batch_enhancement (#51)
This commit is contained in:
167
pina/pinn.py
167
pina/pinn.py
@@ -3,30 +3,41 @@ import torch
|
||||
|
||||
from .problem import AbstractProblem
|
||||
from .label_tensor import LabelTensor
|
||||
from .utils import merge_tensors
|
||||
from .utils import merge_tensors, PinaDataset
|
||||
|
||||
torch.pi = torch.acos(torch.zeros(1)).item() * 2 # which is 3.1415927410125732
|
||||
|
||||
torch.pi = torch.acos(torch.zeros(1)).item() * 2 # which is 3.1415927410125732
|
||||
|
||||
|
||||
class PINN(object):
|
||||
|
||||
def __init__(self,
|
||||
problem,
|
||||
model,
|
||||
optimizer=torch.optim.Adam,
|
||||
lr=0.001,
|
||||
regularizer=0.00001,
|
||||
dtype=torch.float32,
|
||||
device='cpu',
|
||||
error_norm='mse'):
|
||||
problem,
|
||||
model,
|
||||
optimizer=torch.optim.Adam,
|
||||
lr=0.001,
|
||||
regularizer=0.00001,
|
||||
batch_size=None,
|
||||
dtype=torch.float32,
|
||||
device='cpu',
|
||||
error_norm='mse'):
|
||||
'''
|
||||
:param Problem problem: the formualation of the problem.
|
||||
:param torch.nn.Module model: the neural network model to use.
|
||||
:param torch.optim optimizer: the neural network optimizer to use;
|
||||
default is `torch.optim.Adam`.
|
||||
:param float lr: the learning rate; default is 0.001.
|
||||
:param float regularizer: the coefficient for L2 regularizer term.
|
||||
:param type dtype: the data type to use for the model. Valid option are
|
||||
`torch.float32` and `torch.float64` (`torch.float16` only on GPU);
|
||||
default is `torch.float64`.
|
||||
:param string device: the device used for training; default 'cpu'
|
||||
option include 'cuda' if cuda is available.
|
||||
:param string/int error_norm: the loss function used as minimizer,
|
||||
default mean square error 'mse'. If string options include mean
|
||||
error 'me' and mean square error 'mse'. If int, the p-norm is
|
||||
calculated where p is specifined by the int input.
|
||||
:param int batch_size: batch size for the dataloader; default 5.
|
||||
'''
|
||||
|
||||
if dtype == torch.float64:
|
||||
@@ -38,7 +49,7 @@ class PINN(object):
|
||||
# self._architecture['input_dimension'] = self.problem.domain_bound.shape[0]
|
||||
# self._architecture['output_dimension'] = len(self.problem.variables)
|
||||
# if hasattr(self.problem, 'params_domain'):
|
||||
# self._architecture['input_dimension'] += self.problem.params_domain.shape[0]
|
||||
# self._architecture['input_dimension'] += self.problem.params_domain.shape[0]
|
||||
|
||||
self.error_norm = error_norm
|
||||
|
||||
@@ -59,6 +70,9 @@ class PINN(object):
|
||||
self.optimizer = optimizer(
|
||||
self.model.parameters(), lr=lr, weight_decay=regularizer)
|
||||
|
||||
self.batch_size = batch_size
|
||||
self.data_set = PinaDataset(self)
|
||||
|
||||
@property
|
||||
def problem(self):
|
||||
return self._problem
|
||||
@@ -79,7 +93,7 @@ class PINN(object):
|
||||
:param vec torch.tensor: the tensor
|
||||
"""
|
||||
if isinstance(self.error_norm, int):
|
||||
return torch.linalg.vector_norm(vec, ord = self.error_norm, dtype=self.dytpe)
|
||||
return torch.linalg.vector_norm(vec, ord=self.error_norm, dtype=self.dytpe)
|
||||
elif self.error_norm == 'mse':
|
||||
return torch.mean(vec.pow(2))
|
||||
elif self.error_norm == 'me':
|
||||
@@ -90,16 +104,16 @@ class PINN(object):
|
||||
def save_state(self, filename):
|
||||
|
||||
checkpoint = {
|
||||
'epoch': self.trained_epoch,
|
||||
'model_state': self.model.state_dict(),
|
||||
'optimizer_state' : self.optimizer.state_dict(),
|
||||
'optimizer_class' : self.optimizer.__class__,
|
||||
'history' : self.history_loss,
|
||||
'input_points_dict' : self.input_pts,
|
||||
'epoch': self.trained_epoch,
|
||||
'model_state': self.model.state_dict(),
|
||||
'optimizer_state': self.optimizer.state_dict(),
|
||||
'optimizer_class': self.optimizer.__class__,
|
||||
'history': self.history_loss,
|
||||
'input_points_dict': self.input_pts,
|
||||
}
|
||||
|
||||
# TODO save also architecture param?
|
||||
#if isinstance(self.model, DeepFeedForward):
|
||||
# if isinstance(self.model, DeepFeedForward):
|
||||
# checkpoint['model_class'] = self.model.__class__
|
||||
# checkpoint['model_structure'] = {
|
||||
# }
|
||||
@@ -110,7 +124,6 @@ class PINN(object):
|
||||
checkpoint = torch.load(filename)
|
||||
self.model.load_state_dict(checkpoint['model_state'])
|
||||
|
||||
|
||||
self.optimizer = checkpoint['optimizer_class'](self.model.parameters())
|
||||
self.optimizer.load_state_dict(checkpoint['optimizer_state'])
|
||||
|
||||
@@ -121,6 +134,39 @@ class PINN(object):
|
||||
|
||||
return self
|
||||
|
||||
def _create_dataloader(self):
|
||||
"""Private method for creating dataloader
|
||||
|
||||
:return: dataloader
|
||||
:rtype: torch.utils.data.DataLoader
|
||||
"""
|
||||
if self.batch_size is None:
|
||||
return [self.input_pts]
|
||||
|
||||
def custom_collate(batch):
|
||||
# extracting pts labels
|
||||
_, pts = list(batch[0].items())[0]
|
||||
labels = pts.labels
|
||||
# calling default torch collate
|
||||
collate_res = default_collate(batch)
|
||||
# save collate result in dict
|
||||
res = {}
|
||||
for key, val in collate_res.items():
|
||||
val.labels = labels
|
||||
res[key] = val
|
||||
return res
|
||||
|
||||
# creating dataset, list of dataset for each location
|
||||
datasets = [MyDataSet(key, val)
|
||||
for key, val in self.input_pts.items()]
|
||||
# creating dataloader
|
||||
dataloaders = [DataLoader(dataset=dat,
|
||||
batch_size=self.batch_size,
|
||||
collate_fn=custom_collate)
|
||||
for dat in datasets]
|
||||
|
||||
return dict(zip(self.input_pts.keys(), dataloaders))
|
||||
|
||||
def span_pts(self, *args, **kwargs):
|
||||
"""
|
||||
>>> pinn.span_pts(n=10, mode='grid')
|
||||
@@ -155,59 +201,69 @@ class PINN(object):
|
||||
argument['n'],
|
||||
argument['mode'],
|
||||
variables=argument['variables'])
|
||||
for argument in arguments)
|
||||
for argument in arguments)
|
||||
pts = merge_tensors(samples)
|
||||
|
||||
# TODO
|
||||
# pts = pts.double()
|
||||
pts = pts.to(dtype=self.dtype, device=self.device)
|
||||
pts.requires_grad_(True)
|
||||
pts.retain_grad()
|
||||
|
||||
self.input_pts[location] = pts
|
||||
|
||||
def train(self, stop=100, frequency_print=2, save_loss=1, trial=None):
|
||||
|
||||
epoch = 0
|
||||
data_loader = self.data_set.dataloader
|
||||
|
||||
header = []
|
||||
for condition_name in self.problem.conditions:
|
||||
condition = self.problem.conditions[condition_name]
|
||||
|
||||
if (hasattr(condition, 'function') and
|
||||
isinstance(condition.function, list)):
|
||||
for function in condition.function:
|
||||
header.append(f'{condition_name}{function.__name__}')
|
||||
else:
|
||||
header.append(f'{condition_name}')
|
||||
if hasattr(condition, 'function'):
|
||||
if isinstance(condition.function, list):
|
||||
for function in condition.function:
|
||||
header.append(f'{condition_name}{function.__name__}')
|
||||
|
||||
continue
|
||||
|
||||
header.append(f'{condition_name}')
|
||||
|
||||
while True:
|
||||
|
||||
losses = []
|
||||
|
||||
for condition_name in self.problem.conditions:
|
||||
condition = self.problem.conditions[condition_name]
|
||||
|
||||
if hasattr(condition, 'function'):
|
||||
pts = self.input_pts[condition_name]
|
||||
predicted = self.model(pts)
|
||||
for function in condition.function:
|
||||
residuals = function(pts, predicted)
|
||||
for batch in data_loader[condition_name]:
|
||||
|
||||
single_loss = []
|
||||
|
||||
if hasattr(condition, 'function'):
|
||||
pts = batch[condition_name]
|
||||
pts = pts.to(dtype=self.dtype, device=self.device)
|
||||
pts.requires_grad_(True)
|
||||
pts.retain_grad()
|
||||
|
||||
predicted = self.model(pts)
|
||||
for function in condition.function:
|
||||
residuals = function(pts, predicted)
|
||||
local_loss = (
|
||||
condition.data_weight*self._compute_norm(
|
||||
residuals))
|
||||
single_loss.append(local_loss)
|
||||
elif hasattr(condition, 'output_points'):
|
||||
pts = condition.input_points.to(
|
||||
dtype=self.dtype, device=self.device)
|
||||
predicted = self.model(pts)
|
||||
residuals = predicted - condition.output_points
|
||||
local_loss = (
|
||||
condition.data_weight*self._compute_norm(
|
||||
residuals))
|
||||
losses.append(local_loss)
|
||||
elif hasattr(condition, 'output_points'):
|
||||
pts = condition.input_points
|
||||
predicted = self.model(pts)
|
||||
residuals = predicted - condition.output_points
|
||||
local_loss = (
|
||||
condition.data_weight*self._compute_norm(residuals))
|
||||
losses.append(local_loss)
|
||||
condition.data_weight*self._compute_norm(residuals))
|
||||
single_loss.append(local_loss)
|
||||
|
||||
self.optimizer.zero_grad()
|
||||
self.optimizer.zero_grad()
|
||||
sum(single_loss).backward()
|
||||
self.optimizer.step()
|
||||
|
||||
sum(losses).backward()
|
||||
self.optimizer.step()
|
||||
losses.append(sum(single_loss))
|
||||
|
||||
if save_loss and (epoch % save_loss == 0 or epoch == 0):
|
||||
self.history_loss[epoch] = [
|
||||
@@ -221,7 +277,8 @@ class PINN(object):
|
||||
|
||||
if isinstance(stop, int):
|
||||
if epoch == stop:
|
||||
print('[epoch {:05d}] {:.6e} '.format(self.trained_epoch, sum(losses).item()), end='')
|
||||
print('[epoch {:05d}] {:.6e} '.format(
|
||||
self.trained_epoch, sum(losses).item()), end='')
|
||||
for loss in losses:
|
||||
print('{:.6e} '.format(loss.item()), end='')
|
||||
print()
|
||||
@@ -236,7 +293,8 @@ class PINN(object):
|
||||
print('{:12.12s} '.format(name), end='')
|
||||
print()
|
||||
|
||||
print('[epoch {:05d}] {:.6e} '.format(self.trained_epoch, sum(losses).item()), end='')
|
||||
print('[epoch {:05d}] {:.6e} '.format(
|
||||
self.trained_epoch, sum(losses).item()), end='')
|
||||
for loss in losses:
|
||||
print('{:.6e} '.format(loss.item()), end='')
|
||||
print()
|
||||
@@ -246,7 +304,6 @@ class PINN(object):
|
||||
|
||||
return sum(losses).item()
|
||||
|
||||
|
||||
def error(self, dtype='l2', res=100):
|
||||
|
||||
import numpy as np
|
||||
@@ -261,7 +318,8 @@ class PINN(object):
|
||||
grids_container = self.problem.data_solution['grid']
|
||||
Z_true = self.problem.data_solution['grid_solution']
|
||||
try:
|
||||
unrolled_pts = torch.tensor([t.flatten() for t in grids_container]).T.to(dtype=self.dtype, device=self.device)
|
||||
unrolled_pts = torch.tensor([t.flatten() for t in grids_container]).T.to(
|
||||
dtype=self.dtype, device=self.device)
|
||||
Z_pred = self.model(unrolled_pts)
|
||||
Z_pred = Z_pred.detach().numpy().reshape(grids_container[0].shape)
|
||||
|
||||
@@ -273,4 +331,5 @@ class PINN(object):
|
||||
except:
|
||||
print("")
|
||||
print("Something went wrong...")
|
||||
print("Not able to compute the error. Please pass a data solution or a true solution")
|
||||
print(
|
||||
"Not able to compute the error. Please pass a data solution or a true solution")
|
||||
|
||||
Reference in New Issue
Block a user