Tutorials v0.1 (#178)
Tutorial update and small fixes * Tutorials update + Tutorial FNO * Create a metric tracker callback * Update PINN for logging * Update plotter for plotting * Small fix LabelTensor * Small fix FNO --------- Co-authored-by: Dario Coscia <dariocoscia@cli-10-110-13-250.WIFIeduroamSTUD.units.it> Co-authored-by: Dario Coscia <dariocoscia@dhcp-176.eduroam.sissa.it>
This commit is contained in:
committed by
Nicola Demo
parent
939353f517
commit
a9b1bd2826
BIN
tutorials/tutorial5/Data_Darcy.mat
vendored
Normal file
BIN
tutorials/tutorial5/Data_Darcy.mat
vendored
Normal file
Binary file not shown.
395
tutorials/tutorial5/tutorial.ipynb
vendored
Normal file
395
tutorials/tutorial5/tutorial.ipynb
vendored
Normal file
File diff suppressed because one or more lines are too long
158
tutorials/tutorial5/tutorial.py
vendored
Normal file
158
tutorials/tutorial5/tutorial.py
vendored
Normal file
@@ -0,0 +1,158 @@
|
||||
#!/usr/bin/env python
|
||||
# coding: utf-8
|
||||
|
||||
# # Tutorial 5: Fourier Neural Operator Learning
|
||||
|
||||
# In this tutorial we are going to solve the Darcy flow 2d problem, presented in [Fourier Neural Operator for
|
||||
# Parametric Partial Differential Equation](https://openreview.net/pdf?id=c8P9NQVtmnO). First of all we import the modules needed for the tutorial. Importing `scipy` is needed for input output operation, run `pip install scipy` for installing it.
|
||||
|
||||
# In[29]:
|
||||
|
||||
|
||||
|
||||
from scipy import io
|
||||
import torch
|
||||
from pina.model import FNO, FeedForward # let's import some models
|
||||
from pina import Condition
|
||||
from pina import LabelTensor
|
||||
from pina.solvers import SupervisedSolver
|
||||
from pina.trainer import Trainer
|
||||
from pina.problem import AbstractProblem
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
# ## Data Generation
|
||||
#
|
||||
# We will focus on solving the a specfic PDE, the **Darcy Flow** equation. The Darcy PDE is a second order, elliptic PDE with the following form:
|
||||
#
|
||||
# $$
|
||||
# -\nabla\cdot(k(x, y)\nabla u(x, y)) = f(x) \quad (x, y) \in D.
|
||||
# $$
|
||||
#
|
||||
# Specifically, $u$ is the flow pressure, $k$ is the permeability field and $f$ is the forcing function. The Darcy flow can parameterize a variety of systems including flow through porous media, elastic materials and heat conduction. Here you will define the domain as a 2D unit square Dirichlet boundary conditions. The dataset is taken from the authors original reference.
|
||||
#
|
||||
|
||||
# In[36]:
|
||||
|
||||
|
||||
# download the dataset
|
||||
data = io.loadmat("Data_Darcy.mat")
|
||||
|
||||
# extract data
|
||||
k_train = torch.tensor(data['k_train'], dtype=torch.float).unsqueeze(-1)
|
||||
u_train = torch.tensor(data['u_train'], dtype=torch.float).unsqueeze(-1)
|
||||
k_test = torch.tensor(data['k_test'], dtype=torch.float).unsqueeze(-1)
|
||||
u_test= torch.tensor(data['u_test'], dtype=torch.float).unsqueeze(-1)
|
||||
x = torch.tensor(data['x'], dtype=torch.float)[0]
|
||||
y = torch.tensor(data['y'], dtype=torch.float)[0]
|
||||
|
||||
|
||||
# Let's visualize some data
|
||||
|
||||
# In[88]:
|
||||
|
||||
|
||||
plt.subplot(1, 2, 1)
|
||||
plt.title('permeability')
|
||||
plt.imshow(k_train.squeeze(-1)[0])
|
||||
plt.subplot(1, 2, 2)
|
||||
plt.title('field solution')
|
||||
plt.imshow(u_train.squeeze(-1)[0])
|
||||
plt.show()
|
||||
|
||||
|
||||
# We now create the neural operator class. It is a very simple class, inheriting from `AbstractProblem`.
|
||||
|
||||
# In[69]:
|
||||
|
||||
|
||||
class NeuralOperatorSolver(AbstractProblem):
|
||||
input_variables = ['u_0']
|
||||
output_variables = ['u']
|
||||
conditions = {'data' : Condition(input_points=LabelTensor(k_train, input_variables),
|
||||
output_points=LabelTensor(u_train, input_variables))}
|
||||
|
||||
# make problem
|
||||
problem = NeuralOperatorSolver()
|
||||
|
||||
|
||||
# ## Solving the problem with a FeedForward Neural Network
|
||||
#
|
||||
# We will first solve the problem using a Feedforward neural network. We will use the `SupervisedSolver` for solving the problem, since we are training using supervised learning.
|
||||
|
||||
# In[78]:
|
||||
|
||||
|
||||
# make model
|
||||
model=FeedForward(input_dimensions=1, output_dimensions=1)
|
||||
|
||||
|
||||
# make solver
|
||||
solver = SupervisedSolver(problem=problem, model=model)
|
||||
|
||||
# make the trainer and train
|
||||
trainer = Trainer(solver=solver, max_epochs=100)
|
||||
trainer.train()
|
||||
|
||||
|
||||
# The final loss is pretty high... We can calculate the error by importing `LpLoss`.
|
||||
|
||||
# In[79]:
|
||||
|
||||
|
||||
from pina.loss import LpLoss
|
||||
|
||||
# make the metric
|
||||
metric_err = LpLoss(relative=True)
|
||||
|
||||
|
||||
err = float(metric_err(u_train.squeeze(-1), solver.models[0](k_train).squeeze(-1)).mean())*100
|
||||
print(f'Final error training {err:.2f}%')
|
||||
|
||||
err = float(metric_err(u_test.squeeze(-1), solver.models[0](k_test).squeeze(-1)).mean())*100
|
||||
print(f'Final error testing {err:.2f}%')
|
||||
|
||||
|
||||
# ## Solving the problem with a Fuorier Neural Operator (FNO)
|
||||
#
|
||||
# We will now move to solve the problem using a FNO. Since we are learning operator this approach is better suited, as we shall see.
|
||||
|
||||
# In[70]:
|
||||
|
||||
|
||||
# make model
|
||||
lifting_net = torch.nn.Linear(1, 24)
|
||||
projecting_net = torch.nn.Linear(24, 1)
|
||||
model = FNO(lifting_net=lifting_net,
|
||||
projecting_net=projecting_net,
|
||||
n_modes=16,
|
||||
dimensions=2,
|
||||
inner_size=24,
|
||||
padding=11)
|
||||
|
||||
|
||||
# make solver
|
||||
solver = SupervisedSolver(problem=problem, model=model)
|
||||
|
||||
# make the trainer and train
|
||||
trainer = Trainer(solver=solver, max_epochs=20)
|
||||
trainer.train()
|
||||
|
||||
|
||||
# We can clearly see that with 1/3 of the total epochs the loss is lower. Let's see in testing.. Notice that the number of parameters is way higher than a `FeedForward` network. We suggest to use GPU or TPU for a speed up in training.
|
||||
|
||||
# In[77]:
|
||||
|
||||
|
||||
err = float(metric_err(u_train.squeeze(-1), solver.models[0](k_train).squeeze(-1)).mean())*100
|
||||
print(f'Final error training {err:.2f}%')
|
||||
|
||||
err = float(metric_err(u_test.squeeze(-1), solver.models[0](k_test).squeeze(-1)).mean())*100
|
||||
print(f'Final error testing {err:.2f}%')
|
||||
|
||||
|
||||
# As we can see the loss is way lower!
|
||||
|
||||
# ## What's next?
|
||||
#
|
||||
# We have made a very simple example on how to use the `FNO` for learning neural operator. Currently in **PINA** we implement 1D/2D/3D cases. We suggest to extend the tutorial using more complex problems and train for longer, to see the full potential of neural operators.
|
||||
Reference in New Issue
Block a user