renaming
This commit is contained in:
committed by
FilippoOlivo
parent
01aeb17673
commit
b0dd952440
188
pina/solver/physics_informed_solver/rba_pinn.py
Normal file
188
pina/solver/physics_informed_solver/rba_pinn.py
Normal file
@@ -0,0 +1,188 @@
|
||||
"""Module for the Residual-Based Attention PINN solver."""
|
||||
|
||||
from copy import deepcopy
|
||||
import torch
|
||||
|
||||
from .pinn import PINN
|
||||
from ...utils import check_consistency
|
||||
|
||||
|
||||
class RBAPINN(PINN):
|
||||
r"""
|
||||
Residual-based Attention Physics-Informed Neural Network (RBAPINN) solver
|
||||
class. This class implements the Residual-based Attention Physics-Informed
|
||||
Neural Network solver, using a user specified ``model`` to solve a specific
|
||||
``problem``. It can be used to solve both forward and inverse problems.
|
||||
|
||||
The Residual-based Attention Physics-Informed Neural Network solver aims to
|
||||
find the solution :math:`\mathbf{u}:\Omega\rightarrow\mathbb{R}^m` of a
|
||||
differential problem:
|
||||
|
||||
.. math::
|
||||
|
||||
\begin{cases}
|
||||
\mathcal{A}[\mathbf{u}](\mathbf{x})=0\quad,\mathbf{x}\in\Omega\\
|
||||
\mathcal{B}[\mathbf{u}](\mathbf{x})=0\quad,
|
||||
\mathbf{x}\in\partial\Omega
|
||||
\end{cases}
|
||||
|
||||
minimizing the loss function:
|
||||
|
||||
.. math::
|
||||
|
||||
\mathcal{L}_{\rm{problem}} = \frac{1}{N} \sum_{i=1}^{N_\Omega}
|
||||
\lambda_{\Omega}^{i} \mathcal{L} \left( \mathcal{A}
|
||||
[\mathbf{u}](\mathbf{x}) \right) + \frac{1}{N}
|
||||
\sum_{i=1}^{N_{\partial\Omega}}
|
||||
\lambda_{\partial\Omega}^{i} \mathcal{L}
|
||||
\left( \mathcal{B}[\mathbf{u}](\mathbf{x})
|
||||
\right),
|
||||
|
||||
denoting the weights as:
|
||||
:math:`\lambda_{\Omega}^1, \dots, \lambda_{\Omega}^{N_\Omega}` and
|
||||
:math:`\lambda_{\partial \Omega}^1, \dots,
|
||||
\lambda_{\Omega}^{N_\partial \Omega}`
|
||||
for :math:`\Omega` and :math:`\partial \Omega`, respectively.
|
||||
|
||||
Residual-based Attention Physics-Informed Neural Network updates the weights
|
||||
of the residuals at every epoch as follows:
|
||||
|
||||
.. math::
|
||||
|
||||
\lambda_i^{k+1} \leftarrow \gamma\lambda_i^{k} +
|
||||
\eta\frac{\lvert r_i\rvert}{\max_j \lvert r_j\rvert},
|
||||
|
||||
where :math:`r_i` denotes the residual at point :math:`i`, :math:`\gamma`
|
||||
denotes the decay rate, and :math:`\eta` is the learning rate for the
|
||||
weights' update.
|
||||
|
||||
.. seealso::
|
||||
**Original reference**: Sokratis J. Anagnostopoulos, Juan D. Toscano,
|
||||
Nikolaos Stergiopulos, and George E. Karniadakis.
|
||||
*Residual-based attention and connection to information
|
||||
bottleneck theory in PINNs.*
|
||||
Computer Methods in Applied Mechanics and Engineering 421 (2024): 116805
|
||||
DOI: `10.1016/j.cma.2024.116805
|
||||
<https://doi.org/10.1016/j.cma.2024.116805>`_.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
problem,
|
||||
model,
|
||||
optimizer=None,
|
||||
scheduler=None,
|
||||
weighting=None,
|
||||
loss=None,
|
||||
eta=0.001,
|
||||
gamma=0.999,
|
||||
):
|
||||
"""
|
||||
Initialization of the :class:`RBAPINN` class.
|
||||
|
||||
:param AbstractProblem problem: The problem to be solved.
|
||||
:param torch.nn.Module model: The neural network model to be used.
|
||||
:param Optimizer optimizer: The optimizer to be used.
|
||||
If `None`, the :class:`torch.optim.Adam` optimizer is used.
|
||||
Default is ``None``.
|
||||
:param Scheduler scheduler: Learning rate scheduler.
|
||||
If `None`, the :class:`torch.optim.lr_scheduler.ConstantLR`
|
||||
scheduler is used. Default is ``None``.
|
||||
:param WeightingInterface weighting: The weighting schema to be used.
|
||||
If `None`, no weighting schema is used. Default is ``None``.
|
||||
:param torch.nn.Module loss: The loss function to be minimized.
|
||||
If `None`, the :class:`torch.nn.MSELoss` loss is used.
|
||||
Default is `None`.
|
||||
:param float | int eta: The learning rate for the weights of the
|
||||
residuals. Default is ``0.001``.
|
||||
:param float gamma: The decay parameter in the update of the weights
|
||||
of the residuals. Must be between ``0`` and ``1``.
|
||||
Default is ``0.999``.
|
||||
"""
|
||||
super().__init__(
|
||||
model=model,
|
||||
problem=problem,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
weighting=weighting,
|
||||
loss=loss,
|
||||
)
|
||||
|
||||
# check consistency
|
||||
check_consistency(eta, (float, int))
|
||||
check_consistency(gamma, float)
|
||||
assert (
|
||||
0 < gamma < 1
|
||||
), f"Invalid range: expected 0 < gamma < 1, got {gamma=}"
|
||||
self.eta = eta
|
||||
self.gamma = gamma
|
||||
|
||||
# initialize weights
|
||||
self.weights = {}
|
||||
for condition_name in problem.conditions:
|
||||
self.weights[condition_name] = 0
|
||||
|
||||
# define vectorial loss
|
||||
self._vectorial_loss = deepcopy(self.loss)
|
||||
self._vectorial_loss.reduction = "none"
|
||||
|
||||
# for now RBAPINN is implemented only for batch_size = None
|
||||
def on_train_start(self):
|
||||
"""
|
||||
Hook method called at the beginning of training.
|
||||
|
||||
:raises NotImplementedError: If the batch size is not ``None``.
|
||||
"""
|
||||
if self.trainer.batch_size is not None:
|
||||
raise NotImplementedError(
|
||||
"RBAPINN only works with full batch "
|
||||
"size, set batch_size=None inside the "
|
||||
"Trainer to use the solver."
|
||||
)
|
||||
return super().on_train_start()
|
||||
|
||||
def _vect_to_scalar(self, loss_value):
|
||||
"""
|
||||
Computation of the scalar loss.
|
||||
|
||||
:param LabelTensor loss_value: the tensor of pointwise losses.
|
||||
:raises RuntimeError: If the loss reduction is not ``mean`` or ``sum``.
|
||||
:return: The computed scalar loss.
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
if self.loss.reduction == "mean":
|
||||
ret = torch.mean(loss_value)
|
||||
elif self.loss.reduction == "sum":
|
||||
ret = torch.sum(loss_value)
|
||||
else:
|
||||
raise RuntimeError(
|
||||
f"Invalid reduction, got {self.loss.reduction} "
|
||||
"but expected mean or sum."
|
||||
)
|
||||
return ret
|
||||
|
||||
def loss_phys(self, samples, equation):
|
||||
"""
|
||||
Computes the physics loss for the physics-informed solver based on the
|
||||
provided samples and equation.
|
||||
|
||||
:param LabelTensor samples: The samples to evaluate the physics loss.
|
||||
:param EquationInterface equation: The governing equation.
|
||||
:return: The computed physics loss.
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
residual = self.compute_residual(samples=samples, equation=equation)
|
||||
cond = self.current_condition_name
|
||||
|
||||
r_norm = (
|
||||
self.eta
|
||||
* torch.abs(residual)
|
||||
/ (torch.max(torch.abs(residual)) + 1e-12)
|
||||
)
|
||||
self.weights[cond] = (self.gamma * self.weights[cond] + r_norm).detach()
|
||||
|
||||
loss_value = self._vectorial_loss(
|
||||
torch.zeros_like(residual, requires_grad=True), residual
|
||||
)
|
||||
|
||||
return self._vect_to_scalar(self.weights[cond] ** 2 * loss_value)
|
||||
Reference in New Issue
Block a user