Implementation of DataLoader and DataModule (#383)
Refactoring for 0.2 * Data module, data loader and dataset * Refactor LabelTensor * Refactor solvers Co-authored-by: dario-coscia <dariocos99@gmail.com>
This commit is contained in:
committed by
Nicola Demo
parent
dd43c8304c
commit
a27bd35443
102
pina/data/dataset.py
Normal file
102
pina/data/dataset.py
Normal file
@@ -0,0 +1,102 @@
|
||||
"""
|
||||
This module provide basic data management functionalities
|
||||
"""
|
||||
import torch
|
||||
from torch.utils.data import Dataset
|
||||
from abc import abstractmethod
|
||||
from torch_geometric.data import Batch
|
||||
|
||||
class PinaDatasetFactory:
|
||||
"""
|
||||
Factory class for the PINA dataset. Depending on the type inside the
|
||||
conditions it creates a different dataset object:
|
||||
- PinaTensorDataset for torch.Tensor
|
||||
- PinaGraphDataset for list of torch_geometric.data.Data objects
|
||||
"""
|
||||
def __new__(cls, conditions_dict, **kwargs):
|
||||
if len(conditions_dict) == 0:
|
||||
raise ValueError('No conditions provided')
|
||||
if all([isinstance(v['input_points'], torch.Tensor) for v
|
||||
in conditions_dict.values()]):
|
||||
return PinaTensorDataset(conditions_dict, **kwargs)
|
||||
elif all([isinstance(v['input_points'], list) for v
|
||||
in conditions_dict.values()]):
|
||||
return PinaGraphDataset(conditions_dict, **kwargs)
|
||||
raise ValueError('Conditions must be either torch.Tensor or list of Data '
|
||||
'objects.')
|
||||
|
||||
class PinaDataset(Dataset):
|
||||
"""
|
||||
Abstract class for the PINA dataset
|
||||
"""
|
||||
def __init__(self, conditions_dict, max_conditions_lengths):
|
||||
self.conditions_dict = conditions_dict
|
||||
self.max_conditions_lengths = max_conditions_lengths
|
||||
self.conditions_length = {k: len(v['input_points']) for k, v in
|
||||
self.conditions_dict.items()}
|
||||
self.length = max(self.conditions_length.values())
|
||||
|
||||
def _get_max_len(self):
|
||||
max_len = 0
|
||||
for condition in self.conditions_dict.values():
|
||||
max_len = max(max_len, len(condition['input_points']))
|
||||
return max_len
|
||||
|
||||
def __len__(self):
|
||||
return self.length
|
||||
|
||||
@abstractmethod
|
||||
def __getitem__(self, item):
|
||||
pass
|
||||
|
||||
class PinaTensorDataset(PinaDataset):
|
||||
def __init__(self, conditions_dict, max_conditions_lengths,
|
||||
):
|
||||
super().__init__(conditions_dict, max_conditions_lengths)
|
||||
|
||||
def _getitem_int(self, idx):
|
||||
return {
|
||||
k: {k_data: v[k_data][idx % len(v['input_points'])] for k_data
|
||||
in v.keys()} for k, v in self.conditions_dict.items()
|
||||
}
|
||||
|
||||
def _getitem_list(self, idx):
|
||||
to_return_dict = {}
|
||||
for condition, data in self.conditions_dict.items():
|
||||
cond_idx = idx[:self.max_conditions_lengths[condition]]
|
||||
condition_len = self.conditions_length[condition]
|
||||
if self.length > condition_len:
|
||||
cond_idx = [idx%condition_len for idx in cond_idx]
|
||||
to_return_dict[condition] = {k: v[cond_idx]
|
||||
for k, v in data.items()}
|
||||
return to_return_dict
|
||||
|
||||
def __getitem__(self, idx):
|
||||
if isinstance(idx, int):
|
||||
return self._getitem_int(idx)
|
||||
return self._getitem_list(idx)
|
||||
|
||||
class PinaGraphDataset(PinaDataset):
|
||||
pass
|
||||
"""
|
||||
def __init__(self, conditions_dict, max_conditions_lengths):
|
||||
super().__init__(conditions_dict, max_conditions_lengths)
|
||||
|
||||
def __getitem__(self, idx):
|
||||
|
||||
Getitem method for large batch size
|
||||
|
||||
to_return_dict = {}
|
||||
for condition, data in self.conditions_dict.items():
|
||||
cond_idx = idx[:self.max_conditions_lengths[condition]]
|
||||
condition_len = self.conditions_length[condition]
|
||||
if self.length > condition_len:
|
||||
cond_idx = [idx%condition_len for idx in cond_idx]
|
||||
to_return_dict[condition] = {k: Batch.from_data_list([v[i]
|
||||
for i in cond_idx])
|
||||
if isinstance(v, list)
|
||||
else v[cond_idx].tensor.reshape(-1, v.size(-1))
|
||||
for k, v in data.items()
|
||||
}
|
||||
return to_return_dict
|
||||
"""
|
||||
Reference in New Issue
Block a user