Correct paper.bib
This commit is contained in:
committed by
Nicola Demo
parent
81e35fb8a0
commit
af392cbf73
@@ -2,6 +2,7 @@
|
||||
title={Deep learning: methods and applications},
|
||||
author={Deng, Li and Yu, Dong and others},
|
||||
journal={Foundations and trends{\textregistered} in signal processing},
|
||||
doi = {10.1561/9781601988157},
|
||||
volume={7},
|
||||
number={3--4},
|
||||
pages={197--387},
|
||||
@@ -30,7 +31,7 @@ volume = {378},
|
||||
pages = {686-707},
|
||||
year = {2019},
|
||||
issn = {0021-9991},
|
||||
doi = {https://doi.org/10.1016/j.jcp.2018.10.045},
|
||||
doi = {10.1016/j.jcp.2018.10.045},
|
||||
url = {https://www.sciencedirect.com/science/article/pii/S0021999118307125},
|
||||
author = {M. Raissi and P. Perdikaris and G.E. Karniadakis},
|
||||
keywords = {Data-driven scientific computing, Machine learning, Predictive modeling, Runge–Kutta methods, Nonlinear dynamics},
|
||||
@@ -60,6 +61,7 @@ abstract = {We introduce physics-informed neural networks – neural networks th
|
||||
title={Neurodiffeq: A python package for solving differential equations with neural networks},
|
||||
author={Chen, Feiyu and Sondak, David and Protopapas, Pavlos and Mattheakis, Marios and Liu, Shuheng and Agarwal, Devansh and Di Giovanni, Marco},
|
||||
journal={Journal of Open Source Software},
|
||||
doi = {10.21105/joss.01931},
|
||||
volume={5},
|
||||
number={46},
|
||||
pages={1931},
|
||||
@@ -69,6 +71,7 @@ abstract = {We introduce physics-informed neural networks – neural networks th
|
||||
title={DeepXDE: A deep learning library for solving differential equations},
|
||||
author={Lu, Lu and Meng, Xuhui and Mao, Zhiping and Karniadakis, George Em},
|
||||
journal={SIAM Review},
|
||||
doi = {10.1137/19m1274067},
|
||||
volume={63},
|
||||
number={1},
|
||||
pages={208--228},
|
||||
@@ -91,6 +94,7 @@ abstract = {We introduce physics-informed neural networks – neural networks th
|
||||
title={NVIDIA SimNet™: An AI-accelerated multi-physics simulation framework},
|
||||
author={Hennigh, Oliver and Narasimhan, Susheela and Nabian, Mohammad Amin and Subramaniam, Akshay and Tangsali, Kaustubh and Fang, Zhiwei and Rietmann, Max and Byeon, Wonmin and Choudhry, Sanjay},
|
||||
booktitle={International Conference on Computational Science},
|
||||
doi = {10.1007/978-3-030-77977-1_36},
|
||||
pages={447--461},
|
||||
year={2021},
|
||||
organization={Springer}
|
||||
@@ -99,6 +103,7 @@ abstract = {We introduce physics-informed neural networks – neural networks th
|
||||
title={Sciann: A keras/tensorflow wrapper for scientific computations and physics-informed deep learning using artificial neural networks},
|
||||
author={Haghighat, Ehsan and Juanes, Ruben},
|
||||
journal={Computer Methods in Applied Mechanics and Engineering},
|
||||
doi = {10.1016/j.cma.2020.113552},
|
||||
volume={373},
|
||||
pages={113552},
|
||||
year={2021},
|
||||
@@ -124,7 +129,7 @@ volume = {360},
|
||||
pages = {112789},
|
||||
year = {2020},
|
||||
issn = {0045-7825},
|
||||
doi = {https://doi.org/10.1016/j.cma.2019.112789},
|
||||
doi = {10.1016/j.cma.2019.112789},
|
||||
url = {https://www.sciencedirect.com/science/article/pii/S0045782519306814},
|
||||
author = {Zhiping Mao and Ameya D. Jagtap and George Em Karniadakis},
|
||||
keywords = {Euler equations, Machine learning, Neural networks, Conservation laws, Riemann problem, Hidden fluid mechanics},
|
||||
@@ -178,7 +183,7 @@ volume = {171},
|
||||
pages = {108875},
|
||||
year = {2022},
|
||||
issn = {0888-3270},
|
||||
doi = {https://doi.org/10.1016/j.ymssp.2022.108875},
|
||||
doi = {10.1016/j.ymssp.2022.108875},
|
||||
url = {https://www.sciencedirect.com/science/article/pii/S088832702200070X},
|
||||
author = {Yigit A. Yucesan and Felipe A.C. Viana},
|
||||
keywords = {hybrid physics-informed neural network, Applied machine learning, Wind turbine bearing fatigue, Uncertainty quantification},
|
||||
|
||||
Reference in New Issue
Block a user