batching for rbapinns

This commit is contained in:
giovanni
2025-06-16 14:17:54 +02:00
committed by Dario Coscia
parent 3778ef7ee2
commit de47d69fec
2 changed files with 215 additions and 91 deletions

View File

@@ -1,6 +1,5 @@
"""Module for the Residual-Based Attention PINN solver."""
from copy import deepcopy
import torch
from .pinn import PINN
@@ -98,6 +97,8 @@ class RBAPINN(PINN):
:param float gamma: The decay parameter in the update of the weights
of the residuals. Must be between ``0`` and ``1``.
Default is ``0.999``.
:raises: ValueError if `gamma` is not in the range (0, 1).
:raises: ValueError if `eta` is not greater than 0.
"""
super().__init__(
model=model,
@@ -111,78 +112,201 @@ class RBAPINN(PINN):
# check consistency
check_consistency(eta, (float, int))
check_consistency(gamma, float)
assert (
0 < gamma < 1
), f"Invalid range: expected 0 < gamma < 1, got {gamma=}"
# Validate range for gamma
if not 0 < gamma < 1:
raise ValueError(
f"Invalid range: expected 0 < gamma < 1, but got {gamma}"
)
# Validate range for eta
if eta <= 0:
raise ValueError(f"Invalid range: expected eta > 0, but got {eta}")
# Initialize parameters
self.eta = eta
self.gamma = gamma
# initialize weights
# Initialize the weight of each point to 0
self.weights = {}
for condition_name in problem.conditions:
self.weights[condition_name] = 0
for cond, data in self.problem.input_pts.items():
buffer_tensor = torch.zeros((len(data), 1), device=self.device)
self.register_buffer(f"weight_{cond}", buffer_tensor)
self.weights[cond] = getattr(self, f"weight_{cond}")
# define vectorial loss
self._vectorial_loss = deepcopy(self.loss)
self._vectorial_loss.reduction = "none"
# Extract the reduction method from the loss function
self._reduction = self._loss_fn.reduction
# for now RBAPINN is implemented only for batch_size = None
def on_train_start(self):
# Set the loss function to return non-aggregated losses
self._loss_fn = type(self._loss_fn)(reduction="none")
def training_step(self, batch, batch_idx, **kwargs):
"""
Hook method called at the beginning of training.
Solver training step. It computes the optimization cycle and aggregates
the losses using the ``weighting`` attribute.
:raises NotImplementedError: If the batch size is not ``None``.
:param list[tuple[str, dict]] batch: A batch of data. Each element is a
tuple containing a condition name and a dictionary of points.
:param int batch_idx: The index of the current batch.
:param dict kwargs: Additional keyword arguments passed to
``optimization_cycle``.
:return: The loss of the training step.
:rtype: torch.Tensor
"""
if self.trainer.batch_size is not None:
raise NotImplementedError(
"RBAPINN only works with full batch "
"size, set batch_size=None inside the "
"Trainer to use the solver."
)
return super().on_train_start()
def _vect_to_scalar(self, loss_value):
"""
Computation of the scalar loss.
:param LabelTensor loss_value: the tensor of pointwise losses.
:raises RuntimeError: If the loss reduction is not ``mean`` or ``sum``.
:return: The computed scalar loss.
:rtype: LabelTensor
"""
if self.loss.reduction == "mean":
ret = torch.mean(loss_value)
elif self.loss.reduction == "sum":
ret = torch.sum(loss_value)
else:
raise RuntimeError(
f"Invalid reduction, got {self.loss.reduction} "
"but expected mean or sum."
)
return ret
def loss_phys(self, samples, equation):
"""
Computes the physics loss for the physics-informed solver based on the
provided samples and equation.
:param LabelTensor samples: The samples to evaluate the physics loss.
:param EquationInterface equation: The governing equation.
:return: The computed physics loss.
:rtype: LabelTensor
"""
residual = self.compute_residual(samples=samples, equation=equation)
cond = self.current_condition_name
r_norm = (
self.eta
* torch.abs(residual)
/ (torch.max(torch.abs(residual)) + 1e-12)
loss = self._optimization_cycle(
batch=batch, batch_idx=batch_idx, **kwargs
)
self.weights[cond] = (self.gamma * self.weights[cond] + r_norm).detach()
self.store_log("train_loss", loss, self.get_batch_size(batch))
return loss
loss_value = self._vectorial_loss(
torch.zeros_like(residual, requires_grad=True), residual
@torch.set_grad_enabled(True)
def validation_step(self, batch, **kwargs):
"""
The validation step for the PINN solver. It returns the average residual
computed with the ``loss`` function not aggregated.
:param list[tuple[str, dict]] batch: A batch of data. Each element is a
tuple containing a condition name and a dictionary of points.
:param dict kwargs: Additional keyword arguments passed to
``optimization_cycle``.
:return: The loss of the validation step.
:rtype: torch.Tensor
"""
losses = self.optimization_cycle(batch=batch, **kwargs)
# Aggregate losses for each condition
for cond, loss in losses.items():
losses[cond] = self._apply_reduction(loss=losses[cond])
loss = (sum(losses.values()) / len(losses)).as_subclass(torch.Tensor)
self.store_log("val_loss", loss, self.get_batch_size(batch))
return loss
@torch.set_grad_enabled(True)
def test_step(self, batch, **kwargs):
"""
The test step for the PINN solver. It returns the average residual
computed with the ``loss`` function not aggregated.
:param list[tuple[str, dict]] batch: A batch of data. Each element is a
tuple containing a condition name and a dictionary of points.
:param dict kwargs: Additional keyword arguments passed to
``optimization_cycle``.
:return: The loss of the test step.
:rtype: torch.Tensor
"""
losses = self.optimization_cycle(batch=batch, **kwargs)
# Aggregate losses for each condition
for cond, loss in losses.items():
losses[cond] = self._apply_reduction(loss=losses[cond])
loss = (sum(losses.values()) / len(losses)).as_subclass(torch.Tensor)
self.store_log("test_loss", loss, self.get_batch_size(batch))
return loss
def _optimization_cycle(self, batch, batch_idx, **kwargs):
"""
Aggregate the loss for each condition in the batch.
:param list[tuple[str, dict]] batch: A batch of data. Each element is a
tuple containing a condition name and a dictionary of points.
:param int batch_idx: The index of the current batch.
:param dict kwargs: Additional keyword arguments passed to
``optimization_cycle``.
:return: The losses computed for all conditions in the batch, casted
to a subclass of :class:`torch.Tensor`. It should return a dict
containing the condition name and the associated scalar loss.
:rtype: dict
"""
# compute non-aggregated residuals
residuals = self.optimization_cycle(batch)
# update weights based on residuals
self._update_weights(batch, batch_idx, residuals)
# compute losses
losses = {}
for cond, res in residuals.items():
# Get the correct indices for the weights. Modulus is used according
# to the number of points in the condition, as in the PinaDataset.
len_res = len(res)
idx = torch.arange(
batch_idx * len_res,
(batch_idx + 1) * len_res,
device=res.device,
) % len(self.problem.input_pts[cond])
losses[cond] = self._apply_reduction(
loss=(res * self.weights[cond][idx])
)
# store log
self.store_log(
f"{cond}_loss", losses[cond].item(), self.get_batch_size(batch)
)
# clamp unknown parameters in InverseProblem (if needed)
self._clamp_params()
# aggregate
loss = self.weighting.aggregate(losses).as_subclass(torch.Tensor)
return loss
def _update_weights(self, batch, batch_idx, residuals):
"""
Update weights based on residuals.
:param list[tuple[str, dict]] batch: A batch of data. Each element is a
tuple containing a condition name and a dictionary of points.
:param int batch_idx: The index of the current batch.
:param dict residuals: A dictionary containing the residuals for each
condition. The keys are the condition names and the values are the
residuals as tensors.
"""
# Iterate over each condition in the batch
for cond, data in batch:
# Compute normalized residuals
res = residuals[cond]
res_abs = res.abs()
r_norm = (self.eta * res_abs) / (res_abs.max() + 1e-12)
# Get the correct indices for the weights. Modulus is used according
# to the number of points in the condition, as in the PinaDataset.
len_pts = len(data["input"])
idx = torch.arange(
batch_idx * len_pts,
(batch_idx + 1) * len_pts,
device=res.device,
) % len(self.problem.input_pts[cond])
# Update weights
weights = self.weights[cond]
update = self.gamma * weights[idx] + r_norm
weights[idx] = update.detach()
def _apply_reduction(self, loss):
"""
Apply the specified reduction to the loss. The reduction is deferred
until the end of the optimization cycle to allow residual-based weights
to be applied to each point beforehand.
:param torch.Tensor loss: The loss tensor to be reduced.
:return: The reduced loss tensor.
:rtype: torch.Tensor
:raises ValueError: If the reduction method is neither "mean" nor "sum".
"""
# Apply the specified reduction method
if self._reduction == "mean":
return loss.mean()
if self._reduction == "sum":
return loss.sum()
# Raise an error if the reduction method is not recognized
raise ValueError(
f"Unknown reduction: {self._reduction}."
" Supported reductions are 'mean' and 'sum'."
)
return self._vect_to_scalar(self.weights[cond] ** 2 * loss_value)

View File

@@ -42,10 +42,14 @@ model = FeedForward(len(problem.input_variables), len(problem.output_variables))
@pytest.mark.parametrize("eta", [1, 0.001])
@pytest.mark.parametrize("gamma", [0.5, 0.9])
def test_constructor(problem, eta, gamma):
with pytest.raises(AssertionError):
solver = RBAPINN(model=model, problem=problem, gamma=1.5)
solver = RBAPINN(model=model, problem=problem, eta=eta, gamma=gamma)
with pytest.raises(ValueError):
solver = RBAPINN(model=model, problem=problem, gamma=1.5)
with pytest.raises(ValueError):
solver = RBAPINN(model=model, problem=problem, eta=-0.1)
assert solver.accepted_conditions_types == (
InputTargetCondition,
InputEquationCondition,
@@ -54,30 +58,18 @@ def test_constructor(problem, eta, gamma):
@pytest.mark.parametrize("problem", [problem, inverse_problem])
def test_wrong_batch(problem):
with pytest.raises(NotImplementedError):
solver = RBAPINN(model=model, problem=problem)
trainer = Trainer(
solver=solver,
max_epochs=2,
accelerator="cpu",
batch_size=10,
train_size=1.0,
val_size=0.0,
test_size=0.0,
)
trainer.train()
@pytest.mark.parametrize("problem", [problem, inverse_problem])
@pytest.mark.parametrize("batch_size", [None, 1, 5, 20])
@pytest.mark.parametrize("compile", [True, False])
def test_solver_train(problem, compile):
solver = RBAPINN(model=model, problem=problem)
@pytest.mark.parametrize(
"loss", [torch.nn.L1Loss(reduction="sum"), torch.nn.MSELoss()]
)
def test_solver_train(problem, batch_size, loss, compile):
solver = RBAPINN(model=model, problem=problem, loss=loss)
trainer = Trainer(
solver=solver,
max_epochs=2,
accelerator="cpu",
batch_size=None,
batch_size=batch_size,
train_size=1.0,
val_size=0.0,
test_size=0.0,
@@ -89,14 +81,18 @@ def test_solver_train(problem, compile):
@pytest.mark.parametrize("problem", [problem, inverse_problem])
@pytest.mark.parametrize("batch_size", [None, 1, 5, 20])
@pytest.mark.parametrize("compile", [True, False])
def test_solver_validation(problem, compile):
solver = RBAPINN(model=model, problem=problem)
@pytest.mark.parametrize(
"loss", [torch.nn.L1Loss(reduction="sum"), torch.nn.MSELoss()]
)
def test_solver_validation(problem, batch_size, loss, compile):
solver = RBAPINN(model=model, problem=problem, loss=loss)
trainer = Trainer(
solver=solver,
max_epochs=2,
accelerator="cpu",
batch_size=None,
batch_size=batch_size,
train_size=0.9,
val_size=0.1,
test_size=0.0,
@@ -108,14 +104,18 @@ def test_solver_validation(problem, compile):
@pytest.mark.parametrize("problem", [problem, inverse_problem])
@pytest.mark.parametrize("batch_size", [None, 1, 5, 20])
@pytest.mark.parametrize("compile", [True, False])
def test_solver_test(problem, compile):
solver = RBAPINN(model=model, problem=problem)
@pytest.mark.parametrize(
"loss", [torch.nn.L1Loss(reduction="sum"), torch.nn.MSELoss()]
)
def test_solver_test(problem, batch_size, loss, compile):
solver = RBAPINN(model=model, problem=problem, loss=loss)
trainer = Trainer(
solver=solver,
max_epochs=2,
accelerator="cpu",
batch_size=None,
batch_size=batch_size,
train_size=0.7,
val_size=0.2,
test_size=0.1,