Correct paper.bib

This commit is contained in:
Anna Ivagnes
2023-04-03 12:02:20 +02:00
committed by Nicola Demo
parent 81e35fb8a0
commit af392cbf73

View File

@@ -2,6 +2,7 @@
title={Deep learning: methods and applications},
author={Deng, Li and Yu, Dong and others},
journal={Foundations and trends{\textregistered} in signal processing},
doi = {10.1561/9781601988157},
volume={7},
number={3--4},
pages={197--387},
@@ -30,7 +31,7 @@ volume = {378},
pages = {686-707},
year = {2019},
issn = {0021-9991},
doi = {https://doi.org/10.1016/j.jcp.2018.10.045},
doi = {10.1016/j.jcp.2018.10.045},
url = {https://www.sciencedirect.com/science/article/pii/S0021999118307125},
author = {M. Raissi and P. Perdikaris and G.E. Karniadakis},
keywords = {Data-driven scientific computing, Machine learning, Predictive modeling, RungeKutta methods, Nonlinear dynamics},
@@ -60,6 +61,7 @@ abstract = {We introduce physics-informed neural networks neural networks th
title={Neurodiffeq: A python package for solving differential equations with neural networks},
author={Chen, Feiyu and Sondak, David and Protopapas, Pavlos and Mattheakis, Marios and Liu, Shuheng and Agarwal, Devansh and Di Giovanni, Marco},
journal={Journal of Open Source Software},
doi = {10.21105/joss.01931},
volume={5},
number={46},
pages={1931},
@@ -69,6 +71,7 @@ abstract = {We introduce physics-informed neural networks neural networks th
title={DeepXDE: A deep learning library for solving differential equations},
author={Lu, Lu and Meng, Xuhui and Mao, Zhiping and Karniadakis, George Em},
journal={SIAM Review},
doi = {10.1137/19m1274067},
volume={63},
number={1},
pages={208--228},
@@ -91,6 +94,7 @@ abstract = {We introduce physics-informed neural networks neural networks th
title={NVIDIA SimNet™: An AI-accelerated multi-physics simulation framework},
author={Hennigh, Oliver and Narasimhan, Susheela and Nabian, Mohammad Amin and Subramaniam, Akshay and Tangsali, Kaustubh and Fang, Zhiwei and Rietmann, Max and Byeon, Wonmin and Choudhry, Sanjay},
booktitle={International Conference on Computational Science},
doi = {10.1007/978-3-030-77977-1_36},
pages={447--461},
year={2021},
organization={Springer}
@@ -99,6 +103,7 @@ abstract = {We introduce physics-informed neural networks neural networks th
title={Sciann: A keras/tensorflow wrapper for scientific computations and physics-informed deep learning using artificial neural networks},
author={Haghighat, Ehsan and Juanes, Ruben},
journal={Computer Methods in Applied Mechanics and Engineering},
doi = {10.1016/j.cma.2020.113552},
volume={373},
pages={113552},
year={2021},
@@ -124,7 +129,7 @@ volume = {360},
pages = {112789},
year = {2020},
issn = {0045-7825},
doi = {https://doi.org/10.1016/j.cma.2019.112789},
doi = {10.1016/j.cma.2019.112789},
url = {https://www.sciencedirect.com/science/article/pii/S0045782519306814},
author = {Zhiping Mao and Ameya D. Jagtap and George Em Karniadakis},
keywords = {Euler equations, Machine learning, Neural networks, Conservation laws, Riemann problem, Hidden fluid mechanics},
@@ -178,7 +183,7 @@ volume = {171},
pages = {108875},
year = {2022},
issn = {0888-3270},
doi = {https://doi.org/10.1016/j.ymssp.2022.108875},
doi = {10.1016/j.ymssp.2022.108875},
url = {https://www.sciencedirect.com/science/article/pii/S088832702200070X},
author = {Yigit A. Yucesan and Felipe A.C. Viana},
keywords = {hybrid physics-informed neural network, Applied machine learning, Wind turbine bearing fatigue, Uncertainty quantification},