Implement Dataset, Dataloader and DataModule class and fix SupervisedSolver
This commit is contained in:
committed by
Nicola Demo
parent
b9753c34b2
commit
c9304fb9bb
@@ -1,44 +1,45 @@
|
||||
import math
|
||||
import torch
|
||||
import pytest
|
||||
|
||||
from pina.data.dataset import SamplePointDataset, SamplePointLoader, DataPointDataset
|
||||
from pina.data import SamplePointDataset, SupervisedDataset, PinaDataModule, UnsupervisedDataset, unsupervised_dataset
|
||||
from pina.data import PinaDataLoader
|
||||
from pina import LabelTensor, Condition
|
||||
from pina.equation import Equation
|
||||
from pina.domain import CartesianDomain
|
||||
from pina.problem import SpatialProblem
|
||||
from pina.model import FeedForward
|
||||
from pina.operators import laplacian
|
||||
from pina.equation.equation_factory import FixedValue
|
||||
|
||||
|
||||
def laplace_equation(input_, output_):
|
||||
force_term = (torch.sin(input_.extract(['x'])*torch.pi) *
|
||||
torch.sin(input_.extract(['y'])*torch.pi))
|
||||
force_term = (torch.sin(input_.extract(['x']) * torch.pi) *
|
||||
torch.sin(input_.extract(['y']) * torch.pi))
|
||||
delta_u = laplacian(output_.extract(['u']), input_)
|
||||
return delta_u - force_term
|
||||
|
||||
|
||||
my_laplace = Equation(laplace_equation)
|
||||
in_ = LabelTensor(torch.tensor([[0., 1.]]), ['x', 'y'])
|
||||
out_ = LabelTensor(torch.tensor([[0.]]), ['u'])
|
||||
in2_ = LabelTensor(torch.rand(60, 2), ['x', 'y'])
|
||||
out2_ = LabelTensor(torch.rand(60, 1), ['u'])
|
||||
|
||||
|
||||
class Poisson(SpatialProblem):
|
||||
output_variables = ['u']
|
||||
spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]})
|
||||
|
||||
conditions = {
|
||||
'gamma1': Condition(
|
||||
location=CartesianDomain({'x': [0, 1], 'y': 1}),
|
||||
domain=CartesianDomain({'x': [0, 1], 'y': 1}),
|
||||
equation=FixedValue(0.0)),
|
||||
'gamma2': Condition(
|
||||
location=CartesianDomain({'x': [0, 1], 'y': 0}),
|
||||
domain=CartesianDomain({'x': [0, 1], 'y': 0}),
|
||||
equation=FixedValue(0.0)),
|
||||
'gamma3': Condition(
|
||||
location=CartesianDomain({'x': 1, 'y': [0, 1]}),
|
||||
domain=CartesianDomain({'x': 1, 'y': [0, 1]}),
|
||||
equation=FixedValue(0.0)),
|
||||
'gamma4': Condition(
|
||||
location=CartesianDomain({'x': 0, 'y': [0, 1]}),
|
||||
domain=CartesianDomain({'x': 0, 'y': [0, 1]}),
|
||||
equation=FixedValue(0.0)),
|
||||
'D': Condition(
|
||||
input_points=LabelTensor(torch.rand(size=(100, 2)), ['x', 'y']),
|
||||
@@ -48,75 +49,114 @@ class Poisson(SpatialProblem):
|
||||
output_points=out_),
|
||||
'data2': Condition(
|
||||
input_points=in2_,
|
||||
output_points=out2_)
|
||||
output_points=out2_),
|
||||
'unsupervised': Condition(
|
||||
input_points=LabelTensor(torch.rand(size=(45, 2)), ['x', 'y']),
|
||||
conditional_variables=LabelTensor(torch.ones(size=(45, 1)), ['alpha']),
|
||||
),
|
||||
'unsupervised2': Condition(
|
||||
input_points=LabelTensor(torch.rand(size=(90, 2)), ['x', 'y']),
|
||||
conditional_variables=LabelTensor(torch.ones(size=(90, 1)), ['alpha']),
|
||||
)
|
||||
}
|
||||
|
||||
|
||||
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
poisson = Poisson()
|
||||
poisson.discretise_domain(10, 'grid', locations=boundaries)
|
||||
|
||||
|
||||
def test_sample():
|
||||
sample_dataset = SamplePointDataset(poisson, device='cpu')
|
||||
assert len(sample_dataset) == 140
|
||||
assert sample_dataset.pts.shape == (140, 2)
|
||||
assert sample_dataset.pts.labels == ['x', 'y']
|
||||
assert sample_dataset.condition_indeces.dtype == torch.int64
|
||||
assert sample_dataset.condition_indeces.max() == torch.tensor(4)
|
||||
assert sample_dataset.condition_indeces.min() == torch.tensor(0)
|
||||
assert sample_dataset.input_points.shape == (140, 2)
|
||||
assert sample_dataset.input_points.labels == ['x', 'y']
|
||||
assert sample_dataset.condition_indices.dtype == torch.uint8
|
||||
assert sample_dataset.condition_indices.max() == torch.tensor(4)
|
||||
assert sample_dataset.condition_indices.min() == torch.tensor(0)
|
||||
|
||||
|
||||
def test_data():
|
||||
dataset = DataPointDataset(poisson, device='cpu')
|
||||
dataset = SupervisedDataset(poisson, device='cpu')
|
||||
assert len(dataset) == 61
|
||||
assert dataset.input_pts.shape == (61, 2)
|
||||
assert dataset.input_pts.labels == ['x', 'y']
|
||||
assert dataset.output_pts.shape == (61, 1 )
|
||||
assert dataset.output_pts.labels == ['u']
|
||||
assert dataset.condition_indeces.dtype == torch.int64
|
||||
assert dataset.condition_indeces.max() == torch.tensor(1)
|
||||
assert dataset.condition_indeces.min() == torch.tensor(0)
|
||||
assert dataset['input_points'].shape == (61, 2)
|
||||
assert dataset.input_points.shape == (61, 2)
|
||||
assert dataset['input_points'].labels == ['x', 'y']
|
||||
assert dataset.input_points.labels == ['x', 'y']
|
||||
assert dataset['input_points', 3:].shape == (58, 2)
|
||||
assert dataset[3:][1].labels == ['u']
|
||||
assert dataset.output_points.shape == (61, 1)
|
||||
assert dataset.output_points.labels == ['u']
|
||||
assert dataset.condition_indices.dtype == torch.uint8
|
||||
assert dataset.condition_indices.max() == torch.tensor(1)
|
||||
assert dataset.condition_indices.min() == torch.tensor(0)
|
||||
|
||||
|
||||
def test_unsupervised():
|
||||
dataset = UnsupervisedDataset(poisson, device='cpu')
|
||||
assert len(dataset) == 135
|
||||
assert dataset.input_points.shape == (135, 2)
|
||||
assert dataset.input_points.labels == ['x', 'y']
|
||||
assert dataset.input_points[3:].shape == (132, 2)
|
||||
|
||||
assert dataset.conditional_variables.shape == (135, 1)
|
||||
assert dataset.conditional_variables.labels == ['alpha']
|
||||
assert dataset.condition_indices.dtype == torch.uint8
|
||||
assert dataset.condition_indices.max() == torch.tensor(1)
|
||||
assert dataset.condition_indices.min() == torch.tensor(0)
|
||||
|
||||
|
||||
def test_data_module():
|
||||
data_module = PinaDataModule(poisson, device='cpu')
|
||||
data_module.setup()
|
||||
loader = data_module.train_dataloader()
|
||||
assert isinstance(loader, PinaDataLoader)
|
||||
assert isinstance(loader, PinaDataLoader)
|
||||
|
||||
data_module = PinaDataModule(poisson, device='cpu', batch_size=10, shuffle=False)
|
||||
data_module.setup()
|
||||
loader = data_module.train_dataloader()
|
||||
assert len(loader) == 24
|
||||
for i in loader:
|
||||
assert len(i) <= 10
|
||||
len_ref = sum([math.ceil(len(dataset) * 0.7) for dataset in data_module.datasets])
|
||||
len_real = sum([len(dataset) for dataset in data_module.splits['train'].values()])
|
||||
assert len_ref == len_real
|
||||
|
||||
supervised_dataset = SupervisedDataset(poisson, device='cpu')
|
||||
data_module = PinaDataModule(poisson, device='cpu', batch_size=10, shuffle=False, datasets=[supervised_dataset])
|
||||
data_module.setup()
|
||||
loader = data_module.train_dataloader()
|
||||
for batch in loader:
|
||||
assert len(batch) <= 10
|
||||
|
||||
physics_dataset = SamplePointDataset(poisson, device='cpu')
|
||||
data_module = PinaDataModule(poisson, device='cpu', batch_size=10, shuffle=False, datasets=[physics_dataset])
|
||||
data_module.setup()
|
||||
loader = data_module.train_dataloader()
|
||||
for batch in loader:
|
||||
assert len(batch) <= 10
|
||||
|
||||
unsupervised_dataset = UnsupervisedDataset(poisson, device='cpu')
|
||||
data_module = PinaDataModule(poisson, device='cpu', batch_size=10, shuffle=False, datasets=[unsupervised_dataset])
|
||||
data_module.setup()
|
||||
loader = data_module.train_dataloader()
|
||||
for batch in loader:
|
||||
assert len(batch) <= 10
|
||||
|
||||
|
||||
def test_loader():
|
||||
sample_dataset = SamplePointDataset(poisson, device='cpu')
|
||||
data_dataset = DataPointDataset(poisson, device='cpu')
|
||||
loader = SamplePointLoader(sample_dataset, data_dataset, batch_size=10)
|
||||
|
||||
for batch in loader:
|
||||
assert len(batch) in [2, 3]
|
||||
assert batch['pts'].shape[0] <= 10
|
||||
assert batch['pts'].requires_grad == True
|
||||
assert batch['pts'].labels == ['x', 'y']
|
||||
|
||||
loader2 = SamplePointLoader(sample_dataset, data_dataset, batch_size=None)
|
||||
assert len(list(loader2)) == 2
|
||||
|
||||
def test_loader2():
|
||||
poisson2 = Poisson()
|
||||
del poisson.conditions['data2']
|
||||
del poisson2.conditions['data']
|
||||
poisson2.discretise_domain(10, 'grid', locations=boundaries)
|
||||
sample_dataset = SamplePointDataset(poisson, device='cpu')
|
||||
data_dataset = DataPointDataset(poisson, device='cpu')
|
||||
loader = SamplePointLoader(sample_dataset, data_dataset, batch_size=10)
|
||||
|
||||
for batch in loader:
|
||||
assert len(batch) == 2 # only phys condtions
|
||||
assert batch['pts'].shape[0] <= 10
|
||||
assert batch['pts'].requires_grad == True
|
||||
assert batch['pts'].labels == ['x', 'y']
|
||||
|
||||
def test_loader3():
|
||||
poisson2 = Poisson()
|
||||
del poisson.conditions['gamma1']
|
||||
del poisson.conditions['gamma2']
|
||||
del poisson.conditions['gamma3']
|
||||
del poisson.conditions['gamma4']
|
||||
del poisson.conditions['D']
|
||||
sample_dataset = SamplePointDataset(poisson, device='cpu')
|
||||
data_dataset = DataPointDataset(poisson, device='cpu')
|
||||
loader = SamplePointLoader(sample_dataset, data_dataset, batch_size=10)
|
||||
|
||||
for batch in loader:
|
||||
assert len(batch) == 2 # only phys condtions
|
||||
assert batch['pts'].shape[0] <= 10
|
||||
assert batch['pts'].requires_grad == True
|
||||
assert batch['pts'].labels == ['x', 'y']
|
||||
data_module = PinaDataModule(poisson, device='cpu', batch_size=10)
|
||||
data_module.setup()
|
||||
loader = data_module.train_dataloader()
|
||||
assert isinstance(loader, PinaDataLoader)
|
||||
assert len(loader) == 24
|
||||
for i in loader:
|
||||
assert len(i) <= 10
|
||||
assert i.supervised.input_points.labels == ['x', 'y']
|
||||
assert i.physics.input_points.labels == ['x', 'y']
|
||||
assert i.unsupervised.input_points.labels == ['x', 'y']
|
||||
assert i.supervised.input_points.requires_grad == True
|
||||
assert i.physics.input_points.requires_grad == True
|
||||
assert i.unsupervised.input_points.requires_grad == True
|
||||
test_loader()
|
||||
Reference in New Issue
Block a user