Use Poisson problem from problems zoo in test_problem and minor fix in AbstractProblem
This commit is contained in:
committed by
Nicola Demo
parent
84775849d1
commit
c4749efc8b
@@ -1,76 +1,11 @@
|
||||
import torch
|
||||
import pytest
|
||||
|
||||
from pina.problem import SpatialProblem
|
||||
from pina.operators import laplacian
|
||||
from pina import LabelTensor, Condition
|
||||
from pina.domain import CartesianDomain
|
||||
from pina.equation.equation import Equation
|
||||
from pina.equation.equation_factory import FixedValue
|
||||
|
||||
|
||||
def laplace_equation(input_, output_):
|
||||
force_term = (torch.sin(input_.extract(['x']) * torch.pi) *
|
||||
torch.sin(input_.extract(['y']) * torch.pi))
|
||||
delta_u = laplacian(output_.extract(['u']), input_)
|
||||
return delta_u - force_term
|
||||
|
||||
|
||||
my_laplace = Equation(laplace_equation)
|
||||
in_ = LabelTensor(torch.tensor([[0., 1.]], requires_grad=True), ['x', 'y'])
|
||||
out_ = LabelTensor(torch.tensor([[0.]], requires_grad=True), ['u'])
|
||||
|
||||
|
||||
class Poisson(SpatialProblem):
|
||||
output_variables = ['u']
|
||||
spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]})
|
||||
|
||||
conditions = {
|
||||
'gamma1':
|
||||
Condition(domain=CartesianDomain({
|
||||
'x': [0, 1],
|
||||
'y': 1
|
||||
}),
|
||||
equation=FixedValue(0.0)),
|
||||
'gamma2':
|
||||
Condition(domain=CartesianDomain({
|
||||
'x': [0, 1],
|
||||
'y': 0
|
||||
}),
|
||||
equation=FixedValue(0.0)),
|
||||
'gamma3':
|
||||
Condition(domain=CartesianDomain({
|
||||
'x': 1,
|
||||
'y': [0, 1]
|
||||
}),
|
||||
equation=FixedValue(0.0)),
|
||||
'gamma4':
|
||||
Condition(domain=CartesianDomain({
|
||||
'x': 0,
|
||||
'y': [0, 1]
|
||||
}),
|
||||
equation=FixedValue(0.0)),
|
||||
'D':
|
||||
Condition(domain=CartesianDomain({
|
||||
'x': [0, 1],
|
||||
'y': [0, 1]
|
||||
}),
|
||||
equation=my_laplace),
|
||||
'data':
|
||||
Condition(input_points=in_, output_points=out_)
|
||||
}
|
||||
|
||||
def poisson_sol(self, pts):
|
||||
return -(torch.sin(pts.extract(['x']) * torch.pi) *
|
||||
torch.sin(pts.extract(['y']) * torch.pi)) / (2 * torch.pi**2)
|
||||
|
||||
truth_solution = poisson_sol
|
||||
|
||||
from pina.problem.zoo import Poisson2DSquareProblem as Poisson
|
||||
|
||||
def test_discretise_domain():
|
||||
n = 10
|
||||
poisson_problem = Poisson()
|
||||
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
boundaries = ['g1', 'g2', 'g3', 'g4']
|
||||
poisson_problem.discretise_domain(n, 'grid', domains=boundaries)
|
||||
for b in boundaries:
|
||||
assert poisson_problem.discretised_domains[b].shape[0] == n
|
||||
@@ -90,8 +25,7 @@ def test_discretise_domain():
|
||||
assert poisson_problem.discretised_domains['D'].shape[0] == n
|
||||
|
||||
poisson_problem.discretise_domain(n)
|
||||
|
||||
|
||||
'''
|
||||
def test_sampling_few_variables():
|
||||
n = 10
|
||||
poisson_problem = Poisson()
|
||||
@@ -100,9 +34,10 @@ def test_sampling_few_variables():
|
||||
domains=['D'],
|
||||
variables=['x'])
|
||||
assert poisson_problem.discretised_domains['D'].shape[1] == 1
|
||||
|
||||
'''
|
||||
|
||||
def test_variables_correct_order_sampling():
|
||||
|
||||
n = 10
|
||||
poisson_problem = Poisson()
|
||||
poisson_problem.discretise_domain(n,
|
||||
@@ -115,7 +50,6 @@ def test_variables_correct_order_sampling():
|
||||
assert poisson_problem.discretised_domains['D'].labels == sorted(
|
||||
poisson_problem.input_variables)
|
||||
|
||||
|
||||
# def test_add_points():
|
||||
# poisson_problem = Poisson()
|
||||
# poisson_problem.discretise_domain(0,
|
||||
|
||||
Reference in New Issue
Block a user