Codacy correction
This commit is contained in:
committed by
Nicola Demo
parent
ea3d1924e7
commit
dd43c8304c
@@ -59,9 +59,11 @@ class BaseDataset(Dataset):
|
||||
keys = list(data.keys())
|
||||
if set(self.__slots__) == set(keys):
|
||||
self._populate_init_list(data)
|
||||
idx = [key for key, val in
|
||||
self.problem.collector.conditions_name.items() if
|
||||
val == name]
|
||||
idx = [
|
||||
key for key, val in
|
||||
self.problem.collector.conditions_name.items()
|
||||
if val == name
|
||||
]
|
||||
self.conditions_idx.append(idx)
|
||||
self.initialize()
|
||||
|
||||
@@ -89,15 +91,16 @@ class BaseDataset(Dataset):
|
||||
if isinstance(slot_data, (LabelTensor, torch.Tensor)):
|
||||
dims = len(slot_data.size())
|
||||
slot_data = slot_data.permute(
|
||||
[batching_dim] + [dim for dim in range(dims) if
|
||||
dim != batching_dim])
|
||||
[batching_dim] +
|
||||
[dim for dim in range(dims) if dim != batching_dim])
|
||||
if current_cond_num_el is None:
|
||||
current_cond_num_el = len(slot_data)
|
||||
elif current_cond_num_el != len(slot_data):
|
||||
raise ValueError('Different dimension in same condition')
|
||||
current_list = getattr(self, slot)
|
||||
current_list += [slot_data] if not (
|
||||
isinstance(slot_data, list)) else slot_data
|
||||
current_list += [
|
||||
slot_data
|
||||
] if not (isinstance(slot_data, list)) else slot_data
|
||||
self.num_el_per_condition.append(current_cond_num_el)
|
||||
|
||||
def initialize(self):
|
||||
@@ -108,14 +111,12 @@ class BaseDataset(Dataset):
|
||||
logging.debug(f'Initialize dataset {self.__class__.__name__}')
|
||||
|
||||
if self.num_el_per_condition:
|
||||
self.condition_indices = torch.cat(
|
||||
[
|
||||
torch.tensor([i] * self.num_el_per_condition[i],
|
||||
dtype=torch.uint8)
|
||||
for i in range(len(self.num_el_per_condition))
|
||||
],
|
||||
dim=0
|
||||
)
|
||||
self.condition_indices = torch.cat([
|
||||
torch.tensor([i] * self.num_el_per_condition[i],
|
||||
dtype=torch.uint8)
|
||||
for i in range(len(self.num_el_per_condition))
|
||||
],
|
||||
dim=0)
|
||||
for slot in self.__slots__:
|
||||
current_attribute = getattr(self, slot)
|
||||
if all(isinstance(a, LabelTensor) for a in current_attribute):
|
||||
|
||||
@@ -44,8 +44,9 @@ class PinaDataModule(LightningDataModule):
|
||||
super().__init__()
|
||||
self.problem = problem
|
||||
self.device = device
|
||||
self.dataset_classes = [SupervisedDataset, UnsupervisedDataset,
|
||||
SamplePointDataset]
|
||||
self.dataset_classes = [
|
||||
SupervisedDataset, UnsupervisedDataset, SamplePointDataset
|
||||
]
|
||||
if datasets is None:
|
||||
self.datasets = None
|
||||
else:
|
||||
@@ -71,15 +72,12 @@ class PinaDataModule(LightningDataModule):
|
||||
self.split_length.append(val_size)
|
||||
self.split_names.append('val')
|
||||
self.loader_functions['val_dataloader'] = lambda: PinaDataLoader(
|
||||
self.splits['val'], self.batch_size,
|
||||
self.condition_names)
|
||||
self.splits['val'], self.batch_size, self.condition_names)
|
||||
if predict_size > 0:
|
||||
self.split_length.append(predict_size)
|
||||
self.split_names.append('predict')
|
||||
self.loader_functions[
|
||||
'predict_dataloader'] = lambda: PinaDataLoader(
|
||||
self.splits['predict'], self.batch_size,
|
||||
self.condition_names)
|
||||
self.loader_functions['predict_dataloader'] = lambda: PinaDataLoader(
|
||||
self.splits['predict'], self.batch_size, self.condition_names)
|
||||
self.splits = {k: {} for k in self.split_names}
|
||||
self.shuffle = shuffle
|
||||
|
||||
@@ -104,8 +102,8 @@ class PinaDataModule(LightningDataModule):
|
||||
self.split_length,
|
||||
shuffle=self.shuffle)
|
||||
for i in range(len(self.split_length)):
|
||||
self.splits[
|
||||
self.split_names[i]][dataset.data_type] = splits[i]
|
||||
self.splits[self.split_names[i]][
|
||||
dataset.data_type] = splits[i]
|
||||
elif stage == 'test':
|
||||
raise NotImplementedError("Testing pipeline not implemented yet")
|
||||
else:
|
||||
@@ -137,14 +135,12 @@ class PinaDataModule(LightningDataModule):
|
||||
if seed is not None:
|
||||
generator = torch.Generator()
|
||||
generator.manual_seed(seed)
|
||||
indices = torch.randperm(sum(lengths),
|
||||
generator=generator)
|
||||
indices = torch.randperm(sum(lengths), generator=generator)
|
||||
else:
|
||||
indices = torch.randperm(sum(lengths))
|
||||
dataset.apply_shuffle(indices)
|
||||
|
||||
indices = torch.arange(0, sum(lengths), 1,
|
||||
dtype=torch.uint8).tolist()
|
||||
indices = torch.arange(0, sum(lengths), 1, dtype=torch.uint8).tolist()
|
||||
offsets = [
|
||||
sum(lengths[:i]) if i > 0 else 0 for i in range(len(lengths))
|
||||
]
|
||||
@@ -161,13 +157,16 @@ class PinaDataModule(LightningDataModule):
|
||||
collector = self.problem.collector
|
||||
batching_dim = self.problem.batching_dimension
|
||||
datasets_slots = [i.__slots__ for i in self.dataset_classes]
|
||||
self.datasets = [dataset(device=self.device) for dataset in
|
||||
self.dataset_classes]
|
||||
self.datasets = [
|
||||
dataset(device=self.device) for dataset in self.dataset_classes
|
||||
]
|
||||
logging.debug('Filling datasets in PinaDataModule obj')
|
||||
for name, data in collector.data_collections.items():
|
||||
keys = list(data.keys())
|
||||
idx = [key for key, val in collector.conditions_name.items() if
|
||||
val == name]
|
||||
idx = [
|
||||
key for key, val in collector.conditions_name.items()
|
||||
if val == name
|
||||
]
|
||||
for i, slot in enumerate(datasets_slots):
|
||||
if slot == keys:
|
||||
self.datasets[i].add_points(data, idx[0], batching_dim)
|
||||
|
||||
@@ -37,14 +37,11 @@ class Batch:
|
||||
if item in super().__getattribute__('attributes'):
|
||||
dataset = super().__getattribute__(item)
|
||||
index = super().__getattribute__(item + '_idx')
|
||||
return PinaSubset(
|
||||
dataset.dataset,
|
||||
dataset.indices[index])
|
||||
else:
|
||||
return super().__getattribute__(item)
|
||||
return PinaSubset(dataset.dataset, dataset.indices[index])
|
||||
return super().__getattribute__(item)
|
||||
|
||||
def __getattr__(self, item):
|
||||
if item == 'data' and len(self.attributes) == 1:
|
||||
item = self.attributes[0]
|
||||
return super().__getattribute__(item)
|
||||
raise AttributeError(f"'Batch' object has no attribute '{item}'")
|
||||
raise AttributeError(f"'Batch' object has no attribute '{item}'")
|
||||
|
||||
@@ -19,15 +19,17 @@ class SamplePointDataset(BaseDataset):
|
||||
data_dict.pop('equation')
|
||||
super().add_points(data_dict, condition_idx)
|
||||
|
||||
def _init_from_problem(self, collector_dict, batching_dim=0):
|
||||
def _init_from_problem(self, collector_dict):
|
||||
for name, data in collector_dict.items():
|
||||
keys = list(data.keys())
|
||||
if set(self.__slots__) == set(keys):
|
||||
data = deepcopy(data)
|
||||
data.pop('equation')
|
||||
self._populate_init_list(data)
|
||||
idx = [key for key, val in
|
||||
self.problem.collector.conditions_name.items() if
|
||||
val == name]
|
||||
idx = [
|
||||
key for key, val in
|
||||
self.problem.collector.conditions_name.items()
|
||||
if val == name
|
||||
]
|
||||
self.conditions_idx.append(idx)
|
||||
self.initialize()
|
||||
|
||||
Reference in New Issue
Block a user