Use Poisson problem from problems zoo in test_problem and minor fix in AbstractProblem

This commit is contained in:
FilippoOlivo
2025-02-06 16:08:51 +01:00
committed by Nicola Demo
parent 84775849d1
commit c4749efc8b
4 changed files with 18 additions and 91 deletions

View File

@@ -4,14 +4,14 @@ from abc import ABCMeta, abstractmethod
from ..utils import check_consistency
from ..domain import DomainInterface
from ..condition.domain_equation_condition import DomainEquationCondition
from ..collector import Collector
from ..condition import InputPointsEquationCondition
from copy import deepcopy
class AbstractProblem(metaclass=ABCMeta):
"""
The abstract `AbstractProblem` class. All the class defining a PINA Problem
should be inheritied from this class.
should be inherited from this class.
In the definition of a PINA problem, the fundamental elements are:
the output variables, the condition(s), and the domain(s) where the
@@ -27,21 +27,18 @@ class AbstractProblem(metaclass=ABCMeta):
for condition_name in self.conditions:
self.conditions[condition_name].problem = self
# store in collector all the available fixed points
# note that some points could not be stored at this stage (e.g. when
# sampling locations). To check that all data points are ready for
# training all type self.collector.full, which returns true if all
# points are ready.
# self.collector.store_fixed_data()
self._batching_dimension = 0
# Store in domains dict all the domains object directly passed to
# ConditionInterface. Done for back compatibility with PINA <0.2
if not hasattr(self, "domains"):
self.domains = {}
for k, v in self.conditions.items():
if isinstance(v, DomainEquationCondition):
self.domains[k] = v.domain
self.conditions[k] = DomainEquationCondition(
domain=v.domain, equation=v.equation)
for cond_name, cond in self.conditions.items():
if isinstance(cond, (DomainEquationCondition,
InputPointsEquationCondition)):
if isinstance(cond.domain, DomainInterface):
self.domains[cond_name] = cond.domain
cond.domain = cond_name
# @property
# def collector(self):
@@ -116,7 +113,6 @@ class AbstractProblem(metaclass=ABCMeta):
if hasattr(self, "parameters"):
variables += self.parameters
return variables
@input_variables.setter
@@ -197,9 +193,7 @@ class AbstractProblem(metaclass=ABCMeta):
domains = self.domains.keys()
elif not isinstance(domains, (list)):
domains = [domains]
print(domains)
print(self.domains)
for domain in domains:
self.discretised_domains[domain] = (
self.domains[domain].sample(n, mode, variables)