if the values are tensors or lists of tensors
|
||||
if isinstance(val, torch.Tensor):
|
||||
# If the tensor is 3D, we split it into a list of 2D tensors
|
||||
# In this case there must be a additional parameter for each
|
||||
# node
|
||||
if val.ndim == 3:
|
||||
additional_params[param] = [val[i] for i in
|
||||
range(val.shape[0])]
|
||||
# If the tensor is 2D, we replicate it for each node
|
||||
elif val.ndim == 2:
|
||||
additional_params[param] = [val] * data_len
|
||||
# If the tensor is 1D, each graph has a scalar values as
|
||||
# additional parameter
|
||||
if val.ndim == 1:
|
||||
if len(val) == data_len:
|
||||
additional_params[param] = [val[i] for i in
|
||||
range(len(val))]
|
||||
else:
|
||||
additional_params[param] = [val for _ in
|
||||
range(data_len)]
|
||||
elif not isinstance(val, list):
|
||||
raise TypeError("additional_params values must be tensors "
|
||||
"or lists of tensors.")
|
||||
else:
|
||||
raise ValueError(f"Mode {mode} not recognized")
|
||||
|
||||
return Graph(graph)
|
||||
additional_params = {}
|
||||
|
||||
# Make the graphs undirected
|
||||
if undirected:
|
||||
if isinstance(edge_index, list):
|
||||
edge_index = [to_undirected(e) for e in edge_index]
|
||||
else:
|
||||
edge_index = to_undirected(edge_index)
|
||||
|
||||
if build_edge_attr:
|
||||
if edge_attr is not None:
|
||||
warning("Edge attributes are provided, build_edge_attr is set "
|
||||
"to True. The provided edge attributes will be ignored.")
|
||||
edge_attr = self._build_edge_attr(pos, edge_index)
|
||||
|
||||
# Prepare internal lists to create a graph list (same positions but
|
||||
# different node features)
|
||||
if isinstance(x, list) and isinstance(pos,
|
||||
(torch.Tensor, LabelTensor)):
|
||||
# Replicate the positions, edge_index and edge_attr
|
||||
pos, edge_index = [pos] * data_len, [edge_index] * data_len
|
||||
if edge_attr is not None:
|
||||
edge_attr = [edge_attr] * data_len
|
||||
# Prepare internal lists to create a list containing a single graph
|
||||
elif isinstance(x, (torch.Tensor, LabelTensor)) and isinstance(pos, (
|
||||
torch.Tensor, LabelTensor)):
|
||||
# Encapsulate the input tensors into lists
|
||||
x, pos, edge_index = [x], [pos], [edge_index]
|
||||
if isinstance(edge_attr, torch.Tensor):
|
||||
edge_attr = [edge_attr]
|
||||
# Prepare internal lists to create a list of graphs (same node features
|
||||
# but different positions)
|
||||
elif (isinstance(x, (torch.Tensor, LabelTensor))
|
||||
and isinstance(pos, list)):
|
||||
# Replicate the node features
|
||||
x = [x] * data_len
|
||||
elif not isinstance(x, list) and not isinstance(pos, list):
|
||||
raise TypeError("x and pos must be lists or tensors.")
|
||||
|
||||
# Perform the graph construction
|
||||
self._build_graph_list(x, pos, edge_index, edge_attr, additional_params)
|
||||
|
||||
def _build_graph_list(self, x, pos, edge_index, edge_attr,
|
||||
additional_params):
|
||||
for i, (x_, pos_, edge_index_) in enumerate(zip(x, pos, edge_index)):
|
||||
if isinstance(x_, LabelTensor):
|
||||
x_ = x_.tensor
|
||||
add_params_local = {k: v[i] for k, v in additional_params.items()}
|
||||
if edge_attr is not None:
|
||||
|
||||
self.data.append(Data(x=x_, pos=pos_, edge_index=edge_index_,
|
||||
edge_attr=edge_attr[i],
|
||||
**add_params_local))
|
||||
else:
|
||||
self.data.append(Data(x=x_, pos=pos_, edge_index=edge_index_,
|
||||
**add_params_local))
|
||||
|
||||
@staticmethod
|
||||
def _build_edge_attr(pos, edge_index):
|
||||
if isinstance(pos, torch.Tensor):
|
||||
pos = [pos]
|
||||
edge_index = [edge_index]
|
||||
distance = [pos_[edge_index_[0]] - pos_[edge_index_[1]] ** 2 for
|
||||
pos_, edge_index_ in zip(pos, edge_index)]
|
||||
return distance
|
||||
|
||||
@staticmethod
|
||||
def _check_len_consistency(x, pos):
|
||||
if isinstance(x, list) and isinstance(pos, list):
|
||||
if len(x) != len(pos):
|
||||
raise ValueError("x and pos must have the same length.")
|
||||
return max(len(x), len(pos))
|
||||
elif isinstance(x, list) and not isinstance(pos, list):
|
||||
return len(x)
|
||||
elif not isinstance(x, list) and isinstance(pos, list):
|
||||
return len(pos)
|
||||
else:
|
||||
return 1
|
||||
|
||||
@staticmethod
|
||||
def _check_input_consistency(x, pos, edge_index=None):
|
||||
# If x is a 3D tensor, we split it into a list of 2D tensors
|
||||
if isinstance(x, torch.Tensor) and x.ndim == 3:
|
||||
x = [x[i] for i in range(x.shape[0])]
|
||||
|
||||
# If pos is a 3D tensor, we split it into a list of 2D tensors
|
||||
if isinstance(pos, torch.Tensor) and pos.ndim == 3:
|
||||
pos = [pos[i] for i in range(pos.shape[0])]
|
||||
|
||||
# If edge_index is a 3D tensor, we split it into a list of 2D tensors
|
||||
if isinstance(edge_index, torch.Tensor) and edge_index.ndim == 3:
|
||||
edge_index = [edge_index[i] for i in range(edge_index.shape[0])]
|
||||
return x, pos, edge_index
|
||||
|
||||
|
||||
def __repr__(self):
|
||||
return f"Graph(data={self.data})"
|
||||
class RadiusGraph(Graph):
|
||||
def __init__(self,
|
||||
x,
|
||||
pos,
|
||||
r,
|
||||
build_edge_attr=False,
|
||||
undirected=False,
|
||||
additional_params=None, ):
|
||||
x, pos, edge_index = Graph._check_input_consistency(x, pos)
|
||||
|
||||
if isinstance(pos, (torch.Tensor, LabelTensor)):
|
||||
edge_index = RadiusGraph._radius_graph(pos, r)
|
||||
else:
|
||||
edge_index = [RadiusGraph._radius_graph(p, r) for p in pos]
|
||||
|
||||
super().__init__(x=x, pos=pos, edge_index=edge_index,
|
||||
build_edge_attr=build_edge_attr,
|
||||
undirected=undirected,
|
||||
additional_params=additional_params)
|
||||
|
||||
@staticmethod
|
||||
def _radius_graph(points, r):
|
||||
"""
|
||||
Implementation of the radius graph construction.
|
||||
:param points: The input points.
|
||||
:type points: torch.Tensor
|
||||
:param r: The radius.
|
||||
:type r: float
|
||||
:return: The edge index.
|
||||
:rtype: torch.Tensor
|
||||
"""
|
||||
dist = torch.cdist(points, points, p=2)
|
||||
edge_index = torch.nonzero(dist <= r, as_tuple=False).t()
|
||||
return edge_index
|
||||
|
||||
|
||||
class KNNGraph(Graph):
|
||||
def __init__(self,
|
||||
x,
|
||||
pos,
|
||||
k,
|
||||
build_edge_attr=False,
|
||||
undirected=False,
|
||||
additional_params=None,
|
||||
):
|
||||
x, pos, edge_index = Graph._check_input_consistency(x, pos)
|
||||
if isinstance(pos, (torch.Tensor, LabelTensor)):
|
||||
edge_index = KNNGraph._knn_graph(pos, k)
|
||||
else:
|
||||
edge_index = [KNNGraph._knn_graph(p, k) for p in pos]
|
||||
super().__init__(x=x, pos=pos, edge_index=edge_index,
|
||||
build_edge_attr=build_edge_attr,
|
||||
undirected=undirected,
|
||||
additional_params=additional_params)
|
||||
|
||||
@staticmethod
|
||||
def _knn_graph(points, k):
|
||||
"""
|
||||
Implementation of the k-nearest neighbors graph construction.
|
||||
:param points: The input points.
|
||||
:type points: torch.Tensor
|
||||
:param k: The number of nearest neighbors.
|
||||
:type k: int
|
||||
:return: The edge index.
|
||||
:rtype: torch.Tensor
|
||||
"""
|
||||
dist = torch.cdist(points, points, p=2)
|
||||
knn_indices = torch.topk(dist, k=k + 1, largest=False).indices[:, 1:]
|
||||
row = torch.arange(points.size(0)).repeat_interleave(k)
|
||||
col = knn_indices.flatten()
|
||||
edge_index = torch.stack([row, col], dim=0)
|
||||
return edge_index
|
||||
|
||||
125
tests/test_collector.py
Normal file
125
tests/test_collector.py
Normal file
@@ -0,0 +1,125 @@
|
||||
import torch
|
||||
import pytest
|
||||
from pina import Condition, LabelTensor, Graph
|
||||
from pina.condition import InputOutputPointsCondition, DomainEquationCondition
|
||||
from pina.graph import RadiusGraph
|
||||
from pina.problem import AbstractProblem, SpatialProblem
|
||||
from pina.domain import CartesianDomain
|
||||
from pina.equation.equation import Equation
|
||||
from pina.equation.equation_factory import FixedValue
|
||||
from pina.operators import laplacian
|
||||
|
||||
def test_supervised_tensor_collector():
|
||||
class SupervisedProblem(AbstractProblem):
|
||||
output_variables = None
|
||||
conditions = {
|
||||
'data1' : Condition(input_points=torch.rand((10,2)),
|
||||
output_points=torch.rand((10,2))),
|
||||
'data2' : Condition(input_points=torch.rand((20,2)),
|
||||
output_points=torch.rand((20,2))),
|
||||
'data3' : Condition(input_points=torch.rand((30,2)),
|
||||
output_points=torch.rand((30,2))),
|
||||
}
|
||||
problem = SupervisedProblem()
|
||||
collector = problem.collector
|
||||
for v in collector.conditions_name.values():
|
||||
assert v in problem.conditions.keys()
|
||||
assert all(collector._is_conditions_ready.values())
|
||||
|
||||
def test_pinn_collector():
|
||||
def laplace_equation(input_, output_):
|
||||
force_term = (torch.sin(input_.extract(['x']) * torch.pi) *
|
||||
torch.sin(input_.extract(['y']) * torch.pi))
|
||||
delta_u = laplacian(output_.extract(['u']), input_)
|
||||
return delta_u - force_term
|
||||
|
||||
my_laplace = Equation(laplace_equation)
|
||||
in_ = LabelTensor(torch.tensor([[0., 1.]], requires_grad=True), ['x', 'y'])
|
||||
out_ = LabelTensor(torch.tensor([[0.]], requires_grad=True), ['u'])
|
||||
class Poisson(SpatialProblem):
|
||||
output_variables = ['u']
|
||||
spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]})
|
||||
|
||||
conditions = {
|
||||
'gamma1':
|
||||
Condition(domain=CartesianDomain({
|
||||
'x': [0, 1],
|
||||
'y': 1
|
||||
}),
|
||||
equation=FixedValue(0.0)),
|
||||
'gamma2':
|
||||
Condition(domain=CartesianDomain({
|
||||
'x': [0, 1],
|
||||
'y': 0
|
||||
}),
|
||||
equation=FixedValue(0.0)),
|
||||
'gamma3':
|
||||
Condition(domain=CartesianDomain({
|
||||
'x': 1,
|
||||
'y': [0, 1]
|
||||
}),
|
||||
equation=FixedValue(0.0)),
|
||||
'gamma4':
|
||||
Condition(domain=CartesianDomain({
|
||||
'x': 0,
|
||||
'y': [0, 1]
|
||||
}),
|
||||
equation=FixedValue(0.0)),
|
||||
'D':
|
||||
Condition(domain=CartesianDomain({
|
||||
'x': [0, 1],
|
||||
'y': [0, 1]
|
||||
}),
|
||||
equation=my_laplace),
|
||||
'data':
|
||||
Condition(input_points=in_, output_points=out_)
|
||||
}
|
||||
|
||||
def poisson_sol(self, pts):
|
||||
return -(torch.sin(pts.extract(['x']) * torch.pi) *
|
||||
torch.sin(pts.extract(['y']) * torch.pi)) / (2 * torch.pi**2)
|
||||
|
||||
truth_solution = poisson_sol
|
||||
|
||||
problem = Poisson()
|
||||
collector = problem.collector
|
||||
for k,v in problem.conditions.items():
|
||||
if isinstance(v, InputOutputPointsCondition):
|
||||
assert collector._is_conditions_ready[k] == True
|
||||
assert list(collector.data_collections[k].keys()) == ['input_points', 'output_points']
|
||||
else:
|
||||
assert collector._is_conditions_ready[k] == False
|
||||
assert collector.data_collections[k] == {}
|
||||
|
||||
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
problem.discretise_domain(10, 'grid', locations=boundaries)
|
||||
problem.discretise_domain(10, 'grid', locations='D')
|
||||
assert all(collector._is_conditions_ready.values())
|
||||
for k,v in problem.conditions.items():
|
||||
if isinstance(v, DomainEquationCondition):
|
||||
assert list(collector.data_collections[k].keys()) == ['input_points', 'equation']
|
||||
|
||||
|
||||
def test_supervised_graph_collector():
|
||||
pos = torch.rand((100,3))
|
||||
x = [torch.rand((100,3)) for _ in range(10)]
|
||||
graph_list_1 = RadiusGraph(pos=pos, x=x, build_edge_attr=True, r=.4)
|
||||
out_1 = torch.rand((10,100,3))
|
||||
pos = torch.rand((50,3))
|
||||
x = [torch.rand((50,3)) for _ in range(10)]
|
||||
graph_list_2 = RadiusGraph(pos=pos, x=x, build_edge_attr=True, r=.4)
|
||||
out_2 = torch.rand((10,50,3))
|
||||
class SupervisedProblem(AbstractProblem):
|
||||
output_variables = None
|
||||
conditions = {
|
||||
'data1' : Condition(input_points=graph_list_1,
|
||||
output_points=out_1),
|
||||
'data2' : Condition(input_points=graph_list_2,
|
||||
output_points=out_2),
|
||||
}
|
||||
|
||||
problem = SupervisedProblem()
|
||||
collector = problem.collector
|
||||
assert all(collector._is_conditions_ready.values())
|
||||
for v in collector.conditions_name.values():
|
||||
assert v in problem.conditions.keys()
|
||||
143
tests/test_graph.py
Normal file
143
tests/test_graph.py
Normal file
@@ -0,0 +1,143 @@
|
||||
import pytest
|
||||
import torch
|
||||
from pina import Graph
|
||||
from pina.graph import RadiusGraph, KNNGraph
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"x, pos",
|
||||
[
|
||||
([torch.rand(10, 2) for _ in range(3)], [torch.rand(10, 3) for _ in range(3)]),
|
||||
([torch.rand(10, 2) for _ in range(3)], [torch.rand(10, 3) for _ in range(3)]),
|
||||
(torch.rand(3,10,2), torch.rand(3,10,3)),
|
||||
(torch.rand(3,10,2), torch.rand(3,10,3)),
|
||||
]
|
||||
)
|
||||
def test_build_multiple_graph_multiple_val(x, pos):
|
||||
graph = RadiusGraph(x=x, pos=pos, build_edge_attr=False, r=.3)
|
||||
assert len(graph.data) == 3
|
||||
data = graph.data
|
||||
assert all(torch.isclose(d_.x, x_).all() for (d_, x_) in zip(data, x))
|
||||
assert all(torch.isclose(d_.pos, pos_).all() for d_, pos_ in zip(data, pos))
|
||||
assert all(len(d.edge_index) == 2 for d in data)
|
||||
graph = RadiusGraph(x=x, pos=pos, build_edge_attr=True, r=.3)
|
||||
data = graph.data
|
||||
assert all(torch.isclose(d_.x, x_).all() for (d_, x_) in zip(data, x))
|
||||
assert all(torch.isclose(d_.pos, pos_).all() for d_, pos_ in zip(data, pos))
|
||||
assert all(len(d.edge_index) == 2 for d in data)
|
||||
assert all(d.edge_attr is not None for d in data)
|
||||
assert all([d.edge_index.shape[1] == d.edge_attr.shape[0]] for d in data)
|
||||
|
||||
graph = KNNGraph(x=x, pos=pos, build_edge_attr=True, k = 3)
|
||||
data = graph.data
|
||||
assert all(torch.isclose(d_.x, x_).all() for (d_, x_) in zip(data, x))
|
||||
assert all(torch.isclose(d_.pos, pos_).all() for d_, pos_ in zip(data, pos))
|
||||
assert all(len(d.edge_index) == 2 for d in data)
|
||||
assert all(d.edge_attr is not None for d in data)
|
||||
assert all([d.edge_index.shape[1] == d.edge_attr.shape[0]] for d in data)
|
||||
|
||||
|
||||
def test_build_single_graph_multiple_val():
|
||||
x = torch.rand(10, 2)
|
||||
pos = torch.rand(10, 3)
|
||||
graph = RadiusGraph(x=x, pos=pos, build_edge_attr=False, r=.3)
|
||||
assert len(graph.data) == 1
|
||||
data = graph.data
|
||||
assert all(torch.isclose(d.x, x).all() for d in data)
|
||||
assert all(torch.isclose(d_.pos, pos).all() for d_ in data)
|
||||
assert all(len(d.edge_index) == 2 for d in data)
|
||||
graph = RadiusGraph(x=x, pos=pos, build_edge_attr=True, r=.3)
|
||||
data = graph.data
|
||||
assert len(graph.data) == 1
|
||||
assert all(torch.isclose(d.x, x).all() for d in data)
|
||||
assert all(torch.isclose(d_.pos, pos).all() for d_ in data)
|
||||
assert all(len(d.edge_index) == 2 for d in data)
|
||||
assert all(d.edge_attr is not None for d in data)
|
||||
assert all([d.edge_index.shape[1] == d.edge_attr.shape[0]] for d in data)
|
||||
|
||||
x = torch.rand(10, 2)
|
||||
pos = torch.rand(10, 3)
|
||||
graph = KNNGraph(x=x, pos=pos, build_edge_attr=True, k=3)
|
||||
assert len(graph.data) == 1
|
||||
data = graph.data
|
||||
assert all(torch.isclose(d.x, x).all() for d in data)
|
||||
assert all(torch.isclose(d_.pos, pos).all() for d_ in data)
|
||||
assert all(len(d.edge_index) == 2 for d in data)
|
||||
graph = KNNGraph(x=x, pos=pos, build_edge_attr=True, k=3)
|
||||
data = graph.data
|
||||
assert len(graph.data) == 1
|
||||
assert all(torch.isclose(d.x, x).all() for d in data)
|
||||
assert all(torch.isclose(d_.pos, pos).all() for d_ in data)
|
||||
assert all(len(d.edge_index) == 2 for d in data)
|
||||
assert all(d.edge_attr is not None for d in data)
|
||||
assert all([d.edge_index.shape[1] == d.edge_attr.shape[0]] for d in data)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"pos",
|
||||
[
|
||||
([torch.rand(10, 3) for _ in range(3)]),
|
||||
([torch.rand(10, 3) for _ in range(3)]),
|
||||
(torch.rand(3, 10, 3)),
|
||||
(torch.rand(3, 10, 3))
|
||||
]
|
||||
)
|
||||
def test_build_single_graph_single_val(pos):
|
||||
x = torch.rand(10, 2)
|
||||
graph = RadiusGraph(x=x, pos=pos, build_edge_attr=False, r=.3)
|
||||
assert len(graph.data) == 3
|
||||
data = graph.data
|
||||
assert all(torch.isclose(d.x, x).all() for d in data)
|
||||
assert all(torch.isclose(d_.pos, pos_).all() for d_, pos_ in zip(data, pos))
|
||||
assert all(len(d.edge_index) == 2 for d in data)
|
||||
graph = RadiusGraph(x=x, pos=pos, build_edge_attr=True, r=.3)
|
||||
data = graph.data
|
||||
assert all(torch.isclose(d.x, x).all() for d in data)
|
||||
assert all(torch.isclose(d_.pos, pos_).all() for d_, pos_ in zip(data, pos))
|
||||
assert all(len(d.edge_index) == 2 for d in data)
|
||||
assert all(d.edge_attr is not None for d in data)
|
||||
assert all([d.edge_index.shape[1] == d.edge_attr.shape[0]] for d in data)
|
||||
x = torch.rand(10, 2)
|
||||
graph = KNNGraph(x=x, pos=pos, build_edge_attr=False, k=3)
|
||||
assert len(graph.data) == 3
|
||||
data = graph.data
|
||||
assert all(torch.isclose(d.x, x).all() for d in data)
|
||||
assert all(torch.isclose(d_.pos, pos_).all() for d_, pos_ in zip(data, pos))
|
||||
assert all(len(d.edge_index) == 2 for d in data)
|
||||
graph = KNNGraph(x=x, pos=pos, build_edge_attr=True, k=3)
|
||||
data = graph.data
|
||||
assert all(torch.isclose(d.x, x).all() for d in data)
|
||||
assert all(torch.isclose(d_.pos, pos_).all() for d_, pos_ in zip(data, pos))
|
||||
assert all(len(d.edge_index) == 2 for d in data)
|
||||
assert all(d.edge_attr is not None for d in data)
|
||||
assert all([d.edge_index.shape[1] == d.edge_attr.shape[0]] for d in data)
|
||||
|
||||
def test_additional_parameters_1():
|
||||
x = torch.rand(3, 10, 2)
|
||||
pos = torch.rand(3, 10, 2)
|
||||
additional_parameters = {'y': torch.ones(3)}
|
||||
graph = RadiusGraph(x=x, pos=pos, build_edge_attr=True, r=.3,
|
||||
additional_params=additional_parameters)
|
||||
assert len(graph.data) == 3
|
||||
data = graph.data
|
||||
assert all(torch.isclose(d_.x, x_).all() for (d_, x_) in zip(data, x))
|
||||
assert all(hasattr(d, 'y') for d in data)
|
||||
assert all(d_.y == 1 for d_ in data)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"additional_parameters",
|
||||
[
|
||||
({'y': torch.rand(3,10,1)}),
|
||||
({'y': [torch.rand(10,1) for _ in range(3)]}),
|
||||
]
|
||||
)
|
||||
def test_additional_parameters_2(additional_parameters):
|
||||
x = torch.rand(3, 10, 2)
|
||||
pos = torch.rand(3, 10, 2)
|
||||
graph = RadiusGraph(x=x, pos=pos, build_edge_attr=True, r=.3,
|
||||
additional_params=additional_parameters)
|
||||
assert len(graph.data) == 3
|
||||
data = graph.data
|
||||
assert all(torch.isclose(d_.x, x_).all() for (d_, x_) in zip(data, x))
|
||||
assert all(hasattr(d, 'y') for d in data)
|
||||
assert all(torch.isclose(d_.x, x_).all() for (d_, x_) in zip(data, x))
|
||||
Reference in New Issue
Block a user