add dataset and dataloader for sample points (#195)
* add dataset and dataloader for sample points * unittests
This commit is contained in:
@@ -1,18 +1,19 @@
|
||||
""" Solver module. """
|
||||
|
||||
import lightning.pytorch as pl
|
||||
from pytorch_lightning import Trainer
|
||||
from .utils import check_consistency
|
||||
from .dataset import DummyLoader
|
||||
from .dataset import SamplePointDataset, SamplePointLoader, DataPointDataset
|
||||
from .solvers.solver import SolverInterface
|
||||
|
||||
class Trainer(pl.Trainer):
|
||||
class Trainer(Trainer):
|
||||
|
||||
def __init__(self, solver, **kwargs):
|
||||
def __init__(self, solver, batch_size=None, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
|
||||
# check inheritance consistency for solver
|
||||
check_consistency(solver, SolverInterface)
|
||||
self._model = solver
|
||||
self.batch_size = batch_size
|
||||
|
||||
# create dataloader
|
||||
if solver.problem.have_sampled_points is False:
|
||||
@@ -22,19 +23,31 @@ class Trainer(pl.Trainer):
|
||||
'discretise_domain function before train '
|
||||
'in the provided locations.')
|
||||
|
||||
# TODO: make a better dataloader for train
|
||||
self._create_or_update_loader()
|
||||
|
||||
# this method is used here because is resampling is needed
|
||||
# during training, there is no need to define to touch the
|
||||
# trainer dataloader, just call the method.
|
||||
def _create_or_update_loader(self):
|
||||
# get accellerator
|
||||
device = self._accelerator_connector._accelerator_flag
|
||||
self._loader = DummyLoader(self._model.problem.input_pts, device)
|
||||
"""
|
||||
This method is used here because is resampling is needed
|
||||
during training, there is no need to define to touch the
|
||||
trainer dataloader, just call the method.
|
||||
"""
|
||||
devices = self._accelerator_connector._parallel_devices
|
||||
|
||||
def train(self, **kwargs): # TODO add kwargs and lightining capabilities
|
||||
return super().fit(self._model, self._loader, **kwargs)
|
||||
if len(devices) > 1:
|
||||
raise RuntimeError('Parallel training is not supported yet.')
|
||||
|
||||
device = devices[0]
|
||||
dataset_phys = SamplePointDataset(self._model.problem, device)
|
||||
dataset_data = DataPointDataset(self._model.problem, device)
|
||||
self._loader = SamplePointLoader(
|
||||
dataset_phys, dataset_data, batch_size=self.batch_size,
|
||||
shuffle=True)
|
||||
|
||||
def train(self, **kwargs):
|
||||
"""
|
||||
Train the solver.
|
||||
"""
|
||||
return super().fit(self._model, train_dataloaders=self._loader, **kwargs)
|
||||
|
||||
@property
|
||||
def solver(self):
|
||||
|
||||
Reference in New Issue
Block a user