Implement Dataset, Dataloader and DataModule class and fix SupervisedSolver
This commit is contained in:
committed by
Nicola Demo
parent
b9753c34b2
commit
c9304fb9bb
@@ -1,44 +1,45 @@
|
||||
import math
|
||||
import torch
|
||||
import pytest
|
||||
|
||||
from pina.data.dataset import SamplePointDataset, SamplePointLoader, DataPointDataset
|
||||
from pina.data import SamplePointDataset, SupervisedDataset, PinaDataModule, UnsupervisedDataset, unsupervised_dataset
|
||||
from pina.data import PinaDataLoader
|
||||
from pina import LabelTensor, Condition
|
||||
from pina.equation import Equation
|
||||
from pina.domain import CartesianDomain
|
||||
from pina.problem import SpatialProblem
|
||||
from pina.model import FeedForward
|
||||
from pina.operators import laplacian
|
||||
from pina.equation.equation_factory import FixedValue
|
||||
|
||||
|
||||
def laplace_equation(input_, output_):
|
||||
force_term = (torch.sin(input_.extract(['x'])*torch.pi) *
|
||||
torch.sin(input_.extract(['y'])*torch.pi))
|
||||
force_term = (torch.sin(input_.extract(['x']) * torch.pi) *
|
||||
torch.sin(input_.extract(['y']) * torch.pi))
|
||||
delta_u = laplacian(output_.extract(['u']), input_)
|
||||
return delta_u - force_term
|
||||
|
||||
|
||||
my_laplace = Equation(laplace_equation)
|
||||
in_ = LabelTensor(torch.tensor([[0., 1.]]), ['x', 'y'])
|
||||
out_ = LabelTensor(torch.tensor([[0.]]), ['u'])
|
||||
in2_ = LabelTensor(torch.rand(60, 2), ['x', 'y'])
|
||||
out2_ = LabelTensor(torch.rand(60, 1), ['u'])
|
||||
|
||||
|
||||
class Poisson(SpatialProblem):
|
||||
output_variables = ['u']
|
||||
spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]})
|
||||
|
||||
conditions = {
|
||||
'gamma1': Condition(
|
||||
location=CartesianDomain({'x': [0, 1], 'y': 1}),
|
||||
domain=CartesianDomain({'x': [0, 1], 'y': 1}),
|
||||
equation=FixedValue(0.0)),
|
||||
'gamma2': Condition(
|
||||
location=CartesianDomain({'x': [0, 1], 'y': 0}),
|
||||
domain=CartesianDomain({'x': [0, 1], 'y': 0}),
|
||||
equation=FixedValue(0.0)),
|
||||
'gamma3': Condition(
|
||||
location=CartesianDomain({'x': 1, 'y': [0, 1]}),
|
||||
domain=CartesianDomain({'x': 1, 'y': [0, 1]}),
|
||||
equation=FixedValue(0.0)),
|
||||
'gamma4': Condition(
|
||||
location=CartesianDomain({'x': 0, 'y': [0, 1]}),
|
||||
domain=CartesianDomain({'x': 0, 'y': [0, 1]}),
|
||||
equation=FixedValue(0.0)),
|
||||
'D': Condition(
|
||||
input_points=LabelTensor(torch.rand(size=(100, 2)), ['x', 'y']),
|
||||
@@ -48,75 +49,114 @@ class Poisson(SpatialProblem):
|
||||
output_points=out_),
|
||||
'data2': Condition(
|
||||
input_points=in2_,
|
||||
output_points=out2_)
|
||||
output_points=out2_),
|
||||
'unsupervised': Condition(
|
||||
input_points=LabelTensor(torch.rand(size=(45, 2)), ['x', 'y']),
|
||||
conditional_variables=LabelTensor(torch.ones(size=(45, 1)), ['alpha']),
|
||||
),
|
||||
'unsupervised2': Condition(
|
||||
input_points=LabelTensor(torch.rand(size=(90, 2)), ['x', 'y']),
|
||||
conditional_variables=LabelTensor(torch.ones(size=(90, 1)), ['alpha']),
|
||||
)
|
||||
}
|
||||
|
||||
|
||||
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
poisson = Poisson()
|
||||
poisson.discretise_domain(10, 'grid', locations=boundaries)
|
||||
|
||||
|
||||
def test_sample():
|
||||
sample_dataset = SamplePointDataset(poisson, device='cpu')
|
||||
assert len(sample_dataset) == 140
|
||||
assert sample_dataset.pts.shape == (140, 2)
|
||||
assert sample_dataset.pts.labels == ['x', 'y']
|
||||
assert sample_dataset.condition_indeces.dtype == torch.int64
|
||||
assert sample_dataset.condition_indeces.max() == torch.tensor(4)
|
||||
assert sample_dataset.condition_indeces.min() == torch.tensor(0)
|
||||
assert sample_dataset.input_points.shape == (140, 2)
|
||||
assert sample_dataset.input_points.labels == ['x', 'y']
|
||||
assert sample_dataset.condition_indices.dtype == torch.uint8
|
||||
assert sample_dataset.condition_indices.max() == torch.tensor(4)
|
||||
assert sample_dataset.condition_indices.min() == torch.tensor(0)
|
||||
|
||||
|
||||
def test_data():
|
||||
dataset = DataPointDataset(poisson, device='cpu')
|
||||
dataset = SupervisedDataset(poisson, device='cpu')
|
||||
assert len(dataset) == 61
|
||||
assert dataset.input_pts.shape == (61, 2)
|
||||
assert dataset.input_pts.labels == ['x', 'y']
|
||||
assert dataset.output_pts.shape == (61, 1 )
|
||||
assert dataset.output_pts.labels == ['u']
|
||||
assert dataset.condition_indeces.dtype == torch.int64
|
||||
assert dataset.condition_indeces.max() == torch.tensor(1)
|
||||
assert dataset.condition_indeces.min() == torch.tensor(0)
|
||||
assert dataset['input_points'].shape == (61, 2)
|
||||
assert dataset.input_points.shape == (61, 2)
|
||||
assert dataset['input_points'].labels == ['x', 'y']
|
||||
assert dataset.input_points.labels == ['x', 'y']
|
||||
assert dataset['input_points', 3:].shape == (58, 2)
|
||||
assert dataset[3:][1].labels == ['u']
|
||||
assert dataset.output_points.shape == (61, 1)
|
||||
assert dataset.output_points.labels == ['u']
|
||||
assert dataset.condition_indices.dtype == torch.uint8
|
||||
assert dataset.condition_indices.max() == torch.tensor(1)
|
||||
assert dataset.condition_indices.min() == torch.tensor(0)
|
||||
|
||||
|
||||
def test_unsupervised():
|
||||
dataset = UnsupervisedDataset(poisson, device='cpu')
|
||||
assert len(dataset) == 135
|
||||
assert dataset.input_points.shape == (135, 2)
|
||||
assert dataset.input_points.labels == ['x', 'y']
|
||||
assert dataset.input_points[3:].shape == (132, 2)
|
||||
|
||||
assert dataset.conditional_variables.shape == (135, 1)
|
||||
assert dataset.conditional_variables.labels == ['alpha']
|
||||
assert dataset.condition_indices.dtype == torch.uint8
|
||||
assert dataset.condition_indices.max() == torch.tensor(1)
|
||||
assert dataset.condition_indices.min() == torch.tensor(0)
|
||||
|
||||
|
||||
def test_data_module():
|
||||
data_module = PinaDataModule(poisson, device='cpu')
|
||||
data_module.setup()
|
||||
loader = data_module.train_dataloader()
|
||||
assert isinstance(loader, PinaDataLoader)
|
||||
assert isinstance(loader, PinaDataLoader)
|
||||
|
||||
data_module = PinaDataModule(poisson, device='cpu', batch_size=10, shuffle=False)
|
||||
data_module.setup()
|
||||
loader = data_module.train_dataloader()
|
||||
assert len(loader) == 24
|
||||
for i in loader:
|
||||
assert len(i) <= 10
|
||||
len_ref = sum([math.ceil(len(dataset) * 0.7) for dataset in data_module.datasets])
|
||||
len_real = sum([len(dataset) for dataset in data_module.splits['train'].values()])
|
||||
assert len_ref == len_real
|
||||
|
||||
supervised_dataset = SupervisedDataset(poisson, device='cpu')
|
||||
data_module = PinaDataModule(poisson, device='cpu', batch_size=10, shuffle=False, datasets=[supervised_dataset])
|
||||
data_module.setup()
|
||||
loader = data_module.train_dataloader()
|
||||
for batch in loader:
|
||||
assert len(batch) <= 10
|
||||
|
||||
physics_dataset = SamplePointDataset(poisson, device='cpu')
|
||||
data_module = PinaDataModule(poisson, device='cpu', batch_size=10, shuffle=False, datasets=[physics_dataset])
|
||||
data_module.setup()
|
||||
loader = data_module.train_dataloader()
|
||||
for batch in loader:
|
||||
assert len(batch) <= 10
|
||||
|
||||
unsupervised_dataset = UnsupervisedDataset(poisson, device='cpu')
|
||||
data_module = PinaDataModule(poisson, device='cpu', batch_size=10, shuffle=False, datasets=[unsupervised_dataset])
|
||||
data_module.setup()
|
||||
loader = data_module.train_dataloader()
|
||||
for batch in loader:
|
||||
assert len(batch) <= 10
|
||||
|
||||
|
||||
def test_loader():
|
||||
sample_dataset = SamplePointDataset(poisson, device='cpu')
|
||||
data_dataset = DataPointDataset(poisson, device='cpu')
|
||||
loader = SamplePointLoader(sample_dataset, data_dataset, batch_size=10)
|
||||
|
||||
for batch in loader:
|
||||
assert len(batch) in [2, 3]
|
||||
assert batch['pts'].shape[0] <= 10
|
||||
assert batch['pts'].requires_grad == True
|
||||
assert batch['pts'].labels == ['x', 'y']
|
||||
|
||||
loader2 = SamplePointLoader(sample_dataset, data_dataset, batch_size=None)
|
||||
assert len(list(loader2)) == 2
|
||||
|
||||
def test_loader2():
|
||||
poisson2 = Poisson()
|
||||
del poisson.conditions['data2']
|
||||
del poisson2.conditions['data']
|
||||
poisson2.discretise_domain(10, 'grid', locations=boundaries)
|
||||
sample_dataset = SamplePointDataset(poisson, device='cpu')
|
||||
data_dataset = DataPointDataset(poisson, device='cpu')
|
||||
loader = SamplePointLoader(sample_dataset, data_dataset, batch_size=10)
|
||||
|
||||
for batch in loader:
|
||||
assert len(batch) == 2 # only phys condtions
|
||||
assert batch['pts'].shape[0] <= 10
|
||||
assert batch['pts'].requires_grad == True
|
||||
assert batch['pts'].labels == ['x', 'y']
|
||||
|
||||
def test_loader3():
|
||||
poisson2 = Poisson()
|
||||
del poisson.conditions['gamma1']
|
||||
del poisson.conditions['gamma2']
|
||||
del poisson.conditions['gamma3']
|
||||
del poisson.conditions['gamma4']
|
||||
del poisson.conditions['D']
|
||||
sample_dataset = SamplePointDataset(poisson, device='cpu')
|
||||
data_dataset = DataPointDataset(poisson, device='cpu')
|
||||
loader = SamplePointLoader(sample_dataset, data_dataset, batch_size=10)
|
||||
|
||||
for batch in loader:
|
||||
assert len(batch) == 2 # only phys condtions
|
||||
assert batch['pts'].shape[0] <= 10
|
||||
assert batch['pts'].requires_grad == True
|
||||
assert batch['pts'].labels == ['x', 'y']
|
||||
data_module = PinaDataModule(poisson, device='cpu', batch_size=10)
|
||||
data_module.setup()
|
||||
loader = data_module.train_dataloader()
|
||||
assert isinstance(loader, PinaDataLoader)
|
||||
assert len(loader) == 24
|
||||
for i in loader:
|
||||
assert len(i) <= 10
|
||||
assert i.supervised.input_points.labels == ['x', 'y']
|
||||
assert i.physics.input_points.labels == ['x', 'y']
|
||||
assert i.unsupervised.input_points.labels == ['x', 'y']
|
||||
assert i.supervised.input_points.requires_grad == True
|
||||
assert i.physics.input_points.requires_grad == True
|
||||
assert i.unsupervised.input_points.requires_grad == True
|
||||
test_loader()
|
||||
@@ -1,50 +1,27 @@
|
||||
import torch
|
||||
|
||||
from pina.problem import AbstractProblem
|
||||
import pytest
|
||||
from pina.problem import AbstractProblem, SpatialProblem
|
||||
from pina import Condition, LabelTensor
|
||||
from pina.solvers import SupervisedSolver
|
||||
from pina.trainer import Trainer
|
||||
from pina.model import FeedForward
|
||||
from pina.loss import LpLoss
|
||||
from pina.solvers import GraphSupervisedSolver
|
||||
from pina.equation.equation import Equation
|
||||
from pina.equation.equation_factory import FixedValue
|
||||
from pina.operators import laplacian
|
||||
from pina.domain import CartesianDomain
|
||||
from pina.trainer import Trainer
|
||||
|
||||
in_ = LabelTensor(torch.tensor([[0., 1.]]), ['u_0', 'u_1'])
|
||||
out_ = LabelTensor(torch.tensor([[0.]]), ['u'])
|
||||
|
||||
|
||||
class NeuralOperatorProblem(AbstractProblem):
|
||||
input_variables = ['u_0', 'u_1']
|
||||
output_variables = ['u']
|
||||
domains = {
|
||||
'pts': LabelTensor(
|
||||
torch.rand(100, 2),
|
||||
labels={1: {'name': 'space', 'dof': ['u_0', 'u_1']}}
|
||||
)
|
||||
}
|
||||
|
||||
conditions = {
|
||||
'data' : Condition(
|
||||
domain='pts',
|
||||
output_points=LabelTensor(
|
||||
torch.rand(100, 1),
|
||||
labels={1: {'name': 'output', 'dof': ['u']}}
|
||||
)
|
||||
)
|
||||
'data': Condition(input_points=in_, output_points=out_),
|
||||
}
|
||||
|
||||
class NeuralOperatorProblemGraph(AbstractProblem):
|
||||
input_variables = ['x', 'y', 'u_0', 'u_1']
|
||||
output_variables = ['u']
|
||||
domains = {
|
||||
'pts': LabelTensor(
|
||||
torch.rand(100, 4),
|
||||
labels={1: {'name': 'space', 'dof': ['x', 'y', 'u_0', 'u_1']}}
|
||||
)
|
||||
}
|
||||
conditions = {
|
||||
'data' : Condition(
|
||||
domain='pts',
|
||||
output_points=LabelTensor(
|
||||
torch.rand(100, 1),
|
||||
labels={1: {'name': 'output', 'dof': ['u']}}
|
||||
)
|
||||
)
|
||||
}
|
||||
|
||||
class myFeature(torch.nn.Module):
|
||||
"""
|
||||
@@ -61,117 +38,106 @@ class myFeature(torch.nn.Module):
|
||||
|
||||
|
||||
problem = NeuralOperatorProblem()
|
||||
problem_graph = NeuralOperatorProblemGraph()
|
||||
# make the problem + extra feats
|
||||
extra_feats = [myFeature()]
|
||||
model = FeedForward(len(problem.input_variables),
|
||||
len(problem.output_variables))
|
||||
model = FeedForward(len(problem.input_variables), len(problem.output_variables))
|
||||
model_extra_feats = FeedForward(
|
||||
len(problem.input_variables) + 1,
|
||||
len(problem.output_variables))
|
||||
len(problem.input_variables) + 1, len(problem.output_variables))
|
||||
|
||||
|
||||
def test_constructor():
|
||||
SupervisedSolver(problem=problem, model=model)
|
||||
|
||||
|
||||
# def test_constructor_extra_feats():
|
||||
# SupervisedSolver(problem=problem, model=model_extra_feats, extra_features=extra_feats)
|
||||
test_constructor()
|
||||
|
||||
'''
|
||||
class AutoSolver(SupervisedSolver):
|
||||
|
||||
def forward(self, input):
|
||||
from pina.graph import Graph
|
||||
print(Graph)
|
||||
print(input)
|
||||
if not isinstance(input, Graph):
|
||||
input = Graph.build('radius', nodes_coordinates=input, nodes_data=torch.rand(input.shape), radius=0.2)
|
||||
print(input)
|
||||
print(input.data.edge_index)
|
||||
print(input.data)
|
||||
g = self._model(input.data, edge_index=input.data.edge_index)
|
||||
g.labels = {1: {'name': 'output', 'dof': ['u']}}
|
||||
return g
|
||||
du_dt_new = LabelTensor(self.model(graph).reshape(-1,1), labels = ['du'])
|
||||
def laplace_equation(input_, output_):
|
||||
force_term = (torch.sin(input_.extract(['x']) * torch.pi) *
|
||||
torch.sin(input_.extract(['y']) * torch.pi))
|
||||
delta_u = laplacian(output_.extract(['u']), input_)
|
||||
return delta_u - force_term
|
||||
|
||||
return du_dt_new
|
||||
'''
|
||||
|
||||
class GraphModel(torch.nn.Module):
|
||||
def __init__(self, in_channels, out_channels):
|
||||
from torch_geometric.nn import GCNConv, NNConv
|
||||
super().__init__()
|
||||
self.conv1 = GCNConv(in_channels, 16)
|
||||
self.conv2 = GCNConv(16, out_channels)
|
||||
my_laplace = Equation(laplace_equation)
|
||||
|
||||
def forward(self, data, edge_index):
|
||||
print(data)
|
||||
x = data.x
|
||||
print(x)
|
||||
x = self.conv1(x, edge_index)
|
||||
x = x.relu()
|
||||
x = self.conv2(x, edge_index)
|
||||
return x
|
||||
|
||||
def test_graph():
|
||||
solver = GraphSupervisedSolver(problem=problem_graph, model=GraphModel(2, 1), loss=LpLoss(),
|
||||
nodes_coordinates=['x', 'y'], nodes_data=['u_0', 'u_1'])
|
||||
trainer = Trainer(solver=solver, max_epochs=30, accelerator='cpu', batch_size=20)
|
||||
trainer.train()
|
||||
class Poisson(SpatialProblem):
|
||||
output_variables = ['u']
|
||||
spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]})
|
||||
|
||||
conditions = {
|
||||
'gamma1':
|
||||
Condition(domain=CartesianDomain({
|
||||
'x': [0, 1],
|
||||
'y': 1
|
||||
}),
|
||||
equation=FixedValue(0.0)),
|
||||
'gamma2':
|
||||
Condition(domain=CartesianDomain({
|
||||
'x': [0, 1],
|
||||
'y': 0
|
||||
}),
|
||||
equation=FixedValue(0.0)),
|
||||
'gamma3':
|
||||
Condition(domain=CartesianDomain({
|
||||
'x': 1,
|
||||
'y': [0, 1]
|
||||
}),
|
||||
equation=FixedValue(0.0)),
|
||||
'gamma4':
|
||||
Condition(domain=CartesianDomain({
|
||||
'x': 0,
|
||||
'y': [0, 1]
|
||||
}),
|
||||
equation=FixedValue(0.0)),
|
||||
'D':
|
||||
Condition(domain=CartesianDomain({
|
||||
'x': [0, 1],
|
||||
'y': [0, 1]
|
||||
}),
|
||||
equation=my_laplace),
|
||||
'data':
|
||||
Condition(input_points=in_, output_points=out_)
|
||||
}
|
||||
|
||||
def poisson_sol(self, pts):
|
||||
return -(torch.sin(pts.extract(['x']) * torch.pi) *
|
||||
torch.sin(pts.extract(['y']) * torch.pi)) / (2 * torch.pi ** 2)
|
||||
|
||||
truth_solution = poisson_sol
|
||||
|
||||
|
||||
def test_wrong_constructor():
|
||||
poisson_problem = Poisson()
|
||||
with pytest.raises(ValueError):
|
||||
SupervisedSolver(problem=poisson_problem, model=model)
|
||||
|
||||
|
||||
def test_train_cpu():
|
||||
solver = SupervisedSolver(problem = problem, model=model, loss=LpLoss())
|
||||
trainer = Trainer(solver=solver, max_epochs=300, accelerator='cpu', batch_size=20)
|
||||
solver = SupervisedSolver(problem=problem, model=model)
|
||||
trainer = Trainer(solver=solver,
|
||||
max_epochs=200,
|
||||
accelerator='gpu',
|
||||
batch_size=5,
|
||||
train_size=1,
|
||||
test_size=0.,
|
||||
eval_size=0.)
|
||||
trainer.train()
|
||||
test_train_cpu()
|
||||
|
||||
|
||||
# def test_train_restore():
|
||||
# tmpdir = "tests/tmp_restore"
|
||||
# solver = SupervisedSolver(problem=problem,
|
||||
# model=model,
|
||||
# extra_features=None,
|
||||
# loss=LpLoss())
|
||||
# trainer = Trainer(solver=solver,
|
||||
# max_epochs=5,
|
||||
# accelerator='cpu',
|
||||
# default_root_dir=tmpdir)
|
||||
# trainer.train()
|
||||
# ntrainer = Trainer(solver=solver, max_epochs=15, accelerator='cpu')
|
||||
# t = ntrainer.train(
|
||||
# ckpt_path=f'{tmpdir}/lightning_logs/version_0/checkpoints/epoch=4-step=5.ckpt')
|
||||
# import shutil
|
||||
# shutil.rmtree(tmpdir)
|
||||
def test_extra_features_constructor():
|
||||
SupervisedSolver(problem=problem,
|
||||
model=model_extra_feats,
|
||||
extra_features=extra_feats)
|
||||
|
||||
|
||||
# def test_train_load():
|
||||
# tmpdir = "tests/tmp_load"
|
||||
# solver = SupervisedSolver(problem=problem,
|
||||
# model=model,
|
||||
# extra_features=None,
|
||||
# loss=LpLoss())
|
||||
# trainer = Trainer(solver=solver,
|
||||
# max_epochs=15,
|
||||
# accelerator='cpu',
|
||||
# default_root_dir=tmpdir)
|
||||
# trainer.train()
|
||||
# new_solver = SupervisedSolver.load_from_checkpoint(
|
||||
# f'{tmpdir}/lightning_logs/version_0/checkpoints/epoch=14-step=15.ckpt',
|
||||
# problem = problem, model=model)
|
||||
# test_pts = LabelTensor(torch.rand(20, 2), problem.input_variables)
|
||||
# assert new_solver.forward(test_pts).shape == (20, 1)
|
||||
# assert new_solver.forward(test_pts).shape == solver.forward(test_pts).shape
|
||||
# torch.testing.assert_close(
|
||||
# new_solver.forward(test_pts),
|
||||
# solver.forward(test_pts))
|
||||
# import shutil
|
||||
# shutil.rmtree(tmpdir)
|
||||
|
||||
# def test_train_extra_feats_cpu():
|
||||
# pinn = SupervisedSolver(problem=problem,
|
||||
# model=model_extra_feats,
|
||||
# extra_features=extra_feats)
|
||||
# trainer = Trainer(solver=pinn, max_epochs=5, accelerator='cpu')
|
||||
# trainer.train()
|
||||
test_graph()
|
||||
def test_extra_features_train_cpu():
|
||||
solver = SupervisedSolver(problem=problem,
|
||||
model=model_extra_feats,
|
||||
extra_features=extra_feats)
|
||||
trainer = Trainer(solver=solver,
|
||||
max_epochs=200,
|
||||
accelerator='gpu',
|
||||
batch_size=5)
|
||||
trainer.train()
|
||||
|
||||
Reference in New Issue
Block a user