refact dataset, dataloader and datamodule
This commit is contained in:
@@ -4,4 +4,3 @@ __all__ = ["PinaDataModule", "PinaDataset"]
|
|||||||
|
|
||||||
|
|
||||||
from .data_module import PinaDataModule
|
from .data_module import PinaDataModule
|
||||||
from .dataset import PinaDataset
|
|
||||||
|
|||||||
@@ -11,203 +11,8 @@ from torch_geometric.data import Data
|
|||||||
from torch.utils.data import DataLoader, SequentialSampler, RandomSampler
|
from torch.utils.data import DataLoader, SequentialSampler, RandomSampler
|
||||||
from torch.utils.data.distributed import DistributedSampler
|
from torch.utils.data.distributed import DistributedSampler
|
||||||
from ..label_tensor import LabelTensor
|
from ..label_tensor import LabelTensor
|
||||||
from .dataset import PinaDatasetFactory, PinaTensorDataset
|
from .dataset import PinaDatasetFactory
|
||||||
|
from .dataloader import PinaDataLoader
|
||||||
|
|
||||||
class DummyDataloader:
|
|
||||||
|
|
||||||
def __init__(self, dataset):
|
|
||||||
"""
|
|
||||||
Prepare a dataloader object that returns the entire dataset in a single
|
|
||||||
batch. Depending on the number of GPUs, the dataset is managed
|
|
||||||
as follows:
|
|
||||||
|
|
||||||
- **Distributed Environment** (multiple GPUs): Divides dataset across
|
|
||||||
processes using the rank and world size. Fetches only portion of
|
|
||||||
data corresponding to the current process.
|
|
||||||
- **Non-Distributed Environment** (single GPU): Fetches the entire
|
|
||||||
dataset.
|
|
||||||
|
|
||||||
:param PinaDataset dataset: The dataset object to be processed.
|
|
||||||
|
|
||||||
.. note::
|
|
||||||
This dataloader is used when the batch size is ``None``.
|
|
||||||
"""
|
|
||||||
|
|
||||||
if (
|
|
||||||
torch.distributed.is_available()
|
|
||||||
and torch.distributed.is_initialized()
|
|
||||||
):
|
|
||||||
rank = torch.distributed.get_rank()
|
|
||||||
world_size = torch.distributed.get_world_size()
|
|
||||||
if len(dataset) < world_size:
|
|
||||||
raise RuntimeError(
|
|
||||||
"Dimension of the dataset smaller than world size."
|
|
||||||
" Increase the size of the partition or use a single GPU"
|
|
||||||
)
|
|
||||||
idx, i = [], rank
|
|
||||||
while i < len(dataset):
|
|
||||||
idx.append(i)
|
|
||||||
i += world_size
|
|
||||||
self.dataset = dataset.fetch_from_idx_list(idx)
|
|
||||||
else:
|
|
||||||
self.dataset = dataset.get_all_data()
|
|
||||||
|
|
||||||
def __iter__(self):
|
|
||||||
return self
|
|
||||||
|
|
||||||
def __len__(self):
|
|
||||||
return 1
|
|
||||||
|
|
||||||
def __next__(self):
|
|
||||||
return self.dataset
|
|
||||||
|
|
||||||
|
|
||||||
class Collator:
|
|
||||||
"""
|
|
||||||
This callable class is used to collate the data points fetched from the
|
|
||||||
dataset. The collation is performed based on the type of dataset used and
|
|
||||||
on the batching strategy.
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self, max_conditions_lengths, automatic_batching, dataset=None
|
|
||||||
):
|
|
||||||
"""
|
|
||||||
Initialize the object, setting the collate function based on whether
|
|
||||||
automatic batching is enabled or not.
|
|
||||||
|
|
||||||
:param dict max_conditions_lengths: ``dict`` containing the maximum
|
|
||||||
number of data points to consider in a single batch for
|
|
||||||
each condition.
|
|
||||||
:param bool automatic_batching: Whether automatic PyTorch batching is
|
|
||||||
enabled or not. For more information, see the
|
|
||||||
:class:`~pina.data.data_module.PinaDataModule` class.
|
|
||||||
:param PinaDataset dataset: The dataset where the data is stored.
|
|
||||||
"""
|
|
||||||
|
|
||||||
self.max_conditions_lengths = max_conditions_lengths
|
|
||||||
# Set the collate function based on the batching strategy
|
|
||||||
# collate_pina_dataloader is used when automatic batching is disabled
|
|
||||||
# collate_torch_dataloader is used when automatic batching is enabled
|
|
||||||
self.callable_function = (
|
|
||||||
self._collate_torch_dataloader
|
|
||||||
if automatic_batching
|
|
||||||
else (self._collate_pina_dataloader)
|
|
||||||
)
|
|
||||||
self.dataset = dataset
|
|
||||||
|
|
||||||
# Set the function which performs the actual collation
|
|
||||||
if isinstance(self.dataset, PinaTensorDataset):
|
|
||||||
# If the dataset is a PinaTensorDataset, use this collate function
|
|
||||||
self._collate = self._collate_tensor_dataset
|
|
||||||
else:
|
|
||||||
# If the dataset is a PinaDataset, use this collate function
|
|
||||||
self._collate = self._collate_graph_dataset
|
|
||||||
|
|
||||||
def _collate_pina_dataloader(self, batch):
|
|
||||||
"""
|
|
||||||
Function used to create a batch when automatic batching is disabled.
|
|
||||||
|
|
||||||
:param list[int] batch: List of integers representing the indices of
|
|
||||||
the data points to be fetched.
|
|
||||||
:return: Dictionary containing the data points fetched from the dataset.
|
|
||||||
:rtype: dict
|
|
||||||
"""
|
|
||||||
# Call the fetch_from_idx_list method of the dataset
|
|
||||||
return self.dataset.fetch_from_idx_list(batch)
|
|
||||||
|
|
||||||
def _collate_torch_dataloader(self, batch):
|
|
||||||
"""
|
|
||||||
Function used to collate the batch
|
|
||||||
|
|
||||||
:param list[dict] batch: List of retrieved data.
|
|
||||||
:return: Dictionary containing the data points fetched from the dataset,
|
|
||||||
collated.
|
|
||||||
:rtype: dict
|
|
||||||
"""
|
|
||||||
|
|
||||||
batch_dict = {}
|
|
||||||
if isinstance(batch, dict):
|
|
||||||
return batch
|
|
||||||
conditions_names = batch[0].keys()
|
|
||||||
# Condition names
|
|
||||||
for condition_name in conditions_names:
|
|
||||||
single_cond_dict = {}
|
|
||||||
condition_args = batch[0][condition_name].keys()
|
|
||||||
for arg in condition_args:
|
|
||||||
data_list = [
|
|
||||||
batch[idx][condition_name][arg]
|
|
||||||
for idx in range(
|
|
||||||
min(
|
|
||||||
len(batch),
|
|
||||||
self.max_conditions_lengths[condition_name],
|
|
||||||
)
|
|
||||||
)
|
|
||||||
]
|
|
||||||
single_cond_dict[arg] = self._collate(data_list)
|
|
||||||
|
|
||||||
batch_dict[condition_name] = single_cond_dict
|
|
||||||
return batch_dict
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def _collate_tensor_dataset(data_list):
|
|
||||||
"""
|
|
||||||
Function used to collate the data when the dataset is a
|
|
||||||
:class:`~pina.data.dataset.PinaTensorDataset`.
|
|
||||||
|
|
||||||
:param data_list: Elements to be collated.
|
|
||||||
:type data_list: list[torch.Tensor] | list[LabelTensor]
|
|
||||||
:return: Batch of data.
|
|
||||||
:rtype: dict
|
|
||||||
|
|
||||||
:raises RuntimeError: If the data is not a :class:`torch.Tensor` or a
|
|
||||||
:class:`~pina.label_tensor.LabelTensor`.
|
|
||||||
"""
|
|
||||||
|
|
||||||
if isinstance(data_list[0], LabelTensor):
|
|
||||||
return LabelTensor.stack(data_list)
|
|
||||||
if isinstance(data_list[0], torch.Tensor):
|
|
||||||
return torch.stack(data_list)
|
|
||||||
raise RuntimeError("Data must be Tensors or LabelTensor ")
|
|
||||||
|
|
||||||
def _collate_graph_dataset(self, data_list):
|
|
||||||
"""
|
|
||||||
Function used to collate data when the dataset is a
|
|
||||||
:class:`~pina.data.dataset.PinaGraphDataset`.
|
|
||||||
|
|
||||||
:param data_list: Elememts to be collated.
|
|
||||||
:type data_list: list[Data] | list[Graph]
|
|
||||||
:return: Batch of data.
|
|
||||||
:rtype: dict
|
|
||||||
|
|
||||||
:raises RuntimeError: If the data is not a
|
|
||||||
:class:`~torch_geometric.data.Data` or a :class:`~pina.graph.Graph`.
|
|
||||||
"""
|
|
||||||
if isinstance(data_list[0], LabelTensor):
|
|
||||||
return LabelTensor.cat(data_list)
|
|
||||||
if isinstance(data_list[0], torch.Tensor):
|
|
||||||
return torch.cat(data_list)
|
|
||||||
if isinstance(data_list[0], Data):
|
|
||||||
return self.dataset.create_batch(data_list)
|
|
||||||
raise RuntimeError(
|
|
||||||
"Data must be Tensors or LabelTensor or pyG "
|
|
||||||
"torch_geometric.data.Data"
|
|
||||||
)
|
|
||||||
|
|
||||||
def __call__(self, batch):
|
|
||||||
"""
|
|
||||||
Perform the collation of data fetched from the dataset. The behavoior
|
|
||||||
of the function is set based on the batching strategy during class
|
|
||||||
initialization.
|
|
||||||
|
|
||||||
:param batch: List of retrieved data or sampled indices.
|
|
||||||
:type batch: list[int] | list[dict]
|
|
||||||
:return: Dictionary containing colleted data fetched from the dataset.
|
|
||||||
:rtype: dict
|
|
||||||
"""
|
|
||||||
|
|
||||||
return self.callable_function(batch)
|
|
||||||
|
|
||||||
|
|
||||||
class PinaSampler:
|
class PinaSampler:
|
||||||
@@ -235,6 +40,19 @@ class PinaSampler:
|
|||||||
return sampler
|
return sampler
|
||||||
|
|
||||||
|
|
||||||
|
def DataloaderCollector():
|
||||||
|
|
||||||
|
def __init__(self, dataloader_list):
|
||||||
|
"""
|
||||||
|
Initialize the object.
|
||||||
|
"""
|
||||||
|
assert isinstance(dataloader_list, list)
|
||||||
|
assert all(
|
||||||
|
isinstance(dataloader, DataLoader) for dataloader in dataloader_list
|
||||||
|
)
|
||||||
|
self.dataloader_list = dataloader_list
|
||||||
|
|
||||||
|
|
||||||
class PinaDataModule(LightningDataModule):
|
class PinaDataModule(LightningDataModule):
|
||||||
"""
|
"""
|
||||||
This class extends :class:`~lightning.pytorch.core.LightningDataModule`,
|
This class extends :class:`~lightning.pytorch.core.LightningDataModule`,
|
||||||
@@ -376,23 +194,23 @@ class PinaDataModule(LightningDataModule):
|
|||||||
if stage == "fit" or stage is None:
|
if stage == "fit" or stage is None:
|
||||||
self.train_dataset = PinaDatasetFactory(
|
self.train_dataset = PinaDatasetFactory(
|
||||||
self.data_splits["train"],
|
self.data_splits["train"],
|
||||||
max_conditions_lengths=self.find_max_conditions_lengths(
|
# max_conditions_lengths=self.find_max_conditions_lengths(
|
||||||
"train"
|
# "train"
|
||||||
),
|
# ),
|
||||||
automatic_batching=self.automatic_batching,
|
automatic_batching=self.automatic_batching,
|
||||||
)
|
)
|
||||||
if "val" in self.data_splits.keys():
|
if "val" in self.data_splits.keys():
|
||||||
self.val_dataset = PinaDatasetFactory(
|
self.val_dataset = PinaDatasetFactory(
|
||||||
self.data_splits["val"],
|
self.data_splits["val"],
|
||||||
max_conditions_lengths=self.find_max_conditions_lengths(
|
# max_conditions_lengths=self.find_max_conditions_lengths(
|
||||||
"val"
|
# "val"
|
||||||
),
|
# ),
|
||||||
automatic_batching=self.automatic_batching,
|
automatic_batching=self.automatic_batching,
|
||||||
)
|
)
|
||||||
elif stage == "test":
|
elif stage == "test":
|
||||||
self.test_dataset = PinaDatasetFactory(
|
self.test_dataset = PinaDatasetFactory(
|
||||||
self.data_splits["test"],
|
self.data_splits["test"],
|
||||||
max_conditions_lengths=self.find_max_conditions_lengths("test"),
|
# max_conditions_lengths=self.find_max_conditions_lengths("test"),
|
||||||
automatic_batching=self.automatic_batching,
|
automatic_batching=self.automatic_batching,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
@@ -502,32 +320,14 @@ class PinaDataModule(LightningDataModule):
|
|||||||
),
|
),
|
||||||
module="lightning.pytorch.trainer.connectors.data_connector",
|
module="lightning.pytorch.trainer.connectors.data_connector",
|
||||||
)
|
)
|
||||||
# Use custom batching (good if batch size is large)
|
return PinaDataLoader(
|
||||||
if self.batch_size is not None:
|
dataset,
|
||||||
sampler = PinaSampler(dataset)
|
batch_size=self.batch_size,
|
||||||
if self.automatic_batching:
|
shuffle=self.shuffle,
|
||||||
collate = Collator(
|
num_workers=self.num_workers,
|
||||||
self.find_max_conditions_lengths(split),
|
collate_fn=None,
|
||||||
self.automatic_batching,
|
common_batch_size=True,
|
||||||
dataset=dataset,
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
collate = Collator(
|
|
||||||
None, self.automatic_batching, dataset=dataset
|
|
||||||
)
|
|
||||||
return DataLoader(
|
|
||||||
dataset,
|
|
||||||
self.batch_size,
|
|
||||||
collate_fn=collate,
|
|
||||||
sampler=sampler,
|
|
||||||
num_workers=self.num_workers,
|
|
||||||
)
|
|
||||||
dataloader = DummyDataloader(dataset)
|
|
||||||
dataloader.dataset = self._transfer_batch_to_device(
|
|
||||||
dataloader.dataset, self.trainer.strategy.root_device, 0
|
|
||||||
)
|
)
|
||||||
self.transfer_batch_to_device = self._transfer_batch_to_device_dummy
|
|
||||||
return dataloader
|
|
||||||
|
|
||||||
def find_max_conditions_lengths(self, split):
|
def find_max_conditions_lengths(self, split):
|
||||||
"""
|
"""
|
||||||
|
|||||||
245
pina/data/dataloader.py
Normal file
245
pina/data/dataloader.py
Normal file
@@ -0,0 +1,245 @@
|
|||||||
|
from torch.utils.data import DataLoader
|
||||||
|
from functools import partial
|
||||||
|
from torch.utils.data.distributed import DistributedSampler
|
||||||
|
from torch.utils.data.sampler import SequentialSampler
|
||||||
|
import torch
|
||||||
|
|
||||||
|
|
||||||
|
class DummyDataloader:
|
||||||
|
|
||||||
|
def __init__(self, dataset):
|
||||||
|
"""
|
||||||
|
Prepare a dataloader object that returns the entire dataset in a single
|
||||||
|
batch. Depending on the number of GPUs, the dataset is managed
|
||||||
|
as follows:
|
||||||
|
|
||||||
|
- **Distributed Environment** (multiple GPUs): Divides dataset across
|
||||||
|
processes using the rank and world size. Fetches only portion of
|
||||||
|
data corresponding to the current process.
|
||||||
|
- **Non-Distributed Environment** (single GPU): Fetches the entire
|
||||||
|
dataset.
|
||||||
|
|
||||||
|
:param PinaDataset dataset: The dataset object to be processed.
|
||||||
|
|
||||||
|
.. note::
|
||||||
|
This dataloader is used when the batch size is ``None``.
|
||||||
|
"""
|
||||||
|
print("Using DummyDataloader")
|
||||||
|
if (
|
||||||
|
torch.distributed.is_available()
|
||||||
|
and torch.distributed.is_initialized()
|
||||||
|
):
|
||||||
|
rank = torch.distributed.get_rank()
|
||||||
|
world_size = torch.distributed.get_world_size()
|
||||||
|
if len(dataset) < world_size:
|
||||||
|
raise RuntimeError(
|
||||||
|
"Dimension of the dataset smaller than world size."
|
||||||
|
" Increase the size of the partition or use a single GPU"
|
||||||
|
)
|
||||||
|
idx, i = [], rank
|
||||||
|
while i < len(dataset):
|
||||||
|
idx.append(i)
|
||||||
|
i += world_size
|
||||||
|
else:
|
||||||
|
idx = list(range(len(dataset)))
|
||||||
|
|
||||||
|
self.dataset = dataset._getitem_from_list(idx)
|
||||||
|
|
||||||
|
def __iter__(self):
|
||||||
|
return self
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return 1
|
||||||
|
|
||||||
|
def __next__(self):
|
||||||
|
return self.dataset
|
||||||
|
|
||||||
|
|
||||||
|
class PinaSampler:
|
||||||
|
"""
|
||||||
|
This class is used to create the sampler instance based on the shuffle
|
||||||
|
parameter and the environment in which the code is running.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __new__(cls, dataset, shuffle=True):
|
||||||
|
"""
|
||||||
|
Instantiate and initialize the sampler.
|
||||||
|
|
||||||
|
:param PinaDataset dataset: The dataset from which to sample.
|
||||||
|
:return: The sampler instance.
|
||||||
|
:rtype: :class:`torch.utils.data.Sampler`
|
||||||
|
"""
|
||||||
|
|
||||||
|
if (
|
||||||
|
torch.distributed.is_available()
|
||||||
|
and torch.distributed.is_initialized()
|
||||||
|
):
|
||||||
|
sampler = DistributedSampler(dataset, shuffle=shuffle)
|
||||||
|
else:
|
||||||
|
if shuffle:
|
||||||
|
sampler = torch.utils.data.RandomSampler(dataset)
|
||||||
|
else:
|
||||||
|
sampler = SequentialSampler(dataset)
|
||||||
|
return sampler
|
||||||
|
|
||||||
|
|
||||||
|
def _collect_items(batch):
|
||||||
|
"""
|
||||||
|
Helper function to collect items from a batch of graph data samples.
|
||||||
|
:param batch: List of graph data samples.
|
||||||
|
"""
|
||||||
|
to_return = {name: [] for name in batch[0].keys()}
|
||||||
|
for sample in batch:
|
||||||
|
for k, v in sample.items():
|
||||||
|
to_return[k].append(v)
|
||||||
|
return to_return
|
||||||
|
|
||||||
|
|
||||||
|
def collate_fn_custom(batch, dataset):
|
||||||
|
"""
|
||||||
|
Override the default collate function to handle datasets without automatic batching.
|
||||||
|
:param batch: List of indices from the dataset.
|
||||||
|
:param dataset: The PinaDataset instance (must be provided).
|
||||||
|
"""
|
||||||
|
return dataset._getitem_from_list(batch)
|
||||||
|
|
||||||
|
|
||||||
|
def collate_fn_default(batch, stack_fn):
|
||||||
|
"""
|
||||||
|
Default collate function that simply returns the batch as is.
|
||||||
|
:param batch: List of data samples.
|
||||||
|
"""
|
||||||
|
print("Using default collate function")
|
||||||
|
to_return = _collect_items(batch)
|
||||||
|
return {k: stack_fn[k](v) for k, v in to_return.items()}
|
||||||
|
|
||||||
|
|
||||||
|
class PinaDataLoader:
|
||||||
|
"""
|
||||||
|
Custom DataLoader for PinaDataset.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
dataset_dict,
|
||||||
|
batch_size,
|
||||||
|
shuffle=False,
|
||||||
|
num_workers=0,
|
||||||
|
collate_fn=None,
|
||||||
|
common_batch_size=True,
|
||||||
|
):
|
||||||
|
self.dataset_dict = dataset_dict
|
||||||
|
self.batch_size = batch_size
|
||||||
|
self.shuffle = shuffle
|
||||||
|
self.num_workers = num_workers
|
||||||
|
self.collate_fn = collate_fn
|
||||||
|
|
||||||
|
print(batch_size)
|
||||||
|
|
||||||
|
if batch_size is None:
|
||||||
|
batch_size_per_dataset = {
|
||||||
|
split: None for split in dataset_dict.keys()
|
||||||
|
}
|
||||||
|
else:
|
||||||
|
if common_batch_size:
|
||||||
|
batch_size_per_dataset = {
|
||||||
|
split: batch_size for split in dataset_dict.keys()
|
||||||
|
}
|
||||||
|
else:
|
||||||
|
batch_size_per_dataset = self._compute_batch_size()
|
||||||
|
self.dataloaders = {
|
||||||
|
split: self._create_dataloader(
|
||||||
|
dataset, batch_size_per_dataset[split]
|
||||||
|
)
|
||||||
|
for split, dataset in dataset_dict.items()
|
||||||
|
}
|
||||||
|
|
||||||
|
def _compute_batch_size(self):
|
||||||
|
"""
|
||||||
|
Compute an appropriate batch size for the given dataset.
|
||||||
|
"""
|
||||||
|
elements_per_dataset = {
|
||||||
|
dataset_name: len(dataset)
|
||||||
|
for dataset_name, dataset in self.dataset_dict.items()
|
||||||
|
}
|
||||||
|
total_elements = sum(el for el in elements_per_dataset.values())
|
||||||
|
portion_per_dataset = {
|
||||||
|
name: el / total_elements
|
||||||
|
for name, el in elements_per_dataset.items()
|
||||||
|
}
|
||||||
|
batch_size_per_dataset = {
|
||||||
|
name: max(1, int(portion * self.batch_size))
|
||||||
|
for name, portion in portion_per_dataset.items()
|
||||||
|
}
|
||||||
|
tot_el_per_batch = sum(el for el in batch_size_per_dataset.values())
|
||||||
|
|
||||||
|
if self.batch_size > tot_el_per_batch:
|
||||||
|
difference = self.batch_size - tot_el_per_batch
|
||||||
|
while difference > 0:
|
||||||
|
for k, v in batch_size_per_dataset.items():
|
||||||
|
if difference == 0:
|
||||||
|
break
|
||||||
|
if v > 1:
|
||||||
|
batch_size_per_dataset[k] += 1
|
||||||
|
difference -= 1
|
||||||
|
if self.batch_size < tot_el_per_batch:
|
||||||
|
difference = tot_el_per_batch - self.batch_size
|
||||||
|
while difference > 0:
|
||||||
|
for k, v in batch_size_per_dataset.items():
|
||||||
|
if difference == 0:
|
||||||
|
break
|
||||||
|
if v > 1:
|
||||||
|
batch_size_per_dataset[k] -= 1
|
||||||
|
difference -= 1
|
||||||
|
return batch_size_per_dataset
|
||||||
|
|
||||||
|
def _create_dataloader(self, dataset, batch_size):
|
||||||
|
print(batch_size)
|
||||||
|
if batch_size is None:
|
||||||
|
return DummyDataloader(dataset)
|
||||||
|
|
||||||
|
if not dataset.automatic_batching:
|
||||||
|
collate_fn = partial(collate_fn_custom, dataset=dataset)
|
||||||
|
else:
|
||||||
|
collate_fn = partial(collate_fn_default, stack_fn=dataset.stack_fn)
|
||||||
|
return DataLoader(
|
||||||
|
dataset,
|
||||||
|
batch_size=batch_size,
|
||||||
|
num_workers=self.num_workers,
|
||||||
|
collate_fn=collate_fn,
|
||||||
|
sampler=PinaSampler(dataset, shuffle=self.shuffle),
|
||||||
|
)
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return max(len(dl) for dl in self.dataloaders.values())
|
||||||
|
|
||||||
|
def __iter__(self):
|
||||||
|
"""
|
||||||
|
Restituisce un iteratore che produce dizionari di batch.
|
||||||
|
|
||||||
|
Itera per un numero di passi pari al dataloader più lungo (come da __len__)
|
||||||
|
e fa ricominciare i dataloader più corti quando si esauriscono.
|
||||||
|
"""
|
||||||
|
# 1. Crea un iteratore per ogni dataloader
|
||||||
|
iterators = {split: iter(dl) for split, dl in self.dataloaders.items()}
|
||||||
|
|
||||||
|
# 2. Itera per il numero di batch del dataloader più lungo
|
||||||
|
for _ in range(len(self)):
|
||||||
|
|
||||||
|
# 3. Prepara il dizionario di batch per questo step
|
||||||
|
batch_dict = {}
|
||||||
|
|
||||||
|
# 4. Ottieni il prossimo batch da ogni iteratore
|
||||||
|
for split, it in iterators.items():
|
||||||
|
try:
|
||||||
|
batch = next(it)
|
||||||
|
except StopIteration:
|
||||||
|
# 5. Se un iteratore è esaurito, resettalo e prendi il primo batch
|
||||||
|
new_it = iter(self.dataloaders[split])
|
||||||
|
iterators[split] = new_it # Salva il nuovo iteratore
|
||||||
|
batch = next(new_it)
|
||||||
|
|
||||||
|
batch_dict[split] = batch
|
||||||
|
|
||||||
|
# 6. Restituisci il dizionario di batch
|
||||||
|
yield batch_dict
|
||||||
@@ -1,9 +1,10 @@
|
|||||||
"""Module for the PINA dataset classes."""
|
"""Module for the PINA dataset classes."""
|
||||||
|
|
||||||
from abc import abstractmethod, ABC
|
|
||||||
from torch.utils.data import Dataset
|
from torch.utils.data import Dataset
|
||||||
from torch_geometric.data import Data
|
from torch_geometric.data import Data
|
||||||
from ..graph import Graph, LabelBatch
|
from ..graph import Graph, LabelBatch
|
||||||
|
from ..label_tensor import LabelTensor
|
||||||
|
import torch
|
||||||
|
|
||||||
|
|
||||||
class PinaDatasetFactory:
|
class PinaDatasetFactory:
|
||||||
@@ -41,286 +42,156 @@ class PinaDatasetFactory:
|
|||||||
if len(conditions_dict) == 0:
|
if len(conditions_dict) == 0:
|
||||||
raise ValueError("No conditions provided")
|
raise ValueError("No conditions provided")
|
||||||
|
|
||||||
|
dataset_dict = {}
|
||||||
|
|
||||||
# Check is a Graph is present in the conditions
|
# Check is a Graph is present in the conditions
|
||||||
is_graph = cls._is_graph_dataset(conditions_dict)
|
for name, data in conditions_dict.items():
|
||||||
if is_graph:
|
if not isinstance(data, dict):
|
||||||
# If a Graph is present, return a PinaGraphDataset
|
raise ValueError(
|
||||||
return PinaGraphDataset(conditions_dict, **kwargs)
|
f"Condition '{name}' data must be a dictionary"
|
||||||
# If no Graph is present, return a PinaTensorDataset
|
)
|
||||||
return PinaTensorDataset(conditions_dict, **kwargs)
|
|
||||||
|
# is_graph = cls._is_graph_dataset(conditions_dict)
|
||||||
|
# if is_graph:
|
||||||
|
# raise NotImplementedError("PinaGraphDataset is not implemented yet.")
|
||||||
|
|
||||||
|
dataset_dict[name] = PinaTensorDataset(data, **kwargs)
|
||||||
|
return dataset_dict
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def _is_graph_dataset(conditions_dict):
|
def _is_graph_dataset(cond_data):
|
||||||
"""
|
"""
|
||||||
Check if a graph is present in the conditions (at least one time).
|
TODO: Docstring
|
||||||
|
|
||||||
:param conditions_dict: Dictionary containing the conditions.
|
|
||||||
:type conditions_dict: dict
|
|
||||||
:return: True if a graph is present in the conditions, False otherwise.
|
|
||||||
:rtype: bool
|
|
||||||
"""
|
"""
|
||||||
|
|
||||||
# Iterate over the conditions dictionary
|
# Iterate over the values of the current condition
|
||||||
for v in conditions_dict.values():
|
for cond in cond_data.values():
|
||||||
# Iterate over the values of the current condition
|
if isinstance(cond, (Data, Graph, list, tuple)):
|
||||||
for cond in v.values():
|
return True
|
||||||
# Check if the current value is a list of Data objects
|
|
||||||
if isinstance(cond, (Data, Graph, list, tuple)):
|
|
||||||
return True
|
|
||||||
return False
|
return False
|
||||||
|
|
||||||
|
|
||||||
class PinaDataset(Dataset, ABC):
|
class PinaTensorDataset(Dataset):
|
||||||
"""
|
"""
|
||||||
Abstract class for the PINA dataset which extends the PyTorch
|
Dataset class for the PINA dataset with :class:`torch.Tensor` and
|
||||||
:class:`~torch.utils.data.Dataset` class. It defines the common interface
|
:class:`~pina.label_tensor.LabelTensor` data.
|
||||||
for :class:`~pina.data.dataset.PinaTensorDataset` and
|
|
||||||
:class:`~pina.data.dataset.PinaGraphDataset` classes.
|
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(
|
def __init__(self, data_dict, automatic_batching=None):
|
||||||
self, conditions_dict, max_conditions_lengths, automatic_batching
|
|
||||||
):
|
|
||||||
"""
|
"""
|
||||||
Initialize the instance by storing the conditions dictionary, the
|
Initialize the instance by storing the conditions dictionary.
|
||||||
maximum number of items per conditions to consider, and the automatic
|
|
||||||
batching flag.
|
|
||||||
|
|
||||||
:param dict conditions_dict: A dictionary mapping condition names to
|
:param dict conditions_dict: A dictionary mapping condition names to
|
||||||
their respective data. Each key represents a condition name, and the
|
their respective data. Each key represents a condition name, and the
|
||||||
corresponding value is a dictionary containing the associated data.
|
corresponding value is a dictionary containing the associated data.
|
||||||
:param dict max_conditions_lengths: Maximum number of data points that
|
|
||||||
can be included in a single batch per condition.
|
|
||||||
:param bool automatic_batching: Indicates whether PyTorch automatic
|
|
||||||
batching is enabled in
|
|
||||||
:class:`~pina.data.data_module.PinaDataModule`.
|
|
||||||
"""
|
"""
|
||||||
|
|
||||||
# Store the conditions dictionary
|
# Store the conditions dictionary
|
||||||
self.conditions_dict = conditions_dict
|
self.data = data_dict
|
||||||
# Store the maximum number of conditions to consider
|
self.automatic_batching = (
|
||||||
self.max_conditions_lengths = max_conditions_lengths
|
automatic_batching if automatic_batching is not None else True
|
||||||
# Store length of each condition
|
)
|
||||||
self.conditions_length = {
|
self.stack_fn = (
|
||||||
k: len(v["input"]) for k, v in self.conditions_dict.items()
|
{}
|
||||||
}
|
) # LabelTensor.stack if any(isinstance(v, LabelTensor) for v in data_dict.values()) else torch.stack
|
||||||
# Store the maximum length of the dataset
|
for k, v in data_dict.items():
|
||||||
self.length = max(self.conditions_length.values())
|
if isinstance(v, LabelTensor):
|
||||||
# Dynamically set the getitem function based on automatic batching
|
self.stack_fn[k] = LabelTensor.stack
|
||||||
if automatic_batching:
|
elif isinstance(v, torch.Tensor):
|
||||||
self._getitem_func = self._getitem_int
|
self.stack_fn[k] = torch.stack
|
||||||
else:
|
elif isinstance(v, list) and all(
|
||||||
self._getitem_func = self._getitem_dummy
|
isinstance(item, (Data, Graph)) for item in v
|
||||||
|
):
|
||||||
def _get_max_len(self):
|
self.stack_fn[k] = LabelBatch.from_data_list
|
||||||
"""
|
else:
|
||||||
Returns the length of the longest condition in the dataset.
|
raise ValueError(
|
||||||
|
f"Unsupported data type for stacking: {type(v)}"
|
||||||
:return: Length of the longest condition in the dataset.
|
)
|
||||||
:rtype: int
|
|
||||||
"""
|
|
||||||
|
|
||||||
max_len = 0
|
|
||||||
for condition in self.conditions_dict.values():
|
|
||||||
max_len = max(max_len, len(condition["input"]))
|
|
||||||
return max_len
|
|
||||||
|
|
||||||
def __len__(self):
|
def __len__(self):
|
||||||
return self.length
|
return len(next(iter(self.data.values())))
|
||||||
|
|
||||||
def __getitem__(self, idx):
|
def __getitem__(self, idx):
|
||||||
return self._getitem_func(idx)
|
|
||||||
|
|
||||||
def _getitem_dummy(self, idx):
|
|
||||||
"""
|
"""
|
||||||
Return the index itself. This is used when automatic batching is
|
Return the data at the given index in the dataset.
|
||||||
disabled to postpone the data retrieval to the dataloader.
|
|
||||||
|
|
||||||
:param int idx: Index.
|
|
||||||
:return: Index.
|
|
||||||
:rtype: int
|
|
||||||
"""
|
|
||||||
|
|
||||||
# If automatic batching is disabled, return the data at the given index
|
|
||||||
return idx
|
|
||||||
|
|
||||||
def _getitem_int(self, idx):
|
|
||||||
"""
|
|
||||||
Return the data at the given index in the dataset. This is used when
|
|
||||||
automatic batching is enabled.
|
|
||||||
|
|
||||||
:param int idx: Index.
|
:param int idx: Index.
|
||||||
:return: A dictionary containing the data at the given index.
|
:return: A dictionary containing the data at the given index.
|
||||||
:rtype: dict
|
:rtype: dict
|
||||||
"""
|
"""
|
||||||
|
|
||||||
# If automatic batching is enabled, return the data at the given index
|
if self.automatic_batching:
|
||||||
return {
|
# Return the data at the given index
|
||||||
k: {k_data: v[k_data][idx % len(v["input"])] for k_data in v.keys()}
|
return {
|
||||||
for k, v in self.conditions_dict.items()
|
field_name: data[idx] for field_name, data in self.data.items()
|
||||||
}
|
}
|
||||||
|
return idx
|
||||||
|
|
||||||
def get_all_data(self):
|
def _getitem_from_list(self, idx_list):
|
||||||
"""
|
|
||||||
Return all data in the dataset.
|
|
||||||
|
|
||||||
:return: A dictionary containing all the data in the dataset.
|
|
||||||
:rtype: dict
|
|
||||||
"""
|
|
||||||
to_return_dict = {}
|
|
||||||
for condition, data in self.conditions_dict.items():
|
|
||||||
len_condition = len(
|
|
||||||
data["input"]
|
|
||||||
) # Length of the current condition
|
|
||||||
to_return_dict[condition] = self._retrive_data(
|
|
||||||
data, list(range(len_condition))
|
|
||||||
) # Retrieve the data from the current condition
|
|
||||||
return to_return_dict
|
|
||||||
|
|
||||||
def fetch_from_idx_list(self, idx):
|
|
||||||
"""
|
"""
|
||||||
Return data from the dataset given a list of indices.
|
Return data from the dataset given a list of indices.
|
||||||
|
|
||||||
:param list[int] idx: List of indices.
|
:param list[int] idx_list: List of indices.
|
||||||
:return: A dictionary containing the data at the given indices.
|
:return: A dictionary containing the data at the given indices.
|
||||||
:rtype: dict
|
:rtype: dict
|
||||||
"""
|
"""
|
||||||
|
|
||||||
to_return_dict = {}
|
to_return = {}
|
||||||
for condition, data in self.conditions_dict.items():
|
for field_name, data in self.data.items():
|
||||||
# Get the indices for the current condition
|
if self.stack_fn[field_name] == LabelBatch.from_data_list:
|
||||||
cond_idx = idx[: self.max_conditions_lengths[condition]]
|
to_return[field_name] = self.stack_fn[field_name](
|
||||||
# Get the length of the current condition
|
[data[i] for i in idx_list]
|
||||||
condition_len = self.conditions_length[condition]
|
)
|
||||||
# If the length of the dataset is greater than the length of the
|
|
||||||
# current condition, repeat the indices
|
|
||||||
if self.length > condition_len:
|
|
||||||
cond_idx = [idx % condition_len for idx in cond_idx]
|
|
||||||
# Retrieve the data from the current condition
|
|
||||||
to_return_dict[condition] = self._retrive_data(data, cond_idx)
|
|
||||||
return to_return_dict
|
|
||||||
|
|
||||||
@abstractmethod
|
|
||||||
def _retrive_data(self, data, idx_list):
|
|
||||||
"""
|
|
||||||
Abstract method to retrieve data from the dataset given a list of
|
|
||||||
indices.
|
|
||||||
"""
|
|
||||||
|
|
||||||
|
|
||||||
class PinaTensorDataset(PinaDataset):
|
|
||||||
"""
|
|
||||||
Dataset class for the PINA dataset with :class:`torch.Tensor` and
|
|
||||||
:class:`~pina.label_tensor.LabelTensor` data.
|
|
||||||
"""
|
|
||||||
|
|
||||||
# Override _retrive_data method for torch.Tensor data
|
|
||||||
def _retrive_data(self, data, idx_list):
|
|
||||||
"""
|
|
||||||
Retrieve data from the dataset given a list of indices.
|
|
||||||
|
|
||||||
:param dict data: Dictionary containing the data
|
|
||||||
(only :class:`torch.Tensor` or
|
|
||||||
:class:`~pina.label_tensor.LabelTensor`).
|
|
||||||
:param list[int] idx_list: indices to retrieve.
|
|
||||||
:return: Dictionary containing the data at the given indices.
|
|
||||||
:rtype: dict
|
|
||||||
"""
|
|
||||||
|
|
||||||
return {k: v[idx_list] for k, v in data.items()}
|
|
||||||
|
|
||||||
@property
|
|
||||||
def input(self):
|
|
||||||
"""
|
|
||||||
Return the input data for the dataset.
|
|
||||||
|
|
||||||
:return: Dictionary containing the input points.
|
|
||||||
:rtype: dict
|
|
||||||
"""
|
|
||||||
return {k: v["input"] for k, v in self.conditions_dict.items()}
|
|
||||||
|
|
||||||
def update_data(self, new_conditions_dict):
|
|
||||||
"""
|
|
||||||
Update the dataset with new data.
|
|
||||||
This method is used to update the dataset with new data. It replaces
|
|
||||||
the current data with the new data provided in the new_conditions_dict
|
|
||||||
parameter.
|
|
||||||
|
|
||||||
:param dict new_conditions_dict: Dictionary containing the new data.
|
|
||||||
:return: None
|
|
||||||
"""
|
|
||||||
for condition, data in new_conditions_dict.items():
|
|
||||||
if condition in self.conditions_dict:
|
|
||||||
self.conditions_dict[condition].update(data)
|
|
||||||
else:
|
else:
|
||||||
self.conditions_dict[condition] = data
|
to_return[field_name] = data[idx_list]
|
||||||
|
return to_return
|
||||||
|
|
||||||
|
|
||||||
class PinaGraphDataset(PinaDataset):
|
class PinaGraphDataset(Dataset):
|
||||||
"""
|
def __init__(self, data_dict, automatic_batching=None):
|
||||||
Dataset class for the PINA dataset with :class:`~torch_geometric.data.Data`
|
|
||||||
and :class:`~pina.graph.Graph` data.
|
|
||||||
"""
|
|
||||||
|
|
||||||
def _create_graph_batch(self, data):
|
|
||||||
"""
|
"""
|
||||||
Create a LabelBatch object from a list of
|
Initialize the instance by storing the conditions dictionary.
|
||||||
:class:`~torch_geometric.data.Data` objects.
|
|
||||||
|
|
||||||
:param data: List of items to collate in a single batch.
|
:param dict conditions_dict: A dictionary mapping condition names to
|
||||||
:type data: list[Data] | list[Graph]
|
their respective data. Each key represents a condition name, and the
|
||||||
:return: LabelBatch object all the graph collated in a single batch
|
corresponding value is a dictionary containing the associated data.
|
||||||
disconnected graphs.
|
|
||||||
:rtype: LabelBatch
|
|
||||||
"""
|
|
||||||
batch = LabelBatch.from_data_list(data)
|
|
||||||
return batch
|
|
||||||
|
|
||||||
def create_batch(self, data):
|
|
||||||
"""
|
|
||||||
Create a Batch object from a list of :class:`~torch_geometric.data.Data`
|
|
||||||
objects.
|
|
||||||
|
|
||||||
:param data: List of items to collate in a single batch.
|
|
||||||
:type data: list[Data] | list[Graph]
|
|
||||||
:return: Batch object.
|
|
||||||
:rtype: :class:`~torch_geometric.data.Batch`
|
|
||||||
| :class:`~pina.graph.LabelBatch`
|
|
||||||
"""
|
"""
|
||||||
|
|
||||||
if isinstance(data[0], Data):
|
# Store the conditions dictionary
|
||||||
return self._create_graph_batch(data)
|
self.data = data_dict
|
||||||
return self._create_tensor_batch(data)
|
self.automatic_batching = (
|
||||||
|
automatic_batching if automatic_batching is not None else True
|
||||||
|
)
|
||||||
|
|
||||||
# Override _retrive_data method for graph handling
|
def __len__(self):
|
||||||
def _retrive_data(self, data, idx_list):
|
return len(next(iter(self.data.values())))
|
||||||
|
|
||||||
|
def __getitem__(self, idx):
|
||||||
"""
|
"""
|
||||||
Retrieve data from the dataset given a list of indices.
|
Return the data at the given index in the dataset.
|
||||||
|
|
||||||
:param dict data: Dictionary containing the data.
|
:param int idx: Index.
|
||||||
:param list[int] idx_list: List of indices to retrieve.
|
:return: A dictionary containing the data at the given index.
|
||||||
:return: Dictionary containing the data at the given indices.
|
:rtype: dict
|
||||||
|
"""
|
||||||
|
|
||||||
|
if self.automatic_batching:
|
||||||
|
# Return the data at the given index
|
||||||
|
return {
|
||||||
|
field_name: data[idx] for field_name, data in self.data.items()
|
||||||
|
}
|
||||||
|
return idx
|
||||||
|
|
||||||
|
def _getitem_from_list(self, idx_list):
|
||||||
|
"""
|
||||||
|
Return data from the dataset given a list of indices.
|
||||||
|
|
||||||
|
:param list[int] idx_list: List of indices.
|
||||||
|
:return: A dictionary containing the data at the given indices.
|
||||||
:rtype: dict
|
:rtype: dict
|
||||||
"""
|
"""
|
||||||
|
|
||||||
# Return the data from the current condition
|
|
||||||
# If the data is a list of Data objects, create a Batch object
|
|
||||||
# If the data is a list of torch.Tensor objects, create a torch.Tensor
|
|
||||||
return {
|
return {
|
||||||
k: (
|
field_name: [data[i] for i in idx_list]
|
||||||
self._create_graph_batch([v[i] for i in idx_list])
|
for field_name, data in self.data.items()
|
||||||
if isinstance(v, list)
|
|
||||||
else v[idx_list]
|
|
||||||
)
|
|
||||||
for k, v in data.items()
|
|
||||||
}
|
}
|
||||||
|
|
||||||
@property
|
|
||||||
def input(self):
|
|
||||||
"""
|
|
||||||
Return the input data for the dataset.
|
|
||||||
|
|
||||||
:return: Dictionary containing the input points.
|
|
||||||
:rtype: dict
|
|
||||||
"""
|
|
||||||
return {k: v["input"] for k, v in self.conditions_dict.items()}
|
|
||||||
|
|||||||
Reference in New Issue
Block a user