Implementation of DataLoader and DataModule (#383)
Refactoring for 0.2 * Data module, data loader and dataset * Refactor LabelTensor * Refactor solvers Co-authored-by: dario-coscia <dariocos99@gmail.com>
This commit is contained in:
committed by
Nicola Demo
parent
dd43c8304c
commit
a27bd35443
@@ -1,227 +0,0 @@
|
||||
import math
|
||||
import torch
|
||||
from pina.data import SamplePointDataset, SupervisedDataset, PinaDataModule, \
|
||||
UnsupervisedDataset
|
||||
from pina.data import PinaDataLoader
|
||||
from pina import LabelTensor, Condition
|
||||
from pina.equation import Equation
|
||||
from pina.domain import CartesianDomain
|
||||
from pina.problem import SpatialProblem, AbstractProblem
|
||||
from pina.operators import laplacian
|
||||
from pina.equation.equation_factory import FixedValue
|
||||
from pina.graph import Graph
|
||||
|
||||
|
||||
def laplace_equation(input_, output_):
|
||||
force_term = (torch.sin(input_.extract(['x']) * torch.pi) *
|
||||
torch.sin(input_.extract(['y']) * torch.pi))
|
||||
delta_u = laplacian(output_.extract(['u']), input_)
|
||||
return delta_u - force_term
|
||||
|
||||
|
||||
my_laplace = Equation(laplace_equation)
|
||||
in_ = LabelTensor(torch.tensor([[0., 1.]]), ['x', 'y'])
|
||||
out_ = LabelTensor(torch.tensor([[0.]]), ['u'])
|
||||
in2_ = LabelTensor(torch.rand(60, 2), ['x', 'y'])
|
||||
out2_ = LabelTensor(torch.rand(60, 1), ['u'])
|
||||
|
||||
|
||||
class Poisson(SpatialProblem):
|
||||
output_variables = ['u']
|
||||
spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]})
|
||||
|
||||
conditions = {
|
||||
'gamma1':
|
||||
Condition(domain=CartesianDomain({
|
||||
'x': [0, 1],
|
||||
'y': 1
|
||||
}),
|
||||
equation=FixedValue(0.0)),
|
||||
'gamma2':
|
||||
Condition(domain=CartesianDomain({
|
||||
'x': [0, 1],
|
||||
'y': 0
|
||||
}),
|
||||
equation=FixedValue(0.0)),
|
||||
'gamma3':
|
||||
Condition(domain=CartesianDomain({
|
||||
'x': 1,
|
||||
'y': [0, 1]
|
||||
}),
|
||||
equation=FixedValue(0.0)),
|
||||
'gamma4':
|
||||
Condition(domain=CartesianDomain({
|
||||
'x': 0,
|
||||
'y': [0, 1]
|
||||
}),
|
||||
equation=FixedValue(0.0)),
|
||||
'D':
|
||||
Condition(input_points=LabelTensor(torch.rand(size=(100, 2)),
|
||||
['x', 'y']),
|
||||
equation=my_laplace),
|
||||
'data':
|
||||
Condition(input_points=in_, output_points=out_),
|
||||
'data2':
|
||||
Condition(input_points=in2_, output_points=out2_),
|
||||
'unsupervised':
|
||||
Condition(
|
||||
input_points=LabelTensor(torch.rand(size=(45, 2)), ['x', 'y']),
|
||||
conditional_variables=LabelTensor(torch.ones(size=(45, 1)),
|
||||
['alpha']),
|
||||
),
|
||||
'unsupervised2':
|
||||
Condition(
|
||||
input_points=LabelTensor(torch.rand(size=(90, 2)), ['x', 'y']),
|
||||
conditional_variables=LabelTensor(torch.ones(size=(90, 1)),
|
||||
['alpha']),
|
||||
)
|
||||
}
|
||||
|
||||
|
||||
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
poisson = Poisson()
|
||||
poisson.discretise_domain(10, 'grid', locations=boundaries)
|
||||
|
||||
|
||||
def test_sample():
|
||||
sample_dataset = SamplePointDataset(poisson, device='cpu')
|
||||
assert len(sample_dataset) == 140
|
||||
assert sample_dataset.input_points.shape == (140, 2)
|
||||
assert sample_dataset.input_points.labels == ['x', 'y']
|
||||
assert sample_dataset.condition_indices.dtype == torch.uint8
|
||||
assert sample_dataset.condition_indices.max() == torch.tensor(4)
|
||||
assert sample_dataset.condition_indices.min() == torch.tensor(0)
|
||||
|
||||
|
||||
def test_data():
|
||||
dataset = SupervisedDataset(poisson, device='cpu')
|
||||
assert len(dataset) == 61
|
||||
assert dataset['input_points'].shape == (61, 2)
|
||||
assert dataset.input_points.shape == (61, 2)
|
||||
assert dataset['input_points'].labels == ['x', 'y']
|
||||
assert dataset.input_points.labels == ['x', 'y']
|
||||
assert dataset.input_points[3:].shape == (58, 2)
|
||||
assert dataset.output_points[:3].labels == ['u']
|
||||
assert dataset.output_points.shape == (61, 1)
|
||||
assert dataset.output_points.labels == ['u']
|
||||
assert dataset.condition_indices.dtype == torch.uint8
|
||||
assert dataset.condition_indices.max() == torch.tensor(1)
|
||||
assert dataset.condition_indices.min() == torch.tensor(0)
|
||||
|
||||
|
||||
def test_unsupervised():
|
||||
dataset = UnsupervisedDataset(poisson, device='cpu')
|
||||
assert len(dataset) == 135
|
||||
assert dataset.input_points.shape == (135, 2)
|
||||
assert dataset.input_points.labels == ['x', 'y']
|
||||
assert dataset.input_points[3:].shape == (132, 2)
|
||||
|
||||
assert dataset.conditional_variables.shape == (135, 1)
|
||||
assert dataset.conditional_variables.labels == ['alpha']
|
||||
assert dataset.condition_indices.dtype == torch.uint8
|
||||
assert dataset.condition_indices.max() == torch.tensor(1)
|
||||
assert dataset.condition_indices.min() == torch.tensor(0)
|
||||
|
||||
|
||||
def test_data_module():
|
||||
data_module = PinaDataModule(poisson, device='cpu')
|
||||
data_module.setup()
|
||||
loader = data_module.train_dataloader()
|
||||
assert isinstance(loader, PinaDataLoader)
|
||||
assert isinstance(loader, PinaDataLoader)
|
||||
|
||||
data_module = PinaDataModule(poisson,
|
||||
device='cpu',
|
||||
batch_size=10,
|
||||
shuffle=False)
|
||||
data_module.setup()
|
||||
loader = data_module.train_dataloader()
|
||||
assert len(loader) == 24
|
||||
for i in loader:
|
||||
assert len(i) <= 10
|
||||
len_ref = sum(
|
||||
[math.ceil(len(dataset) * 0.7) for dataset in data_module.datasets])
|
||||
len_real = sum(
|
||||
[len(dataset) for dataset in data_module.splits['train'].values()])
|
||||
assert len_ref == len_real
|
||||
|
||||
supervised_dataset = SupervisedDataset(poisson, device='cpu')
|
||||
data_module = PinaDataModule(poisson,
|
||||
device='cpu',
|
||||
batch_size=10,
|
||||
shuffle=False,
|
||||
datasets=[supervised_dataset])
|
||||
data_module.setup()
|
||||
loader = data_module.train_dataloader()
|
||||
for batch in loader:
|
||||
assert len(batch) <= 10
|
||||
|
||||
physics_dataset = SamplePointDataset(poisson, device='cpu')
|
||||
data_module = PinaDataModule(poisson,
|
||||
device='cpu',
|
||||
batch_size=10,
|
||||
shuffle=False,
|
||||
datasets=[physics_dataset])
|
||||
data_module.setup()
|
||||
loader = data_module.train_dataloader()
|
||||
for batch in loader:
|
||||
assert len(batch) <= 10
|
||||
|
||||
unsupervised_dataset = UnsupervisedDataset(poisson, device='cpu')
|
||||
data_module = PinaDataModule(poisson,
|
||||
device='cpu',
|
||||
batch_size=10,
|
||||
shuffle=False,
|
||||
datasets=[unsupervised_dataset])
|
||||
data_module.setup()
|
||||
loader = data_module.train_dataloader()
|
||||
for batch in loader:
|
||||
assert len(batch) <= 10
|
||||
|
||||
|
||||
def test_loader():
|
||||
data_module = PinaDataModule(poisson, device='cpu', batch_size=10)
|
||||
data_module.setup()
|
||||
loader = data_module.train_dataloader()
|
||||
assert isinstance(loader, PinaDataLoader)
|
||||
assert len(loader) == 24
|
||||
for i in loader:
|
||||
assert len(i) <= 10
|
||||
assert i.supervised.input_points.labels == ['x', 'y']
|
||||
assert i.physics.input_points.labels == ['x', 'y']
|
||||
assert i.unsupervised.input_points.labels == ['x', 'y']
|
||||
assert i.supervised.input_points.requires_grad == True
|
||||
assert i.physics.input_points.requires_grad == True
|
||||
assert i.unsupervised.input_points.requires_grad == True
|
||||
|
||||
|
||||
coordinates = LabelTensor(torch.rand((100, 100, 2)), labels=['x', 'y'])
|
||||
data = LabelTensor(torch.rand((100, 100, 3)), labels=['ux', 'uy', 'p'])
|
||||
|
||||
|
||||
class GraphProblem(AbstractProblem):
|
||||
output = LabelTensor(torch.rand((100, 3)), labels=['ux', 'uy', 'p'])
|
||||
input = [
|
||||
Graph.build('radius',
|
||||
nodes_coordinates=coordinates[i, :, :],
|
||||
nodes_data=data[i, :, :],
|
||||
radius=0.2) for i in range(100)
|
||||
]
|
||||
output_variables = ['u']
|
||||
|
||||
conditions = {
|
||||
'graph_data': Condition(input_points=input, output_points=output)
|
||||
}
|
||||
|
||||
|
||||
graph_problem = GraphProblem()
|
||||
|
||||
|
||||
def test_loader_graph():
|
||||
data_module = PinaDataModule(graph_problem, device='cpu', batch_size=10)
|
||||
data_module.setup()
|
||||
loader = data_module.train_dataloader()
|
||||
for i in loader:
|
||||
assert len(i) <= 10
|
||||
assert isinstance(i.supervised.input_points, list)
|
||||
assert all(isinstance(x, Graph) for x in i.supervised.input_points)
|
||||
@@ -114,5 +114,5 @@ def test_slice():
|
||||
assert torch.allclose(tensor_view2, data[3])
|
||||
|
||||
tensor_view3 = tensor[:, 2]
|
||||
assert tensor_view3.labels == labels[2]
|
||||
assert tensor_view3.labels == [labels[2]]
|
||||
assert torch.allclose(tensor_view3, data[:, 2].reshape(-1, 1))
|
||||
|
||||
@@ -1,5 +1,4 @@
|
||||
import torch
|
||||
|
||||
from pina.problem import SpatialProblem, InverseProblem
|
||||
from pina.operators import laplacian
|
||||
from pina.domain import CartesianDomain
|
||||
@@ -9,7 +8,7 @@ from pina.trainer import Trainer
|
||||
from pina.model import FeedForward
|
||||
from pina.equation.equation import Equation
|
||||
from pina.equation.equation_factory import FixedValue
|
||||
from pina.loss.loss_interface import LpLoss
|
||||
from pina.loss import LpLoss
|
||||
|
||||
|
||||
def laplace_equation(input_, output_):
|
||||
@@ -54,22 +53,22 @@ class InversePoisson(SpatialProblem, InverseProblem):
|
||||
|
||||
# define the conditions for the loss (boundary conditions, equation, data)
|
||||
conditions = {
|
||||
'gamma1': Condition(location=CartesianDomain({'x': [x_min, x_max],
|
||||
'gamma1': Condition(domain=CartesianDomain({'x': [x_min, x_max],
|
||||
'y': y_max}),
|
||||
equation=FixedValue(0.0, components=['u'])),
|
||||
'gamma2': Condition(location=CartesianDomain(
|
||||
'gamma2': Condition(domain=CartesianDomain(
|
||||
{'x': [x_min, x_max], 'y': y_min
|
||||
}),
|
||||
equation=FixedValue(0.0, components=['u'])),
|
||||
'gamma3': Condition(location=CartesianDomain(
|
||||
'gamma3': Condition(domain=CartesianDomain(
|
||||
{'x': x_max, 'y': [y_min, y_max]
|
||||
}),
|
||||
equation=FixedValue(0.0, components=['u'])),
|
||||
'gamma4': Condition(location=CartesianDomain(
|
||||
'gamma4': Condition(domain=CartesianDomain(
|
||||
{'x': x_min, 'y': [y_min, y_max]
|
||||
}),
|
||||
equation=FixedValue(0.0, components=['u'])),
|
||||
'D': Condition(location=CartesianDomain(
|
||||
'D': Condition(domain=CartesianDomain(
|
||||
{'x': [x_min, x_max], 'y': [y_min, y_max]
|
||||
}),
|
||||
equation=Equation(laplace_equation)),
|
||||
@@ -84,16 +83,16 @@ class Poisson(SpatialProblem):
|
||||
|
||||
conditions = {
|
||||
'gamma1': Condition(
|
||||
location=CartesianDomain({'x': [0, 1], 'y': 1}),
|
||||
domain=CartesianDomain({'x': [0, 1], 'y': 1}),
|
||||
equation=FixedValue(0.0)),
|
||||
'gamma2': Condition(
|
||||
location=CartesianDomain({'x': [0, 1], 'y': 0}),
|
||||
domain=CartesianDomain({'x': [0, 1], 'y': 0}),
|
||||
equation=FixedValue(0.0)),
|
||||
'gamma3': Condition(
|
||||
location=CartesianDomain({'x': 1, 'y': [0, 1]}),
|
||||
domain=CartesianDomain({'x': 1, 'y': [0, 1]}),
|
||||
equation=FixedValue(0.0)),
|
||||
'gamma4': Condition(
|
||||
location=CartesianDomain({'x': 0, 'y': [0, 1]}),
|
||||
domain=CartesianDomain({'x': 0, 'y': [0, 1]}),
|
||||
equation=FixedValue(0.0)),
|
||||
'D': Condition(
|
||||
input_points=LabelTensor(torch.rand(size=(100, 2)), ['x', 'y']),
|
||||
@@ -112,7 +111,6 @@ class Poisson(SpatialProblem):
|
||||
|
||||
truth_solution = poisson_sol
|
||||
|
||||
|
||||
class myFeature(torch.nn.Module):
|
||||
"""
|
||||
Feature: sin(x)
|
||||
@@ -158,21 +156,35 @@ def test_train_cpu():
|
||||
pinn = PINN(problem = poisson_problem, model=model,
|
||||
extra_features=None, loss=LpLoss())
|
||||
trainer = Trainer(solver=pinn, max_epochs=1,
|
||||
accelerator='cpu', batch_size=20)
|
||||
trainer.train()
|
||||
accelerator='cpu', batch_size=20, val_size=0., train_size=1., test_size=0.)
|
||||
|
||||
def test_log():
|
||||
poisson_problem.discretise_domain(100)
|
||||
solver = PINN(problem = poisson_problem, model=model,
|
||||
extra_features=None, loss=LpLoss())
|
||||
trainer = Trainer(solver, max_epochs=2, accelerator='cpu')
|
||||
def test_train_load():
|
||||
tmpdir = "tests/tmp_load"
|
||||
poisson_problem = Poisson()
|
||||
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
n = 10
|
||||
poisson_problem.discretise_domain(n, 'grid', locations=boundaries)
|
||||
pinn = PINN(problem=poisson_problem,
|
||||
model=model,
|
||||
extra_features=None,
|
||||
loss=LpLoss())
|
||||
trainer = Trainer(solver=pinn,
|
||||
max_epochs=15,
|
||||
accelerator='cpu',
|
||||
default_root_dir=tmpdir)
|
||||
trainer.train()
|
||||
# assert the logged metrics are correct
|
||||
logged_metrics = sorted(list(trainer.logged_metrics.keys()))
|
||||
total_metrics = sorted(
|
||||
list([key + '_loss' for key in poisson_problem.conditions.keys()])
|
||||
+ ['mean_loss'])
|
||||
assert logged_metrics == total_metrics
|
||||
new_pinn = PINN.load_from_checkpoint(
|
||||
f'{tmpdir}/lightning_logs/version_0/checkpoints/epoch=14-step=15.ckpt',
|
||||
problem = poisson_problem, model=model)
|
||||
test_pts = CartesianDomain({'x': [0, 1], 'y': [0, 1]}).sample(10)
|
||||
assert new_pinn.forward(test_pts).extract(['u']).shape == (10, 1)
|
||||
assert new_pinn.forward(test_pts).extract(
|
||||
['u']).shape == pinn.forward(test_pts).extract(['u']).shape
|
||||
torch.testing.assert_close(
|
||||
new_pinn.forward(test_pts).extract(['u']),
|
||||
pinn.forward(test_pts).extract(['u']))
|
||||
import shutil
|
||||
shutil.rmtree(tmpdir)
|
||||
|
||||
def test_train_restore():
|
||||
tmpdir = "tests/tmp_restore"
|
||||
@@ -192,36 +204,7 @@ def test_train_restore():
|
||||
ntrainer = Trainer(solver=pinn, max_epochs=15, accelerator='cpu')
|
||||
t = ntrainer.train(
|
||||
ckpt_path=f'{tmpdir}/lightning_logs/version_0/'
|
||||
'checkpoints/epoch=4-step=10.ckpt')
|
||||
import shutil
|
||||
shutil.rmtree(tmpdir)
|
||||
|
||||
|
||||
def test_train_load():
|
||||
tmpdir = "tests/tmp_load"
|
||||
poisson_problem = Poisson()
|
||||
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
n = 10
|
||||
poisson_problem.discretise_domain(n, 'grid', locations=boundaries)
|
||||
pinn = PINN(problem=poisson_problem,
|
||||
model=model,
|
||||
extra_features=None,
|
||||
loss=LpLoss())
|
||||
trainer = Trainer(solver=pinn,
|
||||
max_epochs=15,
|
||||
accelerator='cpu',
|
||||
default_root_dir=tmpdir)
|
||||
trainer.train()
|
||||
new_pinn = PINN.load_from_checkpoint(
|
||||
f'{tmpdir}/lightning_logs/version_0/checkpoints/epoch=14-step=30.ckpt',
|
||||
problem = poisson_problem, model=model)
|
||||
test_pts = CartesianDomain({'x': [0, 1], 'y': [0, 1]}).sample(10)
|
||||
assert new_pinn.forward(test_pts).extract(['u']).shape == (10, 1)
|
||||
assert new_pinn.forward(test_pts).extract(
|
||||
['u']).shape == pinn.forward(test_pts).extract(['u']).shape
|
||||
torch.testing.assert_close(
|
||||
new_pinn.forward(test_pts).extract(['u']),
|
||||
pinn.forward(test_pts).extract(['u']))
|
||||
'checkpoints/epoch=4-step=5.ckpt')
|
||||
import shutil
|
||||
shutil.rmtree(tmpdir)
|
||||
|
||||
@@ -229,36 +212,24 @@ def test_train_inverse_problem_cpu():
|
||||
poisson_problem = InversePoisson()
|
||||
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4', 'D']
|
||||
n = 100
|
||||
poisson_problem.discretise_domain(n, 'random', locations=boundaries)
|
||||
poisson_problem.discretise_domain(n, 'random', locations=boundaries,
|
||||
variables=['x', 'y'])
|
||||
pinn = PINN(problem = poisson_problem, model=model,
|
||||
extra_features=None, loss=LpLoss())
|
||||
trainer = Trainer(solver=pinn, max_epochs=1,
|
||||
accelerator='cpu', batch_size=20)
|
||||
trainer.train()
|
||||
|
||||
|
||||
# # TODO does not currently work
|
||||
# def test_train_inverse_problem_restore():
|
||||
# tmpdir = "tests/tmp_restore_inv"
|
||||
# poisson_problem = InversePoisson()
|
||||
# boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4', 'D']
|
||||
# n = 100
|
||||
# poisson_problem.discretise_domain(n, 'random', locations=boundaries)
|
||||
# pinn = PINN(problem=poisson_problem,
|
||||
# model=model,
|
||||
# extra_features=None,
|
||||
# loss=LpLoss())
|
||||
# trainer = Trainer(solver=pinn,
|
||||
# max_epochs=5,
|
||||
# accelerator='cpu',
|
||||
# default_root_dir=tmpdir)
|
||||
# trainer.train()
|
||||
# ntrainer = Trainer(solver=pinn, max_epochs=5, accelerator='cpu')
|
||||
# t = ntrainer.train(
|
||||
# ckpt_path=f'{tmpdir}/lightning_logs/version_0/checkpoints/epoch=4-step=10.ckpt')
|
||||
# import shutil
|
||||
# shutil.rmtree(tmpdir)
|
||||
|
||||
def test_train_extra_feats_cpu():
|
||||
poisson_problem = Poisson()
|
||||
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
n = 10
|
||||
poisson_problem.discretise_domain(n, 'grid', locations=boundaries)
|
||||
pinn = PINN(problem=poisson_problem,
|
||||
model=model_extra_feats,
|
||||
extra_features=extra_feats)
|
||||
trainer = Trainer(solver=pinn, max_epochs=5, accelerator='cpu')
|
||||
trainer.train()
|
||||
|
||||
def test_train_inverse_problem_load():
|
||||
tmpdir = "tests/tmp_load_inv"
|
||||
@@ -276,7 +247,7 @@ def test_train_inverse_problem_load():
|
||||
default_root_dir=tmpdir)
|
||||
trainer.train()
|
||||
new_pinn = PINN.load_from_checkpoint(
|
||||
f'{tmpdir}/lightning_logs/version_0/checkpoints/epoch=14-step=30.ckpt',
|
||||
f'{tmpdir}/lightning_logs/version_0/checkpoints/epoch=14-step=15.ckpt',
|
||||
problem = poisson_problem, model=model)
|
||||
test_pts = CartesianDomain({'x': [0, 1], 'y': [0, 1]}).sample(10)
|
||||
assert new_pinn.forward(test_pts).extract(['u']).shape == (10, 1)
|
||||
@@ -286,160 +257,4 @@ def test_train_inverse_problem_load():
|
||||
new_pinn.forward(test_pts).extract(['u']),
|
||||
pinn.forward(test_pts).extract(['u']))
|
||||
import shutil
|
||||
shutil.rmtree(tmpdir)
|
||||
|
||||
# # TODO fix asap. Basically sampling few variables
|
||||
# # works only if both variables are in a range.
|
||||
# # if one is fixed and the other not, this will
|
||||
# # not work. This test also needs to be fixed and
|
||||
# # insert in test problem not in test pinn.
|
||||
# def test_train_cpu_sampling_few_vars():
|
||||
# poisson_problem = Poisson()
|
||||
# boundaries = ['gamma1', 'gamma2', 'gamma3']
|
||||
# n = 10
|
||||
# poisson_problem.discretise_domain(n, 'grid', locations=boundaries)
|
||||
# poisson_problem.discretise_domain(n, 'random', locations=['gamma4'], variables=['x'])
|
||||
# poisson_problem.discretise_domain(n, 'random', locations=['gamma4'], variables=['y'])
|
||||
# pinn = PINN(problem = poisson_problem, model=model, extra_features=None, loss=LpLoss())
|
||||
# trainer = Trainer(solver=pinn, kwargs={'max_epochs' : 5, 'accelerator':'cpu'})
|
||||
# trainer.train()
|
||||
|
||||
|
||||
def test_train_extra_feats_cpu():
|
||||
poisson_problem = Poisson()
|
||||
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
n = 10
|
||||
poisson_problem.discretise_domain(n, 'grid', locations=boundaries)
|
||||
pinn = PINN(problem=poisson_problem,
|
||||
model=model_extra_feats,
|
||||
extra_features=extra_feats)
|
||||
trainer = Trainer(solver=pinn, max_epochs=5, accelerator='cpu')
|
||||
trainer.train()
|
||||
|
||||
|
||||
# TODO, fix GitHub actions to run also on GPU
|
||||
# def test_train_gpu():
|
||||
# poisson_problem = Poisson()
|
||||
# boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
# n = 10
|
||||
# poisson_problem.discretise_domain(n, 'grid', locations=boundaries)
|
||||
# pinn = PINN(problem = poisson_problem, model=model, extra_features=None, loss=LpLoss())
|
||||
# trainer = Trainer(solver=pinn, kwargs={'max_epochs' : 5, 'accelerator':'gpu'})
|
||||
# trainer.train()
|
||||
|
||||
# def test_train_gpu(): #TODO fix ASAP
|
||||
# poisson_problem = Poisson()
|
||||
# boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
# n = 10
|
||||
# poisson_problem.discretise_domain(n, 'grid', locations=boundaries)
|
||||
# poisson_problem.conditions.pop('data') # The input/output pts are allocated on cpu
|
||||
# pinn = PINN(problem = poisson_problem, model=model, extra_features=None, loss=LpLoss())
|
||||
# trainer = Trainer(solver=pinn, kwargs={'max_epochs' : 5, 'accelerator':'gpu'})
|
||||
# trainer.train()
|
||||
|
||||
# def test_train_2():
|
||||
# boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
# n = 10
|
||||
# expected_keys = [[], list(range(0, 50, 3))]
|
||||
# param = [0, 3]
|
||||
# for i, truth_key in zip(param, expected_keys):
|
||||
# pinn = PINN(problem, model)
|
||||
# pinn.discretise_domain(n, 'grid', locations=boundaries)
|
||||
# pinn.discretise_domain(n, 'grid', locations=['D'])
|
||||
# pinn.train(50, save_loss=i)
|
||||
# assert list(pinn.history_loss.keys()) == truth_key
|
||||
|
||||
|
||||
# def test_train_extra_feats():
|
||||
# pinn = PINN(problem, model_extra_feat, [myFeature()])
|
||||
# boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
# n = 10
|
||||
# pinn.discretise_domain(n, 'grid', locations=boundaries)
|
||||
# pinn.discretise_domain(n, 'grid', locations=['D'])
|
||||
# pinn.train(5)
|
||||
|
||||
|
||||
# def test_train_2_extra_feats():
|
||||
# boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
# n = 10
|
||||
# expected_keys = [[], list(range(0, 50, 3))]
|
||||
# param = [0, 3]
|
||||
# for i, truth_key in zip(param, expected_keys):
|
||||
# pinn = PINN(problem, model_extra_feat, [myFeature()])
|
||||
# pinn.discretise_domain(n, 'grid', locations=boundaries)
|
||||
# pinn.discretise_domain(n, 'grid', locations=['D'])
|
||||
# pinn.train(50, save_loss=i)
|
||||
# assert list(pinn.history_loss.keys()) == truth_key
|
||||
|
||||
|
||||
# def test_train_with_optimizer_kwargs():
|
||||
# boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
# n = 10
|
||||
# expected_keys = [[], list(range(0, 50, 3))]
|
||||
# param = [0, 3]
|
||||
# for i, truth_key in zip(param, expected_keys):
|
||||
# pinn = PINN(problem, model, optimizer_kwargs={'lr' : 0.3})
|
||||
# pinn.discretise_domain(n, 'grid', locations=boundaries)
|
||||
# pinn.discretise_domain(n, 'grid', locations=['D'])
|
||||
# pinn.train(50, save_loss=i)
|
||||
# assert list(pinn.history_loss.keys()) == truth_key
|
||||
|
||||
|
||||
# def test_train_with_lr_scheduler():
|
||||
# boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
# n = 10
|
||||
# expected_keys = [[], list(range(0, 50, 3))]
|
||||
# param = [0, 3]
|
||||
# for i, truth_key in zip(param, expected_keys):
|
||||
# pinn = PINN(
|
||||
# problem,
|
||||
# model,
|
||||
# lr_scheduler_type=torch.optim.lr_scheduler.CyclicLR,
|
||||
# lr_scheduler_kwargs={'base_lr' : 0.1, 'max_lr' : 0.3, 'cycle_momentum': False}
|
||||
# )
|
||||
# pinn.discretise_domain(n, 'grid', locations=boundaries)
|
||||
# pinn.discretise_domain(n, 'grid', locations=['D'])
|
||||
# pinn.train(50, save_loss=i)
|
||||
# assert list(pinn.history_loss.keys()) == truth_key
|
||||
|
||||
|
||||
# # def test_train_batch():
|
||||
# # pinn = PINN(problem, model, batch_size=6)
|
||||
# # boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
# # n = 10
|
||||
# # pinn.discretise_domain(n, 'grid', locations=boundaries)
|
||||
# # pinn.discretise_domain(n, 'grid', locations=['D'])
|
||||
# # pinn.train(5)
|
||||
|
||||
|
||||
# # def test_train_batch_2():
|
||||
# # boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
# # n = 10
|
||||
# # expected_keys = [[], list(range(0, 50, 3))]
|
||||
# # param = [0, 3]
|
||||
# # for i, truth_key in zip(param, expected_keys):
|
||||
# # pinn = PINN(problem, model, batch_size=6)
|
||||
# # pinn.discretise_domain(n, 'grid', locations=boundaries)
|
||||
# # pinn.discretise_domain(n, 'grid', locations=['D'])
|
||||
# # pinn.train(50, save_loss=i)
|
||||
# # assert list(pinn.history_loss.keys()) == truth_key
|
||||
|
||||
|
||||
# if torch.cuda.is_available():
|
||||
|
||||
# # def test_gpu_train():
|
||||
# # pinn = PINN(problem, model, batch_size=20, device='cuda')
|
||||
# # boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
# # n = 100
|
||||
# # pinn.discretise_domain(n, 'grid', locations=boundaries)
|
||||
# # pinn.discretise_domain(n, 'grid', locations=['D'])
|
||||
# # pinn.train(5)
|
||||
|
||||
# def test_gpu_train_nobatch():
|
||||
# pinn = PINN(problem, model, batch_size=None, device='cuda')
|
||||
# boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
# n = 100
|
||||
# pinn.discretise_domain(n, 'grid', locations=boundaries)
|
||||
# pinn.discretise_domain(n, 'grid', locations=['D'])
|
||||
# pinn.train(5)
|
||||
|
||||
shutil.rmtree(tmpdir)
|
||||
@@ -121,7 +121,7 @@ def test_train_cpu():
|
||||
batch_size=5,
|
||||
train_size=1,
|
||||
test_size=0.,
|
||||
eval_size=0.)
|
||||
val_size=0.)
|
||||
trainer.train()
|
||||
test_train_cpu()
|
||||
|
||||
|
||||
Reference in New Issue
Block a user