Implementation of DataLoader and DataModule (#383)

Refactoring for 0.2
* Data module, data loader and dataset
* Refactor LabelTensor
* Refactor solvers

Co-authored-by: dario-coscia <dariocos99@gmail.com>
This commit is contained in:
Filippo Olivo
2024-11-27 16:01:39 +01:00
committed by Nicola Demo
parent dd43c8304c
commit a27bd35443
34 changed files with 827 additions and 1349 deletions

View File

@@ -2,14 +2,11 @@
Import data classes
"""
__all__ = [
'PinaDataLoader', 'SupervisedDataset', 'SamplePointDataset',
'UnsupervisedDataset', 'Batch', 'PinaDataModule', 'BaseDataset'
'PinaDataModule',
'PinaDataset'
]
from .pina_dataloader import PinaDataLoader
from .supervised_dataset import SupervisedDataset
from .sample_dataset import SamplePointDataset
from .unsupervised_dataset import UnsupervisedDataset
from .pina_batch import Batch
from .data_module import PinaDataModule
from .base_dataset import BaseDataset
from .dataset import PinaDataset

View File

@@ -1,157 +0,0 @@
"""
Basic data module implementation
"""
import torch
import logging
from torch.utils.data import Dataset
from ..label_tensor import LabelTensor
class BaseDataset(Dataset):
"""
BaseDataset class, which handle initialization and data retrieval
:var condition_indices: List of indices
:var device: torch.device
"""
def __new__(cls, problem=None, device=torch.device('cpu')):
"""
Ensure correct definition of __slots__ before initialization
:param AbstractProblem problem: The formulation of the problem.
:param torch.device device: The device on which the
dataset will be loaded.
"""
if cls is BaseDataset:
raise TypeError(
'BaseDataset cannot be instantiated directly. Use a subclass.')
if not hasattr(cls, '__slots__'):
raise TypeError(
'Something is wrong, __slots__ must be defined in subclasses.')
return object.__new__(cls)
def __init__(self, problem=None, device=torch.device('cpu')):
""""
Initialize the object based on __slots__
:param AbstractProblem problem: The formulation of the problem.
:param torch.device device: The device on which the
dataset will be loaded.
"""
super().__init__()
self.empty = True
self.problem = problem
self.device = device
self.condition_indices = None
for slot in self.__slots__:
setattr(self, slot, [])
self.num_el_per_condition = []
self.conditions_idx = []
if self.problem is not None:
self._init_from_problem(self.problem.collector.data_collections)
self.initialized = False
def _init_from_problem(self, collector_dict):
"""
TODO
"""
for name, data in collector_dict.items():
keys = list(data.keys())
if set(self.__slots__) == set(keys):
self._populate_init_list(data)
idx = [
key for key, val in
self.problem.collector.conditions_name.items()
if val == name
]
self.conditions_idx.append(idx)
self.initialize()
def add_points(self, data_dict, condition_idx, batching_dim=0):
"""
This method filled internal lists of data points
:param data_dict: dictionary containing data points
:param condition_idx: index of the condition to which the data points
belong to
:param batching_dim: dimension of the batching
:raises: ValueError if the dataset has already been initialized
"""
if not self.initialized:
self._populate_init_list(data_dict, batching_dim)
self.conditions_idx.append(condition_idx)
self.empty = False
else:
raise ValueError('Dataset already initialized')
def _populate_init_list(self, data_dict, batching_dim=0):
current_cond_num_el = None
for slot in data_dict.keys():
slot_data = data_dict[slot]
if batching_dim != 0:
if isinstance(slot_data, (LabelTensor, torch.Tensor)):
dims = len(slot_data.size())
slot_data = slot_data.permute(
[batching_dim] +
[dim for dim in range(dims) if dim != batching_dim])
if current_cond_num_el is None:
current_cond_num_el = len(slot_data)
elif current_cond_num_el != len(slot_data):
raise ValueError('Different dimension in same condition')
current_list = getattr(self, slot)
current_list += [
slot_data
] if not (isinstance(slot_data, list)) else slot_data
self.num_el_per_condition.append(current_cond_num_el)
def initialize(self):
"""
Initialize the datasets tensors/LabelTensors/lists given the lists
already filled
"""
logging.debug(f'Initialize dataset {self.__class__.__name__}')
if self.num_el_per_condition:
self.condition_indices = torch.cat([
torch.tensor([i] * self.num_el_per_condition[i],
dtype=torch.uint8)
for i in range(len(self.num_el_per_condition))
],
dim=0)
for slot in self.__slots__:
current_attribute = getattr(self, slot)
if all(isinstance(a, LabelTensor) for a in current_attribute):
setattr(self, slot, LabelTensor.vstack(current_attribute))
self.initialized = True
def __len__(self):
"""
:return: Number of elements in the dataset
"""
return len(getattr(self, self.__slots__[0]))
def __getitem__(self, idx):
"""
:param idx:
:return:
"""
if not isinstance(idx, (tuple, list, slice, int)):
raise IndexError("Invalid index")
tensors = []
for attribute in self.__slots__:
tensor = getattr(self, attribute)
if isinstance(attribute, (LabelTensor, torch.Tensor)):
tensors.append(tensor.__getitem__(idx))
elif isinstance(attribute, list):
if isinstance(idx, (list, tuple)):
tensor = [tensor[i] for i in idx]
tensors.append(tensor)
return tensors
def apply_shuffle(self, indices):
for slot in self.__slots__:
if slot != 'equation':
attribute = getattr(self, slot)
if isinstance(attribute, (LabelTensor, torch.Tensor)):
setattr(self, 'slot', attribute[[indices]])
if isinstance(attribute, list):
setattr(self, 'slot', [attribute[i] for i in indices])

View File

@@ -1,17 +1,71 @@
"""
This module provide basic data management functionalities
"""
import logging
from lightning.pytorch import LightningDataModule
import math
import torch
import logging
from pytorch_lightning import LightningDataModule
from .sample_dataset import SamplePointDataset
from .supervised_dataset import SupervisedDataset
from .unsupervised_dataset import UnsupervisedDataset
from .pina_dataloader import PinaDataLoader
from .pina_subset import PinaSubset
from ..label_tensor import LabelTensor
from torch.utils.data import DataLoader, BatchSampler, SequentialSampler, \
RandomSampler
from torch.utils.data.distributed import DistributedSampler
from .dataset import PinaDatasetFactory
class Collator:
def __init__(self, max_conditions_lengths, ):
self.max_conditions_lengths = max_conditions_lengths
self.callable_function = self._collate_custom_dataloader if \
max_conditions_lengths is None else (
self._collate_standard_dataloader)
@staticmethod
def _collate_custom_dataloader(batch):
return batch[0]
def _collate_standard_dataloader(self, batch):
"""
Function used to collate the batch
"""
batch_dict = {}
if isinstance(batch, dict):
return batch
conditions_names = batch[0].keys()
# Condition names
for condition_name in conditions_names:
single_cond_dict = {}
condition_args = batch[0][condition_name].keys()
for arg in condition_args:
data_list = [batch[idx][condition_name][arg] for idx in range(
min(len(batch),
self.max_conditions_lengths[condition_name]))]
if isinstance(data_list[0], LabelTensor):
single_cond_dict[arg] = LabelTensor.stack(data_list)
elif isinstance(data_list[0], torch.Tensor):
single_cond_dict[arg] = torch.stack(data_list)
else:
raise NotImplementedError(
f"Data type {type(data_list[0])} not supported")
batch_dict[condition_name] = single_cond_dict
return batch_dict
def __call__(self, batch):
return self.callable_function(batch)
class PinaBatchSampler(BatchSampler):
def __init__(self, dataset, batch_size, shuffle, sampler=None):
if sampler is None:
if (torch.distributed.is_available() and
torch.distributed.is_initialized()):
rank = torch.distributed.get_rank()
world_size = torch.distributed.get_world_size()
sampler = DistributedSampler(dataset, shuffle=shuffle,
rank=rank, num_replicas=world_size)
else:
if shuffle:
sampler = RandomSampler(dataset)
else:
sampler = SequentialSampler(dataset)
super().__init__(sampler=sampler, batch_size=batch_size,
drop_last=False)
class PinaDataModule(LightningDataModule):
"""
@@ -20,160 +74,218 @@ class PinaDataModule(LightningDataModule):
"""
def __init__(self,
problem,
device,
collector,
train_size=.7,
test_size=.1,
val_size=.2,
test_size=.2,
val_size=.1,
predict_size=0.,
batch_size=None,
shuffle=True,
datasets=None):
repeat=False,
automatic_batching=False
):
"""
Initialize the object, creating dataset based on input problem
:param AbstractProblem problem: PINA problem
:param device: Device used for training and testing
:param Collector collector: PINA problem
:param train_size: number/percentage of elements in train split
:param test_size: number/percentage of elements in test split
:param eval_size: number/percentage of elements in evaluation split
:param val_size: number/percentage of elements in evaluation split
:param batch_size: batch size used for training
:param datasets: list of datasets objects
"""
logging.debug('Start initialization of Pina DataModule')
logging.info('Start initialization of Pina DataModule')
super().__init__()
self.problem = problem
self.device = device
self.dataset_classes = [
SupervisedDataset, UnsupervisedDataset, SamplePointDataset
]
if datasets is None:
self.datasets = None
else:
self.datasets = datasets
self.split_length = []
self.split_names = []
self.loader_functions = {}
self.default_batching = automatic_batching
self.batch_size = batch_size
self.condition_names = problem.collector.conditions_name
if train_size > 0:
self.split_names.append('train')
self.split_length.append(train_size)
self.loader_functions['train_dataloader'] = lambda: PinaDataLoader(
self.splits['train'], self.batch_size, self.condition_names)
if test_size > 0:
self.split_length.append(test_size)
self.split_names.append('test')
self.loader_functions['test_dataloader'] = lambda: PinaDataLoader(
self.splits['test'], self.batch_size, self.condition_names)
if val_size > 0:
self.split_length.append(val_size)
self.split_names.append('val')
self.loader_functions['val_dataloader'] = lambda: PinaDataLoader(
self.splits['val'], self.batch_size, self.condition_names)
if predict_size > 0:
self.split_length.append(predict_size)
self.split_names.append('predict')
self.loader_functions['predict_dataloader'] = lambda: PinaDataLoader(
self.splits['predict'], self.batch_size, self.condition_names)
self.splits = {k: {} for k in self.split_names}
self.shuffle = shuffle
self.repeat = repeat
for k, v in self.loader_functions.items():
setattr(self, k, v)
def prepare_data(self):
if self.datasets is None:
self._create_datasets()
# Begin Data splitting
splits_dict = {}
if train_size > 0:
splits_dict['train'] = train_size
self.train_dataset = None
else:
self.train_dataloader = super().train_dataloader
if test_size > 0:
splits_dict['test'] = test_size
self.test_dataset = None
else:
self.test_dataloader = super().test_dataloader
if val_size > 0:
splits_dict['val'] = val_size
self.val_dataset = None
else:
self.val_dataloader = super().val_dataloader
if predict_size > 0:
splits_dict['predict'] = predict_size
self.predict_dataset = None
else:
self.predict_dataloader = super().predict_dataloader
self.collector_splits = self._create_splits(collector, splits_dict)
def setup(self, stage=None):
"""
Perform the splitting of the dataset
"""
logging.debug('Start setup of Pina DataModule obj')
if self.datasets is None:
self._create_datasets()
if stage == 'fit' or stage is None:
for dataset in self.datasets:
if len(dataset) > 0:
splits = self.dataset_split(dataset,
self.split_length,
shuffle=self.shuffle)
for i in range(len(self.split_length)):
self.splits[self.split_names[i]][
dataset.data_type] = splits[i]
self.train_dataset = PinaDatasetFactory(
self.collector_splits['train'],
max_conditions_lengths=self.find_max_conditions_lengths(
'train'))
if 'val' in self.collector_splits.keys():
self.val_dataset = PinaDatasetFactory(
self.collector_splits['val'],
max_conditions_lengths=self.find_max_conditions_lengths(
'val')
)
elif stage == 'test':
raise NotImplementedError("Testing pipeline not implemented yet")
self.test_dataset = PinaDatasetFactory(
self.collector_splits['test'],
max_conditions_lengths=self.find_max_conditions_lengths(
'test')
)
elif stage == 'predict':
self.predict_dataset = PinaDatasetFactory(
self.collector_splits['predict'],
max_conditions_lengths=self.find_max_conditions_lengths(
'predict')
)
else:
raise ValueError("stage must be either 'fit' or 'test'")
raise ValueError(
"stage must be either 'fit' or 'test' or 'predict'."
)
@staticmethod
def dataset_split(dataset, lengths, seed=None, shuffle=True):
"""
Perform the splitting of the dataset
:param dataset: dataset object we wanted to split
:param lengths: lengths of elements in dataset
:param seed: random seed
:param shuffle: shuffle dataset
:return: split dataset
:rtype: PinaSubset
"""
if sum(lengths) - 1 < 1e-3:
len_dataset = len(dataset)
lengths = [
int(math.floor(len_dataset * length)) for length in lengths
]
remainder = len(dataset) - sum(lengths)
for i in range(remainder):
lengths[i % len(lengths)] += 1
elif sum(lengths) - 1 >= 1e-3:
raise ValueError(f"Sum of lengths is {sum(lengths)} less than 1")
def _split_condition(condition_dict, splits_dict):
len_condition = len(condition_dict['input_points'])
if shuffle:
if seed is not None:
generator = torch.Generator()
generator.manual_seed(seed)
indices = torch.randperm(sum(lengths), generator=generator)
else:
indices = torch.randperm(sum(lengths))
dataset.apply_shuffle(indices)
indices = torch.arange(0, sum(lengths), 1, dtype=torch.uint8).tolist()
offsets = [
sum(lengths[:i]) if i > 0 else 0 for i in range(len(lengths))
]
return [
PinaSubset(dataset, indices[offset:offset + length])
for offset, length in zip(offsets, lengths)
lengths = [
int(math.floor(len_condition * length)) for length in
splits_dict.values()
]
def _create_datasets(self):
remainder = len_condition - sum(lengths)
for i in range(remainder):
lengths[i % len(lengths)] += 1
splits_dict = {k: v for k, v in zip(splits_dict.keys(), lengths)
}
to_return_dict = {}
offset = 0
for stage, stage_len in splits_dict.items():
to_return_dict[stage] = {k: v[offset:offset + stage_len]
for k, v in condition_dict.items() if
k != 'equation'
# Equations are NEVER dataloaded
}
offset += stage_len
return to_return_dict
def _create_splits(self, collector, splits_dict):
"""
Create the dataset objects putting data
Create the dataset objects putting data
"""
logging.debug('Dataset creation in PinaDataModule obj')
collector = self.problem.collector
batching_dim = self.problem.batching_dimension
datasets_slots = [i.__slots__ for i in self.dataset_classes]
self.datasets = [
dataset(device=self.device) for dataset in self.dataset_classes
]
logging.debug('Filling datasets in PinaDataModule obj')
for name, data in collector.data_collections.items():
keys = list(data.keys())
idx = [
key for key, val in collector.conditions_name.items()
if val == name
]
for i, slot in enumerate(datasets_slots):
if slot == keys:
self.datasets[i].add_points(data, idx[0], batching_dim)
# ----------- Auxiliary function ------------
def _apply_shuffle(condition_dict, len_data):
idx = torch.randperm(len_data)
for k, v in condition_dict.items():
if k == 'equation':
continue
datasets = []
for dataset in self.datasets:
if not dataset.empty:
dataset.initialize()
datasets.append(dataset)
self.datasets = datasets
if isinstance(v, list):
condition_dict[k] = [v[i] for i in idx]
elif isinstance(v, LabelTensor):
condition_dict[k] = LabelTensor(v.tensor[idx],
v.labels)
elif isinstance(v, torch.Tensor):
condition_dict[k] = v[idx]
else:
raise ValueError(f"Data type {type(v)} not supported")
# ----------- End auxiliary function ------------
logging.debug('Dataset creation in PinaDataModule obj')
split_names = list(splits_dict.keys())
dataset_dict = {name: {} for name in split_names}
for condition_name, condition_dict in collector.data_collections.items():
len_data = len(condition_dict['input_points'])
if self.shuffle:
_apply_shuffle(condition_dict, len_data)
for key, data in self._split_condition(condition_dict,
splits_dict).items():
dataset_dict[key].update({condition_name: data})
return dataset_dict
def find_max_conditions_lengths(self, split):
max_conditions_lengths = {}
for k, v in self.collector_splits[split].items():
if self.batch_size is None:
max_conditions_lengths[k] = len(v['input_points'])
elif self.repeat:
max_conditions_lengths[k] = self.batch_size
else:
max_conditions_lengths[k] = min(len(v['input_points']),
self.batch_size)
return max_conditions_lengths
def val_dataloader(self):
"""
Create the validation dataloader
"""
batch_size = self.batch_size if self.batch_size is not None else len(
self.val_dataset)
# Use default batching in torch DataLoader (good is batch size is small)
if self.default_batching:
collate = Collator(self.find_max_conditions_lengths('val'))
return DataLoader(self.val_dataset, self.batch_size,
collate_fn=collate)
collate = Collator(None)
# Use custom batching (good if batch size is large)
sampler = PinaBatchSampler(self.val_dataset, batch_size, shuffle=False)
return DataLoader(self.val_dataset, sampler=sampler,
collate_fn=collate)
def train_dataloader(self):
"""
Create the training dataloader
"""
# Use default batching in torch DataLoader (good is batch size is small)
if self.default_batching:
collate = Collator(self.find_max_conditions_lengths('train'))
return DataLoader(self.train_dataset, self.batch_size,
collate_fn=collate)
collate = Collator(None)
# Use custom batching (good if batch size is large)
batch_size = self.batch_size if self.batch_size is not None else len(
self.train_dataset)
sampler = PinaBatchSampler(self.train_dataset, batch_size,
shuffle=False)
return DataLoader(self.train_dataset, sampler=sampler,
collate_fn=collate)
def test_dataloader(self):
"""
Create the testing dataloader
"""
raise NotImplementedError("Test dataloader not implemented")
def predict_dataloader(self):
"""
Create the prediction dataloader
"""
raise NotImplementedError("Predict dataloader not implemented")
def transfer_batch_to_device(self, batch, device, dataloader_idx):
"""
Transfer the batch to the device. This method is called in the
training loop and is used to transfer the batch to the device.
"""
batch = [
(k, super(LightningDataModule, self).transfer_batch_to_device(v,
device,
dataloader_idx))
for k, v in batch.items()
]
return batch

102
pina/data/dataset.py Normal file
View File

@@ -0,0 +1,102 @@
"""
This module provide basic data management functionalities
"""
import torch
from torch.utils.data import Dataset
from abc import abstractmethod
from torch_geometric.data import Batch
class PinaDatasetFactory:
"""
Factory class for the PINA dataset. Depending on the type inside the
conditions it creates a different dataset object:
- PinaTensorDataset for torch.Tensor
- PinaGraphDataset for list of torch_geometric.data.Data objects
"""
def __new__(cls, conditions_dict, **kwargs):
if len(conditions_dict) == 0:
raise ValueError('No conditions provided')
if all([isinstance(v['input_points'], torch.Tensor) for v
in conditions_dict.values()]):
return PinaTensorDataset(conditions_dict, **kwargs)
elif all([isinstance(v['input_points'], list) for v
in conditions_dict.values()]):
return PinaGraphDataset(conditions_dict, **kwargs)
raise ValueError('Conditions must be either torch.Tensor or list of Data '
'objects.')
class PinaDataset(Dataset):
"""
Abstract class for the PINA dataset
"""
def __init__(self, conditions_dict, max_conditions_lengths):
self.conditions_dict = conditions_dict
self.max_conditions_lengths = max_conditions_lengths
self.conditions_length = {k: len(v['input_points']) for k, v in
self.conditions_dict.items()}
self.length = max(self.conditions_length.values())
def _get_max_len(self):
max_len = 0
for condition in self.conditions_dict.values():
max_len = max(max_len, len(condition['input_points']))
return max_len
def __len__(self):
return self.length
@abstractmethod
def __getitem__(self, item):
pass
class PinaTensorDataset(PinaDataset):
def __init__(self, conditions_dict, max_conditions_lengths,
):
super().__init__(conditions_dict, max_conditions_lengths)
def _getitem_int(self, idx):
return {
k: {k_data: v[k_data][idx % len(v['input_points'])] for k_data
in v.keys()} for k, v in self.conditions_dict.items()
}
def _getitem_list(self, idx):
to_return_dict = {}
for condition, data in self.conditions_dict.items():
cond_idx = idx[:self.max_conditions_lengths[condition]]
condition_len = self.conditions_length[condition]
if self.length > condition_len:
cond_idx = [idx%condition_len for idx in cond_idx]
to_return_dict[condition] = {k: v[cond_idx]
for k, v in data.items()}
return to_return_dict
def __getitem__(self, idx):
if isinstance(idx, int):
return self._getitem_int(idx)
return self._getitem_list(idx)
class PinaGraphDataset(PinaDataset):
pass
"""
def __init__(self, conditions_dict, max_conditions_lengths):
super().__init__(conditions_dict, max_conditions_lengths)
def __getitem__(self, idx):
Getitem method for large batch size
to_return_dict = {}
for condition, data in self.conditions_dict.items():
cond_idx = idx[:self.max_conditions_lengths[condition]]
condition_len = self.conditions_length[condition]
if self.length > condition_len:
cond_idx = [idx%condition_len for idx in cond_idx]
to_return_dict[condition] = {k: Batch.from_data_list([v[i]
for i in cond_idx])
if isinstance(v, list)
else v[cond_idx].tensor.reshape(-1, v.size(-1))
for k, v in data.items()
}
return to_return_dict
"""

View File

@@ -1,47 +0,0 @@
"""
Batch management module
"""
from .pina_subset import PinaSubset
class Batch:
"""
Implementation of the Batch class used during training to perform SGD
optimization.
"""
def __init__(self, dataset_dict, idx_dict, require_grad=True):
self.attributes = []
for k, v in dataset_dict.items():
setattr(self, k, v)
self.attributes.append(k)
for k, v in idx_dict.items():
setattr(self, k + '_idx', v)
self.require_grad = require_grad
def __len__(self):
"""
Returns the number of elements in the batch
:return: number of elements in the batch
:rtype: int
"""
length = 0
for dataset in dir(self):
attribute = getattr(self, dataset)
if isinstance(attribute, list):
length += len(getattr(self, dataset))
return length
def __getattribute__(self, item):
if item in super().__getattribute__('attributes'):
dataset = super().__getattribute__(item)
index = super().__getattribute__(item + '_idx')
return PinaSubset(dataset.dataset, dataset.indices[index])
return super().__getattribute__(item)
def __getattr__(self, item):
if item == 'data' and len(self.attributes) == 1:
item = self.attributes[0]
return super().__getattribute__(item)
raise AttributeError(f"'Batch' object has no attribute '{item}'")

View File

@@ -1,68 +0,0 @@
"""
This module is used to create an iterable object used during training
"""
import math
from .pina_batch import Batch
class PinaDataLoader:
"""
This class is used to create a dataloader to use during the training.
:var condition_names: The names of the conditions. The order is consistent
with the condition indeces in the batches.
:vartype condition_names: list[str]
"""
def __init__(self, dataset_dict, batch_size, condition_names) -> None:
"""
Initialize local variables
:param dataset_dict: Dictionary of datasets
:type dataset_dict: dict
:param batch_size: Size of the batch
:type batch_size: int
:param condition_names: Names of the conditions
:type condition_names: list[str]
"""
self.condition_names = condition_names
self.dataset_dict = dataset_dict
self._init_batches(batch_size)
def _init_batches(self, batch_size=None):
"""
Create batches according to the batch_size provided in input.
"""
self.batches = []
n_elements = sum(len(v) for v in self.dataset_dict.values())
if batch_size is None:
batch_size = n_elements
indexes_dict = {}
n_batches = int(math.ceil(n_elements / batch_size))
for k, v in self.dataset_dict.items():
if n_batches != 1:
indexes_dict[k] = math.floor(len(v) / (n_batches - 1))
else:
indexes_dict[k] = len(v)
for i in range(n_batches):
temp_dict = {}
for k, v in indexes_dict.items():
if i != n_batches - 1:
temp_dict[k] = slice(i * v, (i + 1) * v)
else:
temp_dict[k] = slice(i * v, len(self.dataset_dict[k]))
self.batches.append(
Batch(idx_dict=temp_dict, dataset_dict=self.dataset_dict))
def __iter__(self):
"""
Makes dataloader object iterable
"""
yield from self.batches
def __len__(self):
"""
Return the number of batches.
:return: The number of batches.
:rtype: int
"""
return len(self.batches)

View File

@@ -1,36 +0,0 @@
"""
Module for PinaSubset class
"""
from pina import LabelTensor
from torch import Tensor, float32
class PinaSubset:
"""
TODO
"""
__slots__ = ['dataset', 'indices', 'require_grad']
def __init__(self, dataset, indices, require_grad=True):
"""
TODO
"""
self.dataset = dataset
self.indices = indices
self.require_grad = require_grad
def __len__(self):
"""
TODO
"""
return len(self.indices)
def __getattr__(self, name):
tensor = self.dataset.__getattribute__(name)
if isinstance(tensor, (LabelTensor, Tensor)):
tensor = tensor[[self.indices]].to(self.dataset.device)
return tensor.requires_grad_(
self.require_grad) if tensor.dtype == float32 else tensor
if isinstance(tensor, list):
return [tensor[i] for i in self.indices]
raise AttributeError(f"No attribute named {name}")

View File

@@ -1,35 +0,0 @@
"""
Sample dataset module
"""
from copy import deepcopy
from .base_dataset import BaseDataset
from ..condition import InputPointsEquationCondition
class SamplePointDataset(BaseDataset):
"""
This class extends the BaseDataset to handle physical datasets
composed of only input points.
"""
data_type = 'physics'
__slots__ = InputPointsEquationCondition.__slots__
def add_points(self, data_dict, condition_idx, batching_dim=0):
data_dict = deepcopy(data_dict)
data_dict.pop('equation')
super().add_points(data_dict, condition_idx)
def _init_from_problem(self, collector_dict):
for name, data in collector_dict.items():
keys = list(data.keys())
if set(self.__slots__) == set(keys):
data = deepcopy(data)
data.pop('equation')
self._populate_init_list(data)
idx = [
key for key, val in
self.problem.collector.conditions_name.items()
if val == name
]
self.conditions_idx.append(idx)
self.initialize()

View File

@@ -1,13 +0,0 @@
"""
Supervised dataset module
"""
from .base_dataset import BaseDataset
class SupervisedDataset(BaseDataset):
"""
This class extends the BaseDataset to handle datasets that consist of
input-output pairs.
"""
data_type = 'supervised'
__slots__ = ['input_points', 'output_points']

View File

@@ -1,14 +0,0 @@
"""
Unsupervised dataset module
"""
from .base_dataset import BaseDataset
class UnsupervisedDataset(BaseDataset):
"""
This class extend BaseDataset class to handle
unsupervised dataset,composed of input points
and, optionally, conditional variables
"""
data_type = 'unsupervised'
__slots__ = ['input_points', 'conditional_variables']