add mutual solver-weighting link
This commit is contained in:
committed by
Giovanni Canali
parent
973d0c05ab
commit
bacd7e202a
@@ -1,7 +1,6 @@
|
||||
"""Module for Neural Tangent Kernel Class"""
|
||||
|
||||
import torch
|
||||
from torch.nn import Module
|
||||
from .weighting_interface import WeightingInterface
|
||||
from ..utils import check_consistency
|
||||
|
||||
@@ -21,43 +20,45 @@ class NeuralTangentKernelWeighting(WeightingInterface):
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, model, alpha=0.5):
|
||||
def __init__(self, alpha=0.5):
|
||||
"""
|
||||
Initialization of the :class:`NeuralTangentKernelWeighting` class.
|
||||
|
||||
:param torch.nn.Module model: The neural network model.
|
||||
:param float alpha: The alpha parameter.
|
||||
|
||||
:raises ValueError: If ``alpha`` is not between 0 and 1 (inclusive).
|
||||
"""
|
||||
|
||||
super().__init__()
|
||||
|
||||
# Check consistency
|
||||
check_consistency(alpha, float)
|
||||
check_consistency(model, Module)
|
||||
if alpha < 0 or alpha > 1:
|
||||
raise ValueError("alpha should be a value between 0 and 1")
|
||||
|
||||
# Initialize parameters
|
||||
self.alpha = alpha
|
||||
self.model = model
|
||||
self.weights = {}
|
||||
self.default_value_weights = 1
|
||||
self.default_value_weights = 1.0
|
||||
|
||||
def aggregate(self, losses):
|
||||
"""
|
||||
Weight the losses according to the Neural Tangent Kernel
|
||||
algorithm.
|
||||
Weight the losses according to the Neural Tangent Kernel algorithm.
|
||||
|
||||
:param dict(torch.Tensor) input: The dictionary of losses.
|
||||
:return: The losses aggregation. It should be a scalar Tensor.
|
||||
:return: The aggregation of the losses. It should be a scalar Tensor.
|
||||
:rtype: torch.Tensor
|
||||
"""
|
||||
# Define a dictionary to store the norms of the gradients
|
||||
losses_norm = {}
|
||||
for condition in losses:
|
||||
losses[condition].backward(retain_graph=True)
|
||||
grads = []
|
||||
for param in self.model.parameters():
|
||||
grads.append(param.grad.view(-1))
|
||||
grads = torch.cat(grads)
|
||||
losses_norm[condition] = torch.norm(grads)
|
||||
|
||||
# Compute the gradient norms for each loss component
|
||||
for condition, loss in losses.items():
|
||||
loss.backward(retain_graph=True)
|
||||
grads = torch.cat(
|
||||
[p.grad.flatten() for p in self.solver.model.parameters()]
|
||||
)
|
||||
losses_norm[condition] = grads.norm()
|
||||
|
||||
# Update the weights
|
||||
self.weights = {
|
||||
condition: self.alpha
|
||||
* self.weights.get(condition, self.default_value_weights)
|
||||
@@ -66,6 +67,7 @@ class NeuralTangentKernelWeighting(WeightingInterface):
|
||||
/ sum(losses_norm.values())
|
||||
for condition in losses
|
||||
}
|
||||
|
||||
return sum(
|
||||
self.weights[condition] * loss for condition, loss in losses.items()
|
||||
)
|
||||
|
||||
@@ -37,12 +37,16 @@ class ScalarWeighting(WeightingInterface):
|
||||
:type weights: float | int | dict
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
# Check consistency
|
||||
check_consistency([weights], (float, dict, int))
|
||||
|
||||
# Weights initialization
|
||||
if isinstance(weights, (float, int)):
|
||||
self.default_value_weights = weights
|
||||
self.weights = {}
|
||||
else:
|
||||
self.default_value_weights = 1
|
||||
self.default_value_weights = 1.0
|
||||
self.weights = weights
|
||||
|
||||
def aggregate(self, losses):
|
||||
|
||||
@@ -13,7 +13,7 @@ class WeightingInterface(metaclass=ABCMeta):
|
||||
"""
|
||||
Initialization of the :class:`WeightingInterface` class.
|
||||
"""
|
||||
self.condition_names = None
|
||||
self._solver = None
|
||||
|
||||
@abstractmethod
|
||||
def aggregate(self, losses):
|
||||
@@ -22,3 +22,13 @@ class WeightingInterface(metaclass=ABCMeta):
|
||||
|
||||
:param dict losses: The dictionary of losses.
|
||||
"""
|
||||
|
||||
@property
|
||||
def solver(self):
|
||||
"""
|
||||
The solver employing this weighting schema.
|
||||
|
||||
:return: The solver.
|
||||
:rtype: :class:`~pina.solver.SolverInterface`
|
||||
"""
|
||||
return self._solver
|
||||
|
||||
@@ -44,7 +44,7 @@ class SolverInterface(lightning.pytorch.LightningModule, metaclass=ABCMeta):
|
||||
weighting = _NoWeighting()
|
||||
check_consistency(weighting, WeightingInterface)
|
||||
self._pina_weighting = weighting
|
||||
weighting.condition_names = list(self._pina_problem.conditions.keys())
|
||||
weighting._solver = self
|
||||
|
||||
# check consistency use_lt
|
||||
check_consistency(use_lt, bool)
|
||||
|
||||
@@ -2,64 +2,32 @@ import pytest
|
||||
from pina import Trainer
|
||||
from pina.solver import PINN
|
||||
from pina.model import FeedForward
|
||||
from pina.problem.zoo import Poisson2DSquareProblem
|
||||
from pina.loss import NeuralTangentKernelWeighting
|
||||
from pina.problem.zoo import Poisson2DSquareProblem
|
||||
|
||||
|
||||
# Initialize problem and model
|
||||
problem = Poisson2DSquareProblem()
|
||||
condition_names = problem.conditions.keys()
|
||||
problem.discretise_domain(10)
|
||||
model = FeedForward(len(problem.input_variables), len(problem.output_variables))
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"model,alpha",
|
||||
[
|
||||
(
|
||||
FeedForward(
|
||||
len(problem.input_variables), len(problem.output_variables)
|
||||
),
|
||||
0.5,
|
||||
)
|
||||
],
|
||||
)
|
||||
def test_constructor(model, alpha):
|
||||
NeuralTangentKernelWeighting(model=model, alpha=alpha)
|
||||
@pytest.mark.parametrize("alpha", [0.0, 0.5, 1.0])
|
||||
def test_constructor(alpha):
|
||||
NeuralTangentKernelWeighting(alpha=alpha)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("model", [0.5])
|
||||
def test_wrong_constructor1(model):
|
||||
# Should fail if alpha is not >= 0
|
||||
with pytest.raises(ValueError):
|
||||
NeuralTangentKernelWeighting(model)
|
||||
NeuralTangentKernelWeighting(alpha=-0.1)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"model,alpha",
|
||||
[
|
||||
(
|
||||
FeedForward(
|
||||
len(problem.input_variables), len(problem.output_variables)
|
||||
),
|
||||
1.2,
|
||||
)
|
||||
],
|
||||
)
|
||||
def test_wrong_constructor2(model, alpha):
|
||||
# Should fail if alpha is not <= 1
|
||||
with pytest.raises(ValueError):
|
||||
NeuralTangentKernelWeighting(model, alpha)
|
||||
NeuralTangentKernelWeighting(alpha=1.1)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"model,alpha",
|
||||
[
|
||||
(
|
||||
FeedForward(
|
||||
len(problem.input_variables), len(problem.output_variables)
|
||||
),
|
||||
0.5,
|
||||
)
|
||||
],
|
||||
)
|
||||
def test_train_aggregation(model, alpha):
|
||||
weighting = NeuralTangentKernelWeighting(model=model, alpha=alpha)
|
||||
problem.discretise_domain(50)
|
||||
@pytest.mark.parametrize("alpha", [0.0, 0.5, 1.0])
|
||||
def test_train_aggregation(alpha):
|
||||
weighting = NeuralTangentKernelWeighting(alpha=alpha)
|
||||
solver = PINN(problem=problem, model=model, weighting=weighting)
|
||||
trainer = Trainer(solver=solver, max_epochs=5, accelerator="cpu")
|
||||
trainer.train()
|
||||
|
||||
@@ -1,16 +1,17 @@
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
from pina import Trainer
|
||||
from pina.solver import PINN
|
||||
from pina.model import FeedForward
|
||||
from pina.problem.zoo import Poisson2DSquareProblem
|
||||
from pina.loss import ScalarWeighting
|
||||
from pina.problem.zoo import Poisson2DSquareProblem
|
||||
|
||||
|
||||
# Initialize problem and model
|
||||
problem = Poisson2DSquareProblem()
|
||||
problem.discretise_domain(50)
|
||||
model = FeedForward(len(problem.input_variables), len(problem.output_variables))
|
||||
condition_names = problem.conditions.keys()
|
||||
print(problem.conditions.keys())
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
@@ -19,11 +20,13 @@ print(problem.conditions.keys())
|
||||
def test_constructor(weights):
|
||||
ScalarWeighting(weights=weights)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("weights", ["a", [1, 2, 3]])
|
||||
def test_wrong_constructor(weights):
|
||||
# Should fail if weights are not a scalar
|
||||
with pytest.raises(ValueError):
|
||||
ScalarWeighting(weights=weights)
|
||||
ScalarWeighting(weights="invalid")
|
||||
|
||||
# Should fail if weights are not a dictionary
|
||||
with pytest.raises(ValueError):
|
||||
ScalarWeighting(weights=[1, 2, 3])
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
@@ -45,7 +48,6 @@ def test_aggregate(weights):
|
||||
)
|
||||
def test_train_aggregation(weights):
|
||||
weighting = ScalarWeighting(weights=weights)
|
||||
problem.discretise_domain(50)
|
||||
solver = PINN(problem=problem, model=model, weighting=weighting)
|
||||
trainer = Trainer(solver=solver, max_epochs=5, accelerator="cpu")
|
||||
trainer.train()
|
||||
Reference in New Issue
Block a user