Use Poisson problem from problems zoo in test_problem and minor fix in AbstractProblem

This commit is contained in:
FilippoOlivo
2025-02-06 16:08:51 +01:00
committed by Nicola Demo
parent 84775849d1
commit c4749efc8b
4 changed files with 18 additions and 91 deletions

View File

@@ -65,12 +65,12 @@ class Collector:
def store_sample_domains(self):
"""
Add
# TODO: Add docstring
"""
for condition_name in self.problem.conditions:
condition = self.problem.conditions[condition_name]
if not hasattr(condition, "domain"):
continue
continue
samples = self.problem.discretised_domains[condition.domain]

View File

@@ -4,14 +4,14 @@ from abc import ABCMeta, abstractmethod
from ..utils import check_consistency
from ..domain import DomainInterface
from ..condition.domain_equation_condition import DomainEquationCondition
from ..collector import Collector
from ..condition import InputPointsEquationCondition
from copy import deepcopy
class AbstractProblem(metaclass=ABCMeta):
"""
The abstract `AbstractProblem` class. All the class defining a PINA Problem
should be inheritied from this class.
should be inherited from this class.
In the definition of a PINA problem, the fundamental elements are:
the output variables, the condition(s), and the domain(s) where the
@@ -27,21 +27,18 @@ class AbstractProblem(metaclass=ABCMeta):
for condition_name in self.conditions:
self.conditions[condition_name].problem = self
# store in collector all the available fixed points
# note that some points could not be stored at this stage (e.g. when
# sampling locations). To check that all data points are ready for
# training all type self.collector.full, which returns true if all
# points are ready.
# self.collector.store_fixed_data()
self._batching_dimension = 0
# Store in domains dict all the domains object directly passed to
# ConditionInterface. Done for back compatibility with PINA <0.2
if not hasattr(self, "domains"):
self.domains = {}
for k, v in self.conditions.items():
if isinstance(v, DomainEquationCondition):
self.domains[k] = v.domain
self.conditions[k] = DomainEquationCondition(
domain=v.domain, equation=v.equation)
for cond_name, cond in self.conditions.items():
if isinstance(cond, (DomainEquationCondition,
InputPointsEquationCondition)):
if isinstance(cond.domain, DomainInterface):
self.domains[cond_name] = cond.domain
cond.domain = cond_name
# @property
# def collector(self):
@@ -116,7 +113,6 @@ class AbstractProblem(metaclass=ABCMeta):
if hasattr(self, "parameters"):
variables += self.parameters
return variables
@input_variables.setter
@@ -197,9 +193,7 @@ class AbstractProblem(metaclass=ABCMeta):
domains = self.domains.keys()
elif not isinstance(domains, (list)):
domains = [domains]
print(domains)
print(self.domains)
for domain in domains:
self.discretised_domains[domain] = (
self.domains[domain].sample(n, mode, variables)

View File

@@ -99,7 +99,6 @@ def test_pinn_collector():
if isinstance(v, DomainEquationCondition):
assert list(collector.data_collections[k].keys()) == ['input_points', 'equation']
def test_supervised_graph_collector():
pos = torch.rand((100,3))
x = [torch.rand((100,3)) for _ in range(10)]

View File

@@ -1,76 +1,11 @@
import torch
import pytest
from pina.problem import SpatialProblem
from pina.operators import laplacian
from pina import LabelTensor, Condition
from pina.domain import CartesianDomain
from pina.equation.equation import Equation
from pina.equation.equation_factory import FixedValue
def laplace_equation(input_, output_):
force_term = (torch.sin(input_.extract(['x']) * torch.pi) *
torch.sin(input_.extract(['y']) * torch.pi))
delta_u = laplacian(output_.extract(['u']), input_)
return delta_u - force_term
my_laplace = Equation(laplace_equation)
in_ = LabelTensor(torch.tensor([[0., 1.]], requires_grad=True), ['x', 'y'])
out_ = LabelTensor(torch.tensor([[0.]], requires_grad=True), ['u'])
class Poisson(SpatialProblem):
output_variables = ['u']
spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]})
conditions = {
'gamma1':
Condition(domain=CartesianDomain({
'x': [0, 1],
'y': 1
}),
equation=FixedValue(0.0)),
'gamma2':
Condition(domain=CartesianDomain({
'x': [0, 1],
'y': 0
}),
equation=FixedValue(0.0)),
'gamma3':
Condition(domain=CartesianDomain({
'x': 1,
'y': [0, 1]
}),
equation=FixedValue(0.0)),
'gamma4':
Condition(domain=CartesianDomain({
'x': 0,
'y': [0, 1]
}),
equation=FixedValue(0.0)),
'D':
Condition(domain=CartesianDomain({
'x': [0, 1],
'y': [0, 1]
}),
equation=my_laplace),
'data':
Condition(input_points=in_, output_points=out_)
}
def poisson_sol(self, pts):
return -(torch.sin(pts.extract(['x']) * torch.pi) *
torch.sin(pts.extract(['y']) * torch.pi)) / (2 * torch.pi**2)
truth_solution = poisson_sol
from pina.problem.zoo import Poisson2DSquareProblem as Poisson
def test_discretise_domain():
n = 10
poisson_problem = Poisson()
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
boundaries = ['g1', 'g2', 'g3', 'g4']
poisson_problem.discretise_domain(n, 'grid', domains=boundaries)
for b in boundaries:
assert poisson_problem.discretised_domains[b].shape[0] == n
@@ -90,8 +25,7 @@ def test_discretise_domain():
assert poisson_problem.discretised_domains['D'].shape[0] == n
poisson_problem.discretise_domain(n)
'''
def test_sampling_few_variables():
n = 10
poisson_problem = Poisson()
@@ -100,9 +34,10 @@ def test_sampling_few_variables():
domains=['D'],
variables=['x'])
assert poisson_problem.discretised_domains['D'].shape[1] == 1
'''
def test_variables_correct_order_sampling():
n = 10
poisson_problem = Poisson()
poisson_problem.discretise_domain(n,
@@ -115,7 +50,6 @@ def test_variables_correct_order_sampling():
assert poisson_problem.discretised_domains['D'].labels == sorted(
poisson_problem.input_variables)
# def test_add_points():
# poisson_problem = Poisson()
# poisson_problem.discretise_domain(0,