renaming
This commit is contained in:
committed by
FilippoOlivo
parent
01aeb17673
commit
b0dd952440
236
pina/solver/physics_informed_solver/pinn_interface.py
Normal file
236
pina/solver/physics_informed_solver/pinn_interface.py
Normal file
@@ -0,0 +1,236 @@
|
||||
"""Module for the Physics-Informed Neural Network Interface."""
|
||||
|
||||
from abc import ABCMeta, abstractmethod
|
||||
import torch
|
||||
from torch.nn.modules.loss import _Loss
|
||||
|
||||
from ..solver import SolverInterface
|
||||
from ...utils import check_consistency
|
||||
from ...loss.loss_interface import LossInterface
|
||||
from ...problem import InverseProblem
|
||||
from ...condition import (
|
||||
InputTargetCondition,
|
||||
InputEquationCondition,
|
||||
DomainEquationCondition,
|
||||
)
|
||||
|
||||
|
||||
class PINNInterface(SolverInterface, metaclass=ABCMeta):
|
||||
"""
|
||||
Base class for Physics-Informed Neural Network (PINN) solvers, implementing
|
||||
the :class:`~pina.solver.solver.SolverInterface` class.
|
||||
|
||||
The `PINNInterface` class can be used to define PINNs that work with one or
|
||||
multiple optimizers and/or models. By default, it is compatible with
|
||||
problems defined by :class:`~pina.problem.abstract_problem.AbstractProblem`,
|
||||
and users can choose the problem type the solver is meant to address.
|
||||
"""
|
||||
|
||||
accepted_conditions_types = (
|
||||
InputTargetCondition,
|
||||
InputEquationCondition,
|
||||
DomainEquationCondition,
|
||||
)
|
||||
|
||||
def __init__(self, problem, loss=None, **kwargs):
|
||||
"""
|
||||
Initialization of the :class:`PINNInterface` class.
|
||||
|
||||
:param AbstractProblem problem: The problem to be solved.
|
||||
:param torch.nn.Module loss: The loss function to be minimized.
|
||||
If `None`, the :class:`torch.nn.MSELoss` loss is used.
|
||||
Default is `None`.
|
||||
:param kwargs: Additional keyword arguments to be passed to the
|
||||
:class:`~pina.solver.solver.SolverInterface` class.
|
||||
"""
|
||||
|
||||
if loss is None:
|
||||
loss = torch.nn.MSELoss()
|
||||
|
||||
super().__init__(problem=problem, use_lt=True, **kwargs)
|
||||
|
||||
# check consistency
|
||||
check_consistency(loss, (LossInterface, _Loss), subclass=False)
|
||||
|
||||
# assign variables
|
||||
self._loss = loss
|
||||
|
||||
# inverse problem handling
|
||||
if isinstance(self.problem, InverseProblem):
|
||||
self._params = self.problem.unknown_parameters
|
||||
self._clamp_params = self._clamp_inverse_problem_params
|
||||
else:
|
||||
self._params = None
|
||||
self._clamp_params = lambda: None
|
||||
|
||||
self.__metric = None
|
||||
|
||||
def optimization_cycle(self, batch):
|
||||
"""
|
||||
The optimization cycle for the PINN solver.
|
||||
|
||||
This method allows to call `_run_optimization_cycle` with the physics
|
||||
loss as argument, thus distinguishing the training step from the
|
||||
validation and test steps.
|
||||
|
||||
:param list[tuple[str, dict]] batch: A batch of data. Each element is a
|
||||
tuple containing a condition name and a dictionary of points.
|
||||
:return: The losses computed for all conditions in the batch, casted
|
||||
to a subclass of :class:`torch.Tensor`. It should return a dict
|
||||
containing the condition name and the associated scalar loss.
|
||||
:rtype: dict
|
||||
"""
|
||||
return self._run_optimization_cycle(batch, self.loss_phys)
|
||||
|
||||
@torch.set_grad_enabled(True)
|
||||
def validation_step(self, batch):
|
||||
"""
|
||||
The validation step for the PINN solver.
|
||||
|
||||
:param list[tuple[str, dict]] batch: A batch of data. Each element is a
|
||||
tuple containing a condition name and a dictionary of points.
|
||||
:return: The loss of the validation step.
|
||||
:rtype: torch.Tensor
|
||||
"""
|
||||
losses = self._run_optimization_cycle(batch, self._residual_loss)
|
||||
loss = self.weighting.aggregate(losses).as_subclass(torch.Tensor)
|
||||
self.store_log("val_loss", loss, self.get_batch_size(batch))
|
||||
return loss
|
||||
|
||||
@torch.set_grad_enabled(True)
|
||||
def test_step(self, batch):
|
||||
"""
|
||||
The test step for the PINN solver.
|
||||
|
||||
:param list[tuple[str, dict]] batch: A batch of data. Each element is a
|
||||
tuple containing a condition name and a dictionary of points.
|
||||
:return: The loss of the test step.
|
||||
:rtype: torch.Tensor
|
||||
"""
|
||||
losses = self._run_optimization_cycle(batch, self._residual_loss)
|
||||
loss = self.weighting.aggregate(losses).as_subclass(torch.Tensor)
|
||||
self.store_log("test_loss", loss, self.get_batch_size(batch))
|
||||
return loss
|
||||
|
||||
def loss_data(self, input_pts, output_pts):
|
||||
"""
|
||||
Compute the data loss for the PINN solver by evaluating the loss
|
||||
between the network's output and the true solution. This method should
|
||||
not be overridden, if not intentionally.
|
||||
|
||||
:param LabelTensor input_pts: The input points to the neural network.
|
||||
:param LabelTensor output_pts: The true solution to compare with the
|
||||
network's output.
|
||||
:return: The supervised loss, averaged over the number of observations.
|
||||
:rtype: torch.Tensor
|
||||
"""
|
||||
return self._loss(self.forward(input_pts), output_pts)
|
||||
|
||||
@abstractmethod
|
||||
def loss_phys(self, samples, equation):
|
||||
"""
|
||||
Computes the physics loss for the physics-informed solver based on the
|
||||
provided samples and equation. This method must be overridden in
|
||||
subclasses. It distinguishes different types of PINN solvers.
|
||||
|
||||
:param LabelTensor samples: The samples to evaluate the physics loss.
|
||||
:param EquationInterface equation: The governing equation.
|
||||
:return: The computed physics loss.
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
|
||||
def compute_residual(self, samples, equation):
|
||||
"""
|
||||
Compute the residuals of the equation.
|
||||
|
||||
:param LabelTensor samples: The samples to evaluate the loss.
|
||||
:param EquationInterface equation: The governing equation.
|
||||
:return: The residual of the solution of the model.
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
try:
|
||||
residual = equation.residual(samples, self.forward(samples))
|
||||
except TypeError:
|
||||
# this occurs when the function has three inputs (inverse problem)
|
||||
residual = equation.residual(
|
||||
samples, self.forward(samples), self._params
|
||||
)
|
||||
return residual
|
||||
|
||||
def _residual_loss(self, samples, equation):
|
||||
"""
|
||||
Compute the residual loss.
|
||||
|
||||
:param LabelTensor samples: The samples to evaluate the loss.
|
||||
:param EquationInterface equation: The governing equation.
|
||||
:return: The residual loss.
|
||||
:rtype: torch.Tensor
|
||||
"""
|
||||
residuals = self.compute_residual(samples, equation)
|
||||
return self.loss(residuals, torch.zeros_like(residuals))
|
||||
|
||||
def _run_optimization_cycle(self, batch, loss_residuals):
|
||||
"""
|
||||
Compute, given a batch, the loss for each condition and return a
|
||||
dictionary with the condition name as key and the loss as value.
|
||||
|
||||
:param list[tuple[str, dict]] batch: A batch of data. Each element is a
|
||||
tuple containing a condition name and a dictionary of points.
|
||||
:param function loss_residuals: The loss function to be minimized.
|
||||
:return: The losses computed for all conditions in the batch, casted
|
||||
to a subclass of :class:`torch.Tensor`. It should return a dict
|
||||
containing the condition name and the associated scalar loss.
|
||||
:rtype: dict
|
||||
"""
|
||||
condition_loss = {}
|
||||
for condition_name, points in batch:
|
||||
self.__metric = condition_name
|
||||
# if equations are passed
|
||||
if "target" not in points:
|
||||
input_pts = points["input"]
|
||||
condition = self.problem.conditions[condition_name]
|
||||
loss = loss_residuals(
|
||||
input_pts.requires_grad_(), condition.equation
|
||||
)
|
||||
# if data are passed
|
||||
else:
|
||||
input_pts = points["input"]
|
||||
output_pts = points["target"]
|
||||
loss = self.loss_data(
|
||||
input_pts=input_pts.requires_grad_(), output_pts=output_pts
|
||||
)
|
||||
# append loss
|
||||
condition_loss[condition_name] = loss
|
||||
# clamp unknown parameters in InverseProblem (if needed)
|
||||
self._clamp_params()
|
||||
return condition_loss
|
||||
|
||||
def _clamp_inverse_problem_params(self):
|
||||
"""
|
||||
Clamps the parameters of the inverse problem solver to specified ranges.
|
||||
"""
|
||||
for v in self._params:
|
||||
self._params[v].data.clamp_(
|
||||
self.problem.unknown_parameter_domain.range_[v][0],
|
||||
self.problem.unknown_parameter_domain.range_[v][1],
|
||||
)
|
||||
|
||||
@property
|
||||
def loss(self):
|
||||
"""
|
||||
The loss used for training.
|
||||
|
||||
:return: The loss function used for training.
|
||||
:rtype: torch.nn.Module
|
||||
"""
|
||||
return self._loss
|
||||
|
||||
@property
|
||||
def current_condition_name(self):
|
||||
"""
|
||||
The current condition name.
|
||||
|
||||
:return: The current condition name.
|
||||
:rtype: str
|
||||
"""
|
||||
return self.__metric
|
||||
Reference in New Issue
Block a user