Spectral Convolution Addition
* Implementing 1D/2D/3D spectral conv * Implementing tests for 1D/2D/3d spectral conv
This commit is contained in:
committed by
Nicola Demo
parent
190ee0561d
commit
b7f9694cb9
1
lightning_logs/version_0/hparams.yaml
Normal file
1
lightning_logs/version_0/hparams.yaml
Normal file
@@ -0,0 +1 @@
|
||||
{}
|
||||
BIN
lightning_logs/version_1/checkpoints/epoch=4-step=5.ckpt
Normal file
BIN
lightning_logs/version_1/checkpoints/epoch=4-step=5.ckpt
Normal file
Binary file not shown.
1
lightning_logs/version_1/hparams.yaml
Normal file
1
lightning_logs/version_1/hparams.yaml
Normal file
@@ -0,0 +1 @@
|
||||
{}
|
||||
BIN
lightning_logs/version_2/checkpoints/epoch=14-step=15.ckpt
Normal file
BIN
lightning_logs/version_2/checkpoints/epoch=14-step=15.ckpt
Normal file
Binary file not shown.
1
lightning_logs/version_2/hparams.yaml
Normal file
1
lightning_logs/version_2/hparams.yaml
Normal file
@@ -0,0 +1 @@
|
||||
{}
|
||||
BIN
lightning_logs/version_3/checkpoints/epoch=4-step=5.ckpt
Normal file
BIN
lightning_logs/version_3/checkpoints/epoch=4-step=5.ckpt
Normal file
Binary file not shown.
1
lightning_logs/version_3/hparams.yaml
Normal file
1
lightning_logs/version_3/hparams.yaml
Normal file
@@ -0,0 +1 @@
|
||||
{}
|
||||
@@ -1,7 +1,11 @@
|
||||
__all__ = [
|
||||
'ContinuousConvBlock',
|
||||
'ResidualBlock'
|
||||
'ResidualBlock',
|
||||
'SpectralConvBlock1D',
|
||||
'SpectralConvBlock2D',
|
||||
'SpectralConvBlock3D'
|
||||
]
|
||||
|
||||
from .convolution_2d import ContinuousConvBlock
|
||||
from .residual import ResidualBlock
|
||||
from .spectral import SpectralConvBlock1D, SpectralConvBlock2D, SpectralConvBlock3D
|
||||
|
||||
@@ -1,16 +1,326 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from ...utils import check_consistency
|
||||
import warnings
|
||||
|
||||
|
||||
class SpectralConvBlock(nn.Module):
|
||||
######## 1D Spectral Convolution ###########
|
||||
class SpectralConvBlock1D(nn.Module):
|
||||
"""
|
||||
Implementation of spectral convolution block.
|
||||
Implementation of Spectral Convolution Block for one
|
||||
dimensional tensor.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
def __init__(self, input_numb_fields, output_numb_fields, n_modes):
|
||||
"""
|
||||
TODO
|
||||
|
||||
:param input_numb_fields: _description_
|
||||
:type input_numb_fields: _type_
|
||||
:param output_numb_fields: _description_
|
||||
:type output_numb_fields: _type_
|
||||
:param n_modes: _description_
|
||||
:type n_modes: _type_
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
# check type consistency
|
||||
check_consistency(input_numb_fields, int)
|
||||
check_consistency(output_numb_fields, int)
|
||||
|
||||
# assign variables
|
||||
self._modes = n_modes
|
||||
self._input_channels = input_numb_fields
|
||||
self._output_channels = output_numb_fields
|
||||
|
||||
# scaling factor
|
||||
scale = (1. / (self._input_channels * self._output_channels))
|
||||
self._weights = nn.Parameter(scale * torch.rand(self._input_channels,
|
||||
self._output_channels,
|
||||
self._modes,
|
||||
dtype=torch.cfloat))
|
||||
|
||||
def _compute_mult1d(self, input, weights):
|
||||
"""
|
||||
Compute the matrix multiplication of the input
|
||||
with the linear kernel weights.
|
||||
|
||||
:param input: The input tensor, expect of size
|
||||
[batch, input_numb_fields, x].
|
||||
:type input: torch.Tensor
|
||||
:param weights: The kernel weights, expect of
|
||||
size [input_numb_fields, output_numb_fields, x].
|
||||
:type weights: torch.Tensor
|
||||
:return: The matrix multiplication of the input
|
||||
with the linear kernel weights.
|
||||
:rtype: torch.Tensor
|
||||
"""
|
||||
return torch.einsum("bix,iox->box", input, weights)
|
||||
|
||||
def forward(self, x):
|
||||
pass
|
||||
"""
|
||||
Forward computation for Spectral Convolution.
|
||||
|
||||
:param x: The input tensor, expect of size
|
||||
[batch, input_numb_fields, x].
|
||||
:type x: torch.Tensor
|
||||
:return: The output tensor obtained from the
|
||||
spectral convolution of size [batch, output_numb_fields, x].
|
||||
:rtype: torch.Tensor
|
||||
"""
|
||||
batch_size = x.shape[0]
|
||||
|
||||
# if x.shape[-1] // 2 + 1 < self._modes:
|
||||
# raise RuntimeError('Number of modes is too high, decrease number of modes.')
|
||||
|
||||
# Compute Fourier transform of the input
|
||||
x_ft = torch.fft.rfft(x)
|
||||
|
||||
# Multiply relevant Fourier modes
|
||||
out_ft = torch.zeros(batch_size,
|
||||
self._output_channels,
|
||||
x.size(-1) // 2 + 1,
|
||||
device=x.device,
|
||||
dtype=torch.cfloat)
|
||||
out_ft[:, :, :self._modes] = self._compute_mult1d(x_ft[:, :, :self._modes], self._weights)
|
||||
|
||||
# Return to physical space
|
||||
return torch.fft.irfft(out_ft, n=x.size(-1))
|
||||
|
||||
|
||||
######## 2D Spectral Convolution ###########
|
||||
class SpectralConvBlock2D(nn.Module):
|
||||
"""
|
||||
Implementation of spectral convolution block for two
|
||||
dimensional tensor.
|
||||
"""
|
||||
|
||||
def __init__(self, input_numb_fields, output_numb_fields, n_modes):
|
||||
super().__init__()
|
||||
|
||||
# check type consistency
|
||||
check_consistency(input_numb_fields, int)
|
||||
check_consistency(output_numb_fields, int)
|
||||
if not isinstance(n_modes, (tuple, list)):
|
||||
raise ValueError('expected n_modes to be a list or tuple of len two, '
|
||||
'with each entry corresponding to the number of modes '
|
||||
'for each dimension ')
|
||||
if len(n_modes) != 2:
|
||||
raise ValueError('expected n_modes to be a list or tuple of len two, '
|
||||
'with each entry corresponding to the number of modes '
|
||||
'for each dimension ')
|
||||
check_consistency(n_modes, int)
|
||||
|
||||
|
||||
# assign variables
|
||||
self._modes = n_modes
|
||||
self._input_channels = input_numb_fields
|
||||
self._output_channels = output_numb_fields
|
||||
|
||||
# scaling factor
|
||||
scale = (1. / (self._input_channels * self._output_channels))
|
||||
self._weights1 = nn.Parameter(scale * torch.rand(self._input_channels,
|
||||
self._output_channels,
|
||||
self._modes[0],
|
||||
self._modes[1],
|
||||
dtype=torch.cfloat))
|
||||
self._weights2 = nn.Parameter(scale * torch.rand(self._input_channels,
|
||||
self._output_channels,
|
||||
self._modes[0],
|
||||
self._modes[1],
|
||||
dtype=torch.cfloat))
|
||||
|
||||
def _compute_mult2d(self, input, weights):
|
||||
"""
|
||||
Compute the matrix multiplication of the input
|
||||
with the linear kernel weights.
|
||||
|
||||
:param input: The input tensor, expect of size
|
||||
[batch, input_numb_fields, x, y].
|
||||
:type input: torch.Tensor
|
||||
:param weights: The kernel weights, expect of
|
||||
size [input_numb_fields, output_numb_fields, x, y].
|
||||
:type weights: torch.Tensor
|
||||
:return: The matrix multiplication of the input
|
||||
with the linear kernel weights.
|
||||
:rtype: torch.Tensor
|
||||
"""
|
||||
return torch.einsum("bixy,ioxy->boxy", input, weights)
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
Forward computation for Spectral Convolution.
|
||||
|
||||
:param x: The input tensor, expect of size
|
||||
[batch, input_numb_fields, x].
|
||||
:type x: torch.Tensor
|
||||
:return: The output tensor obtained from the
|
||||
spectral convolution of size [batch, output_numb_fields, x].
|
||||
:rtype: torch.Tensor
|
||||
"""
|
||||
|
||||
batch_size = x.shape[0]
|
||||
|
||||
# Compute Fourier transform of the input
|
||||
x_ft = torch.fft.rfft2(x)
|
||||
|
||||
# Multiply relevant Fourier modes
|
||||
out_ft = torch.zeros(batch_size,
|
||||
self._output_channels,
|
||||
x.size(-2),
|
||||
x.size(-1)//2 + 1,
|
||||
device=x.device,
|
||||
dtype=torch.cfloat)
|
||||
out_ft[:, :, :self._modes[0], :self._modes[1]] = self._compute_mult2d(x_ft[:, :, :self._modes[0], :self._modes[1]],
|
||||
self._weights1)
|
||||
out_ft[:, :, -self._modes[0]:, :self._modes[1]:] = self._compute_mult2d(x_ft[:, :, -self._modes[0]:, :self._modes[1]],
|
||||
self._weights2)
|
||||
|
||||
# Return to physical space
|
||||
return torch.fft.irfft2(out_ft, s=(x.size(-2), x.size(-1)))
|
||||
|
||||
|
||||
######## 2D Spectral Convolution ###########
|
||||
class SpectralConvBlock3D(nn.Module):
|
||||
"""
|
||||
Implementation of spectral convolution block for two
|
||||
dimensional tensor.
|
||||
"""
|
||||
|
||||
def __init__(self, input_numb_fields, output_numb_fields, n_modes):
|
||||
"""
|
||||
TODO
|
||||
|
||||
:param input_numb_fields: _description_
|
||||
:type input_numb_fields: _type_
|
||||
:param output_numb_fields: _description_
|
||||
:type output_numb_fields: _type_
|
||||
:param n_modes: _description_
|
||||
:type n_modes: _type_
|
||||
:raises ValueError: _description_
|
||||
:raises ValueError: _description_
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
# check type consistency
|
||||
check_consistency(input_numb_fields, int)
|
||||
check_consistency(output_numb_fields, int)
|
||||
if not isinstance(n_modes, (tuple, list)):
|
||||
raise ValueError('expected n_modes to be a list or tuple of len three, '
|
||||
'with each entry corresponding to the number of modes '
|
||||
'for each dimension ')
|
||||
if len(n_modes) != 3:
|
||||
raise ValueError('expected n_modes to be a list or tuple of len three, '
|
||||
'with each entry corresponding to the number of modes '
|
||||
'for each dimension ')
|
||||
check_consistency(n_modes, int)
|
||||
|
||||
# assign variables
|
||||
self._modes = n_modes
|
||||
self._input_channels = input_numb_fields
|
||||
self._output_channels = output_numb_fields
|
||||
|
||||
# scaling factor
|
||||
scale = (1. / (self._input_channels * self._output_channels))
|
||||
self._weights1 = nn.Parameter(scale * torch.rand(self._input_channels,
|
||||
self._output_channels,
|
||||
self._modes[0],
|
||||
self._modes[1],
|
||||
self._modes[2],
|
||||
dtype=torch.cfloat))
|
||||
self._weights2 = nn.Parameter(scale * torch.rand(self._input_channels,
|
||||
self._output_channels,
|
||||
self._modes[0],
|
||||
self._modes[1],
|
||||
self._modes[2],
|
||||
dtype=torch.cfloat))
|
||||
self._weights3 = nn.Parameter(scale * torch.rand(self._input_channels,
|
||||
self._output_channels,
|
||||
self._modes[0],
|
||||
self._modes[1],
|
||||
self._modes[2],
|
||||
dtype=torch.cfloat))
|
||||
self._weights4 = nn.Parameter(scale * torch.rand(self._input_channels,
|
||||
self._output_channels,
|
||||
self._modes[0],
|
||||
self._modes[1],
|
||||
self._modes[2],
|
||||
dtype=torch.cfloat))
|
||||
|
||||
def _compute_mult3d(self, input, weights):
|
||||
"""
|
||||
Compute the matrix multiplication of the input
|
||||
with the linear kernel weights.
|
||||
|
||||
:param input: The input tensor, expect of size
|
||||
[batch, input_numb_fields, x, y].
|
||||
:type input: torch.Tensor
|
||||
:param weights: The kernel weights, expect of
|
||||
size [input_numb_fields, output_numb_fields, x, y].
|
||||
:type weights: torch.Tensor
|
||||
:return: The matrix multiplication of the input
|
||||
with the linear kernel weights.
|
||||
:rtype: torch.Tensor
|
||||
"""
|
||||
return torch.einsum("bixyz,ioxyz->boxyz", input, weights)
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
Forward computation for Spectral Convolution.
|
||||
|
||||
:param x: The input tensor, expect of size
|
||||
[batch, input_numb_fields, x].
|
||||
:type x: torch.Tensor
|
||||
:return: The output tensor obtained from the
|
||||
spectral convolution of size [batch, output_numb_fields, x].
|
||||
:rtype: torch.Tensor
|
||||
"""
|
||||
|
||||
batch_size = x.shape[0]
|
||||
|
||||
# Compute Fourier transform of the input
|
||||
x_ft = torch.fft.rfftn(x, dim=[-3, -2, -1])
|
||||
|
||||
# Multiply relevant Fourier modes
|
||||
out_ft = torch.zeros(batch_size,
|
||||
self._output_channels,
|
||||
x.size(-3),
|
||||
x.size(-2),
|
||||
x.size(-1)//2 + 1,
|
||||
device=x.device,
|
||||
dtype=torch.cfloat)
|
||||
|
||||
slice0 = (slice(None),
|
||||
slice(None),
|
||||
slice(self._modes[0]),
|
||||
slice(self._modes[1]),
|
||||
slice(self._modes[2]),
|
||||
)
|
||||
out_ft[slice0] = self._compute_mult3d(x_ft[slice0], self._weights1)
|
||||
|
||||
slice1 = (slice(None),
|
||||
slice(None),
|
||||
slice(self._modes[0]),
|
||||
slice(-self._modes[1], None),
|
||||
slice(self._modes[2]),
|
||||
)
|
||||
out_ft[slice1] = self._compute_mult3d(x_ft[slice1], self._weights2)
|
||||
|
||||
slice2 = (slice(None),
|
||||
slice(None),
|
||||
slice(-self._modes[0], None),
|
||||
slice(self._modes[1]),
|
||||
slice(self._modes[2]),
|
||||
)
|
||||
out_ft[slice2] = self._compute_mult3d(x_ft[slice2], self._weights3)
|
||||
|
||||
slice3 = (slice(None),
|
||||
slice(None),
|
||||
slice(-self._modes[0], None),
|
||||
slice(-self._modes[1], None),
|
||||
slice(self._modes[2]),
|
||||
)
|
||||
out_ft[slice3] = self._compute_mult3d(x_ft[slice3], self._weights4)
|
||||
|
||||
# Return to physical space
|
||||
return torch.fft.irfftn(out_ft, s=(x.size(-3), x.size(-2), x.size(-1)))
|
||||
|
||||
|
||||
43
tests/test_layers/test_spectral_conv.py
Normal file
43
tests/test_layers/test_spectral_conv.py
Normal file
@@ -0,0 +1,43 @@
|
||||
from pina.model.layers import SpectralConvBlock1D, SpectralConvBlock2D, SpectralConvBlock3D
|
||||
import torch
|
||||
|
||||
input_numb_fields = 3
|
||||
output_numb_fields = 4
|
||||
batch = 5
|
||||
|
||||
def test_constructor_1d():
|
||||
SpectralConvBlock1D(input_numb_fields=input_numb_fields,
|
||||
output_numb_fields=output_numb_fields,
|
||||
n_modes=5)
|
||||
|
||||
def test_forward_1d():
|
||||
sconv = SpectralConvBlock1D(input_numb_fields=input_numb_fields,
|
||||
output_numb_fields=output_numb_fields,
|
||||
n_modes=4)
|
||||
x = torch.rand(batch, input_numb_fields, 10)
|
||||
sconv(x)
|
||||
|
||||
|
||||
def test_constructor_2d():
|
||||
SpectralConvBlock2D(input_numb_fields=input_numb_fields,
|
||||
output_numb_fields=output_numb_fields,
|
||||
n_modes=[5, 4])
|
||||
|
||||
def test_forward_2d():
|
||||
sconv = SpectralConvBlock2D(input_numb_fields=input_numb_fields,
|
||||
output_numb_fields=output_numb_fields,
|
||||
n_modes=[5, 4])
|
||||
x = torch.rand(batch, input_numb_fields, 10, 10)
|
||||
sconv(x)
|
||||
|
||||
def test_constructor_3d():
|
||||
SpectralConvBlock3D(input_numb_fields=input_numb_fields,
|
||||
output_numb_fields=output_numb_fields,
|
||||
n_modes=[5, 4, 4])
|
||||
|
||||
def test_forward_3d():
|
||||
sconv = SpectralConvBlock3D(input_numb_fields=input_numb_fields,
|
||||
output_numb_fields=output_numb_fields,
|
||||
n_modes=[5, 4, 4])
|
||||
x = torch.rand(batch, input_numb_fields, 10, 10, 10)
|
||||
sconv(x)
|
||||
Reference in New Issue
Block a user