Implementation of DataLoader and DataModule (#383)

Refactoring for 0.2
* Data module, data loader and dataset
* Refactor LabelTensor
* Refactor solvers

Co-authored-by: dario-coscia <dariocos99@gmail.com>
This commit is contained in:
Filippo Olivo
2024-11-27 16:01:39 +01:00
committed by Nicola Demo
parent dd43c8304c
commit a27bd35443
34 changed files with 827 additions and 1349 deletions

View File

@@ -1,12 +1,14 @@
""" Module for SupervisedSolver """
import torch
from pytorch_lightning.utilities.types import STEP_OUTPUT
from sympy.strategies.branch import condition
from torch.nn.modules.loss import _Loss
from ..optim import TorchOptimizer, TorchScheduler
from .solver import SolverInterface
from ..label_tensor import LabelTensor
from ..utils import check_consistency
from ..loss.loss_interface import LossInterface
from ..condition import InputOutputPointsCondition
class SupervisedSolver(SolverInterface):
@@ -37,7 +39,7 @@ class SupervisedSolver(SolverInterface):
we are seeking to approximate multiple (discretised) functions given
multiple (discretised) input functions.
"""
accepted_condition_types = ['supervised']
accepted_condition_types = [InputOutputPointsCondition.condition_type[0]]
__name__ = 'SupervisedSolver'
def __init__(self,
@@ -46,7 +48,8 @@ class SupervisedSolver(SolverInterface):
loss=None,
optimizer=None,
scheduler=None,
extra_features=None):
extra_features=None,
use_lt=True):
"""
:param AbstractProblem problem: The formualation of the problem.
:param torch.nn.Module model: The neural network model to use.
@@ -72,14 +75,19 @@ class SupervisedSolver(SolverInterface):
problem=problem,
optimizers=optimizer,
schedulers=scheduler,
extra_features=extra_features)
extra_features=extra_features,
use_lt=use_lt)
# check consistency
check_consistency(loss, (LossInterface, _Loss), subclass=False)
check_consistency(loss, (LossInterface, _Loss, torch.nn.Module),
subclass=False)
self._loss = loss
self._model = self._pina_models[0]
self._optimizer = self._pina_optimizers[0]
self._scheduler = self._pina_schedulers[0]
self.validation_condition_losses = {
k: {'loss': [],
'count': []} for k in self.problem.conditions.keys()}
def forward(self, x):
"""Forward pass implementation for the solver.
@@ -105,7 +113,7 @@ class SupervisedSolver(SolverInterface):
return ([self._optimizer.optimizer_instance],
[self._scheduler.scheduler_instance])
def training_step(self, batch, batch_idx):
def training_step(self, batch):
"""Solver training step.
:param batch: The batch element in the dataloader.
@@ -115,33 +123,37 @@ class SupervisedSolver(SolverInterface):
:return: The sum of the loss functions.
:rtype: LabelTensor
"""
condition_idx = batch.supervised.condition_indices
for condition_id in range(condition_idx.min(), condition_idx.max() + 1):
condition_name = self._dataloader.condition_names[condition_id]
condition = self.problem.conditions[condition_name]
pts = batch.supervised.input_points
out = batch.supervised.output_points
if condition_name not in self.problem.conditions:
raise RuntimeError("Something wrong happened.")
# for data driven mode
if not hasattr(condition, "output_points"):
raise NotImplementedError(
f"{type(self).__name__} works only in data-driven mode.")
output_pts = out[condition_idx == condition_id]
input_pts = pts[condition_idx == condition_id]
input_pts.labels = pts.labels
output_pts.labels = out.labels
loss = self.loss_data(input_pts=input_pts, output_pts=output_pts)
loss = loss.as_subclass(torch.Tensor)
self.log("mean_loss", float(loss), prog_bar=True, logger=True)
condition_loss = []
for condition_name, points in batch:
input_pts, output_pts = points['input_points'], points['output_points']
loss_ = self.loss_data(input_pts=input_pts, output_pts=output_pts)
condition_loss.append(loss_.as_subclass(torch.Tensor))
loss = sum(condition_loss)
self.log('train_loss', loss, on_step=True, on_epoch=True, prog_bar=True, logger=True,
batch_size=self.get_batch_size(batch), sync_dist=True)
return loss
def validation_step(self, batch):
"""
Solver validation step.
"""
condition_loss = []
for condition_name, points in batch:
input_pts, output_pts = points['input_points'], points['output_points']
loss_ = self.loss_data(input_pts=input_pts, output_pts=output_pts)
condition_loss.append(loss_.as_subclass(torch.Tensor))
loss = sum(condition_loss)
self.log('val_loss', loss, prog_bar=True, logger=True,
batch_size=self.get_batch_size(batch), sync_dist=True)
def test_step(self, batch, batch_idx) -> STEP_OUTPUT:
"""
Solver test step.
"""
raise NotImplementedError("Test step not implemented yet.")
def loss_data(self, input_pts, output_pts):
"""
The data loss for the Supervised solver. It computes the loss between