Tutorials v0.1 (#178)
Tutorial update and small fixes * Tutorials update + Tutorial FNO * Create a metric tracker callback * Update PINN for logging * Update plotter for plotting * Small fix LabelTensor * Small fix FNO --------- Co-authored-by: Dario Coscia <dariocoscia@cli-10-110-13-250.WIFIeduroamSTUD.units.it> Co-authored-by: Dario Coscia <dariocoscia@dhcp-176.eduroam.sissa.it>
This commit is contained in:
committed by
Nicola Demo
parent
939353f517
commit
a9b1bd2826
@@ -1,7 +1,9 @@
|
||||
__all__ = [
|
||||
'SwitchOptimizer',
|
||||
'R3Refinement',
|
||||
'MetricTracker'
|
||||
]
|
||||
|
||||
from .optimizer_callbacks import SwitchOptimizer
|
||||
from .adaptive_refinment_callbacks import R3Refinement
|
||||
from .adaptive_refinment_callbacks import R3Refinement
|
||||
from .processing_callbacks import MetricTracker
|
||||
25
pina/callbacks/processing_callbacks.py
Normal file
25
pina/callbacks/processing_callbacks.py
Normal file
@@ -0,0 +1,25 @@
|
||||
'''PINA Callbacks Implementations'''
|
||||
|
||||
from lightning.pytorch.callbacks import Callback
|
||||
import torch
|
||||
import copy
|
||||
|
||||
|
||||
class MetricTracker(Callback):
|
||||
"""
|
||||
PINA implementation of a Lightining Callback to track relevant
|
||||
metrics during training.
|
||||
"""
|
||||
def __init__(self):
|
||||
self._collection = []
|
||||
|
||||
def on_train_epoch_end(self, trainer, __):
|
||||
self._collection.append(copy.deepcopy(trainer.logged_metrics)) # track them
|
||||
|
||||
@property
|
||||
def metrics(self):
|
||||
common_keys = set.intersection(*map(set, self._collection))
|
||||
v = {k: torch.stack([dic[k] for dic in self._collection]) for k in common_keys}
|
||||
return v
|
||||
|
||||
|
||||
@@ -63,7 +63,7 @@ class LabelTensor(torch.Tensor):
|
||||
if isinstance(labels, str):
|
||||
labels = [labels]
|
||||
|
||||
if len(labels) != x.shape[1]:
|
||||
if len(labels) != x.shape[-1]:
|
||||
raise ValueError(
|
||||
'the tensor has not the same number of columns of '
|
||||
'the passed labels.'
|
||||
|
||||
@@ -94,7 +94,9 @@ class FNO(torch.nn.Module):
|
||||
|
||||
# 4. Build the FNO network
|
||||
tmp_layers = layers.copy()
|
||||
out_feats = lifting_net(torch.rand(10, dimensions)).shape[-1]
|
||||
first_parameter = next(lifting_net.parameters())
|
||||
input_shape = first_parameter.size()
|
||||
out_feats = lifting_net(torch.rand(size=input_shape)).shape[-1]
|
||||
tmp_layers.insert(0, out_feats)
|
||||
|
||||
self._layers = []
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
""" Module for plotting. """
|
||||
import matplotlib.pyplot as plt
|
||||
import torch
|
||||
from pina.callbacks import MetricTracker
|
||||
|
||||
from pina import LabelTensor
|
||||
|
||||
@@ -129,12 +130,12 @@ class Plotter:
|
||||
*grids, pred_output.cpu().detach(), **kwargs)
|
||||
fig.colorbar(cb, ax=ax)
|
||||
|
||||
def plot(self, solver, components=None, fixed_variables={}, method='contourf',
|
||||
def plot(self, trainer, components=None, fixed_variables={}, method='contourf',
|
||||
res=256, filename=None, **kwargs):
|
||||
"""
|
||||
Plot sample of SolverInterface output.
|
||||
|
||||
:param SolverInterface solver: the SolverInterface object.
|
||||
:param Trainer trainer: the Trainer object.
|
||||
:param list(str) components: the output variable to plot. If None, all
|
||||
the output variables of the problem are selected. Default value is
|
||||
None.
|
||||
@@ -149,6 +150,7 @@ class Plotter:
|
||||
:param str filename: the file name to save the plot. If None, the plot
|
||||
is shown using the setted matplotlib frontend. Default is None.
|
||||
"""
|
||||
solver = trainer.solver
|
||||
if components is None:
|
||||
components = [solver.problem.output_variables]
|
||||
v = [
|
||||
@@ -186,25 +188,38 @@ class Plotter:
|
||||
else:
|
||||
plt.show()
|
||||
|
||||
# TODO loss
|
||||
# def plot_loss(self, solver, label=None, log_scale=True):
|
||||
# """
|
||||
# Plot the loss function values during traininig.
|
||||
def plot_loss(self, trainer, metric=None, label=None, log_scale=True):
|
||||
"""
|
||||
Plot the loss function values during traininig.
|
||||
|
||||
# :param SolverInterface solver: the SolverInterface object.
|
||||
# :param str label: the label to use in the legend, defaults to None.
|
||||
# :param bool log_scale: If True, the y axis is in log scale. Default is
|
||||
# True.
|
||||
# """
|
||||
:param SolverInterface solver: the SolverInterface object.
|
||||
:param str metric: the metric to use in the y axis.
|
||||
:param str label: the label to use in the legend, defaults to None.
|
||||
:param bool log_scale: If True, the y axis is in log scale. Default is
|
||||
True.
|
||||
"""
|
||||
|
||||
# if not label:
|
||||
# label = str(solver)
|
||||
# check that MetricTracker has been used
|
||||
list_ = [idx for idx, s in enumerate(trainer.callbacks) if isinstance(s, MetricTracker)]
|
||||
if not bool(list_):
|
||||
raise FileNotFoundError('MetricTracker should be used as a callback during training to'
|
||||
' use this method.')
|
||||
|
||||
# epochs = list(solver.history_loss.keys())
|
||||
# loss = np.array(list(solver.history_loss.values()))
|
||||
# if loss.ndim != 1:
|
||||
# loss = loss[:, 0]
|
||||
metrics = trainer.callbacks[list_[0]].metrics
|
||||
|
||||
# plt.plot(epochs, loss, label=label)
|
||||
# if log_scale:
|
||||
# plt.yscale('log')
|
||||
if not metric:
|
||||
metric = 'mean_loss'
|
||||
|
||||
loss = metrics[metric]
|
||||
epochs = range(len(loss))
|
||||
|
||||
if label is not None:
|
||||
plt.plot(epochs, loss, label=label)
|
||||
plt.legend()
|
||||
else:
|
||||
plt.plot(epochs, loss)
|
||||
|
||||
if log_scale:
|
||||
plt.yscale('log')
|
||||
plt.xlabel('epoch')
|
||||
plt.ylabel(metric)
|
||||
|
||||
@@ -5,3 +5,4 @@ __all__ = [
|
||||
|
||||
from .garom import GAROM
|
||||
from .pinn import PINN
|
||||
from .supervised import SupervisedSolver
|
||||
|
||||
@@ -109,12 +109,14 @@ class PINN(SolverInterface):
|
||||
"""
|
||||
|
||||
condition_losses = []
|
||||
condition_names = []
|
||||
|
||||
for condition_name, samples in batch.items():
|
||||
|
||||
if condition_name not in self.problem.conditions:
|
||||
raise RuntimeError('Something wrong happened.')
|
||||
|
||||
condition_names.append(condition_name)
|
||||
condition = self.problem.conditions[condition_name]
|
||||
|
||||
# PINN loss: equation evaluated on location or input_points
|
||||
@@ -132,9 +134,9 @@ class PINN(SolverInterface):
|
||||
# we need to pass it as a torch tensor to make everything work
|
||||
total_loss = sum(condition_losses)
|
||||
|
||||
self.log('mean_loss', float(total_loss / len(condition_losses)), prog_bar=True, logger=False)
|
||||
for condition_loss, loss in zip(self.problem.conditions, condition_losses):
|
||||
self.log(condition_loss + '_loss', float(loss), prog_bar=True, logger=False)
|
||||
self.log('mean_loss', float(total_loss / len(condition_losses)), prog_bar=True, logger=True)
|
||||
for condition_loss, loss in zip(condition_names, condition_losses):
|
||||
self.log(condition_loss + '_loss', float(loss), prog_bar=True, logger=True)
|
||||
return total_loss
|
||||
|
||||
@property
|
||||
|
||||
134
pina/solvers/supervised.py
Normal file
134
pina/solvers/supervised.py
Normal file
@@ -0,0 +1,134 @@
|
||||
""" Module for SupervisedSolver """
|
||||
import torch
|
||||
try:
|
||||
from torch.optim.lr_scheduler import LRScheduler # torch >= 2.0
|
||||
except ImportError:
|
||||
from torch.optim.lr_scheduler import _LRScheduler as LRScheduler # torch < 2.0
|
||||
|
||||
from torch.optim.lr_scheduler import ConstantLR
|
||||
|
||||
from .solver import SolverInterface
|
||||
from ..label_tensor import LabelTensor
|
||||
from ..utils import check_consistency
|
||||
from ..loss import LossInterface
|
||||
from torch.nn.modules.loss import _Loss
|
||||
|
||||
|
||||
class SupervisedSolver(SolverInterface):
|
||||
"""
|
||||
SupervisedSolver solver class. This class implements a SupervisedSolver,
|
||||
using a user specified ``model`` to solve a specific ``problem``.
|
||||
"""
|
||||
def __init__(self,
|
||||
problem,
|
||||
model,
|
||||
extra_features=None,
|
||||
loss = torch.nn.MSELoss(),
|
||||
optimizer=torch.optim.Adam,
|
||||
optimizer_kwargs={'lr' : 0.001},
|
||||
scheduler=ConstantLR,
|
||||
scheduler_kwargs={"factor": 1, "total_iters": 0},
|
||||
):
|
||||
'''
|
||||
:param AbstractProblem problem: The formualation of the problem.
|
||||
:param torch.nn.Module model: The neural network model to use.
|
||||
:param torch.nn.Module loss: The loss function used as minimizer,
|
||||
default torch.nn.MSELoss().
|
||||
:param torch.nn.Module extra_features: The additional input
|
||||
features to use as augmented input.
|
||||
:param torch.optim.Optimizer optimizer: The neural network optimizer to
|
||||
use; default is `torch.optim.Adam`.
|
||||
:param dict optimizer_kwargs: Optimizer constructor keyword args.
|
||||
:param float lr: The learning rate; default is 0.001.
|
||||
:param torch.optim.LRScheduler scheduler: Learning
|
||||
rate scheduler.
|
||||
:param dict scheduler_kwargs: LR scheduler constructor keyword args.
|
||||
'''
|
||||
super().__init__(models=[model],
|
||||
problem=problem,
|
||||
optimizers=[optimizer],
|
||||
optimizers_kwargs=[optimizer_kwargs],
|
||||
extra_features=extra_features)
|
||||
|
||||
# check consistency
|
||||
check_consistency(scheduler, LRScheduler, subclass=True)
|
||||
check_consistency(scheduler_kwargs, dict)
|
||||
check_consistency(loss, (LossInterface, _Loss), subclass=False)
|
||||
|
||||
# assign variables
|
||||
self._scheduler = scheduler(self.optimizers[0], **scheduler_kwargs)
|
||||
self._loss = loss
|
||||
self._neural_net = self.models[0]
|
||||
|
||||
|
||||
def forward(self, x):
|
||||
"""Forward pass implementation for the solver.
|
||||
|
||||
:param torch.tensor x: Input data.
|
||||
:return: Solver solution.
|
||||
:rtype: torch.tensor
|
||||
"""
|
||||
# extract labels
|
||||
x = x.extract(self.problem.input_variables)
|
||||
# perform forward pass
|
||||
output = self.neural_net(x).as_subclass(LabelTensor)
|
||||
# set the labels
|
||||
output.labels = self.problem.output_variables
|
||||
return output
|
||||
|
||||
def configure_optimizers(self):
|
||||
"""Optimizer configuration for the solver.
|
||||
|
||||
:return: The optimizers and the schedulers
|
||||
:rtype: tuple(list, list)
|
||||
"""
|
||||
return self.optimizers, [self.scheduler]
|
||||
|
||||
def training_step(self, batch, batch_idx):
|
||||
"""Solver training step.
|
||||
|
||||
:param batch: The batch element in the dataloader.
|
||||
:type batch: tuple
|
||||
:param batch_idx: The batch index.
|
||||
:type batch_idx: int
|
||||
:return: The sum of the loss functions.
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
|
||||
for condition_name, samples in batch.items():
|
||||
|
||||
if condition_name not in self.problem.conditions:
|
||||
raise RuntimeError('Something wrong happened.')
|
||||
|
||||
condition = self.problem.conditions[condition_name]
|
||||
|
||||
# data loss
|
||||
if hasattr(condition, 'output_points'):
|
||||
input_pts, output_pts = samples
|
||||
loss = self.loss(self.forward(input_pts), output_pts) * condition.data_weight
|
||||
else:
|
||||
raise RuntimeError('Supervised solver works only in data-driven mode.')
|
||||
|
||||
self.log('mean_loss', float(loss), prog_bar=True, logger=True)
|
||||
return loss
|
||||
|
||||
@property
|
||||
def scheduler(self):
|
||||
"""
|
||||
Scheduler for training.
|
||||
"""
|
||||
return self._scheduler
|
||||
|
||||
@property
|
||||
def neural_net(self):
|
||||
"""
|
||||
Neural network for training.
|
||||
"""
|
||||
return self._neural_net
|
||||
|
||||
@property
|
||||
def loss(self):
|
||||
"""
|
||||
Loss for training.
|
||||
"""
|
||||
return self._loss
|
||||
Reference in New Issue
Block a user