Implementation of DataLoader and DataModule (#383)
Refactoring for 0.2 * Data module, data loader and dataset * Refactor LabelTensor * Refactor solvers Co-authored-by: dario-coscia <dariocos99@gmail.com>
This commit is contained in:
committed by
Nicola Demo
parent
dd43c8304c
commit
a27bd35443
@@ -63,11 +63,9 @@ def grad(output_, input_, components=None, d=None):
|
||||
retain_graph=True,
|
||||
allow_unused=True,
|
||||
)[0]
|
||||
|
||||
gradients.labels = input_.labels
|
||||
gradients = gradients.extract(d)
|
||||
gradients.labels = input_.stored_labels
|
||||
gradients = gradients[..., [input_.labels.index(i) for i in d]]
|
||||
gradients.labels = [f"d{output_fieldname}d{i}" for i in d]
|
||||
|
||||
return gradients
|
||||
|
||||
if not isinstance(input_, LabelTensor):
|
||||
@@ -216,7 +214,9 @@ def laplacian(output_, input_, components=None, d=None, method="std"):
|
||||
to_append_tensors = []
|
||||
for i, label in enumerate(grad_output.labels):
|
||||
gg = grad(grad_output, input_, d=d, components=[label])
|
||||
to_append_tensors.append(gg.extract([gg.labels[i]]))
|
||||
gg = gg.extract([gg.labels[i]])
|
||||
|
||||
to_append_tensors.append(gg)
|
||||
labels = [f"dd{components[0]}"]
|
||||
result = LabelTensor.summation(tensors=to_append_tensors)
|
||||
result.labels = labels
|
||||
|
||||
Reference in New Issue
Block a user