batching for rbapinns
This commit is contained in:
@@ -1,6 +1,5 @@
|
||||
"""Module for the Residual-Based Attention PINN solver."""
|
||||
|
||||
from copy import deepcopy
|
||||
import torch
|
||||
|
||||
from .pinn import PINN
|
||||
@@ -98,6 +97,8 @@ class RBAPINN(PINN):
|
||||
:param float gamma: The decay parameter in the update of the weights
|
||||
of the residuals. Must be between ``0`` and ``1``.
|
||||
Default is ``0.999``.
|
||||
:raises: ValueError if `gamma` is not in the range (0, 1).
|
||||
:raises: ValueError if `eta` is not greater than 0.
|
||||
"""
|
||||
super().__init__(
|
||||
model=model,
|
||||
@@ -111,78 +112,201 @@ class RBAPINN(PINN):
|
||||
# check consistency
|
||||
check_consistency(eta, (float, int))
|
||||
check_consistency(gamma, float)
|
||||
assert (
|
||||
0 < gamma < 1
|
||||
), f"Invalid range: expected 0 < gamma < 1, got {gamma=}"
|
||||
|
||||
# Validate range for gamma
|
||||
if not 0 < gamma < 1:
|
||||
raise ValueError(
|
||||
f"Invalid range: expected 0 < gamma < 1, but got {gamma}"
|
||||
)
|
||||
|
||||
# Validate range for eta
|
||||
if eta <= 0:
|
||||
raise ValueError(f"Invalid range: expected eta > 0, but got {eta}")
|
||||
|
||||
# Initialize parameters
|
||||
self.eta = eta
|
||||
self.gamma = gamma
|
||||
|
||||
# initialize weights
|
||||
# Initialize the weight of each point to 0
|
||||
self.weights = {}
|
||||
for condition_name in problem.conditions:
|
||||
self.weights[condition_name] = 0
|
||||
for cond, data in self.problem.input_pts.items():
|
||||
buffer_tensor = torch.zeros((len(data), 1), device=self.device)
|
||||
self.register_buffer(f"weight_{cond}", buffer_tensor)
|
||||
self.weights[cond] = getattr(self, f"weight_{cond}")
|
||||
|
||||
# define vectorial loss
|
||||
self._vectorial_loss = deepcopy(self.loss)
|
||||
self._vectorial_loss.reduction = "none"
|
||||
# Extract the reduction method from the loss function
|
||||
self._reduction = self._loss_fn.reduction
|
||||
|
||||
# for now RBAPINN is implemented only for batch_size = None
|
||||
def on_train_start(self):
|
||||
# Set the loss function to return non-aggregated losses
|
||||
self._loss_fn = type(self._loss_fn)(reduction="none")
|
||||
|
||||
def training_step(self, batch, batch_idx, **kwargs):
|
||||
"""
|
||||
Hook method called at the beginning of training.
|
||||
Solver training step. It computes the optimization cycle and aggregates
|
||||
the losses using the ``weighting`` attribute.
|
||||
|
||||
:raises NotImplementedError: If the batch size is not ``None``.
|
||||
:param list[tuple[str, dict]] batch: A batch of data. Each element is a
|
||||
tuple containing a condition name and a dictionary of points.
|
||||
:param int batch_idx: The index of the current batch.
|
||||
:param dict kwargs: Additional keyword arguments passed to
|
||||
``optimization_cycle``.
|
||||
:return: The loss of the training step.
|
||||
:rtype: torch.Tensor
|
||||
"""
|
||||
if self.trainer.batch_size is not None:
|
||||
raise NotImplementedError(
|
||||
"RBAPINN only works with full batch "
|
||||
"size, set batch_size=None inside the "
|
||||
"Trainer to use the solver."
|
||||
)
|
||||
return super().on_train_start()
|
||||
|
||||
def _vect_to_scalar(self, loss_value):
|
||||
"""
|
||||
Computation of the scalar loss.
|
||||
|
||||
:param LabelTensor loss_value: the tensor of pointwise losses.
|
||||
:raises RuntimeError: If the loss reduction is not ``mean`` or ``sum``.
|
||||
:return: The computed scalar loss.
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
if self.loss.reduction == "mean":
|
||||
ret = torch.mean(loss_value)
|
||||
elif self.loss.reduction == "sum":
|
||||
ret = torch.sum(loss_value)
|
||||
else:
|
||||
raise RuntimeError(
|
||||
f"Invalid reduction, got {self.loss.reduction} "
|
||||
"but expected mean or sum."
|
||||
)
|
||||
return ret
|
||||
|
||||
def loss_phys(self, samples, equation):
|
||||
"""
|
||||
Computes the physics loss for the physics-informed solver based on the
|
||||
provided samples and equation.
|
||||
|
||||
:param LabelTensor samples: The samples to evaluate the physics loss.
|
||||
:param EquationInterface equation: The governing equation.
|
||||
:return: The computed physics loss.
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
residual = self.compute_residual(samples=samples, equation=equation)
|
||||
cond = self.current_condition_name
|
||||
|
||||
r_norm = (
|
||||
self.eta
|
||||
* torch.abs(residual)
|
||||
/ (torch.max(torch.abs(residual)) + 1e-12)
|
||||
loss = self._optimization_cycle(
|
||||
batch=batch, batch_idx=batch_idx, **kwargs
|
||||
)
|
||||
self.weights[cond] = (self.gamma * self.weights[cond] + r_norm).detach()
|
||||
self.store_log("train_loss", loss, self.get_batch_size(batch))
|
||||
return loss
|
||||
|
||||
loss_value = self._vectorial_loss(
|
||||
torch.zeros_like(residual, requires_grad=True), residual
|
||||
@torch.set_grad_enabled(True)
|
||||
def validation_step(self, batch, **kwargs):
|
||||
"""
|
||||
The validation step for the PINN solver. It returns the average residual
|
||||
computed with the ``loss`` function not aggregated.
|
||||
|
||||
:param list[tuple[str, dict]] batch: A batch of data. Each element is a
|
||||
tuple containing a condition name and a dictionary of points.
|
||||
:param dict kwargs: Additional keyword arguments passed to
|
||||
``optimization_cycle``.
|
||||
:return: The loss of the validation step.
|
||||
:rtype: torch.Tensor
|
||||
"""
|
||||
losses = self.optimization_cycle(batch=batch, **kwargs)
|
||||
|
||||
# Aggregate losses for each condition
|
||||
for cond, loss in losses.items():
|
||||
losses[cond] = self._apply_reduction(loss=losses[cond])
|
||||
|
||||
loss = (sum(losses.values()) / len(losses)).as_subclass(torch.Tensor)
|
||||
self.store_log("val_loss", loss, self.get_batch_size(batch))
|
||||
return loss
|
||||
|
||||
@torch.set_grad_enabled(True)
|
||||
def test_step(self, batch, **kwargs):
|
||||
"""
|
||||
The test step for the PINN solver. It returns the average residual
|
||||
computed with the ``loss`` function not aggregated.
|
||||
|
||||
:param list[tuple[str, dict]] batch: A batch of data. Each element is a
|
||||
tuple containing a condition name and a dictionary of points.
|
||||
:param dict kwargs: Additional keyword arguments passed to
|
||||
``optimization_cycle``.
|
||||
:return: The loss of the test step.
|
||||
:rtype: torch.Tensor
|
||||
"""
|
||||
losses = self.optimization_cycle(batch=batch, **kwargs)
|
||||
|
||||
# Aggregate losses for each condition
|
||||
for cond, loss in losses.items():
|
||||
losses[cond] = self._apply_reduction(loss=losses[cond])
|
||||
|
||||
loss = (sum(losses.values()) / len(losses)).as_subclass(torch.Tensor)
|
||||
self.store_log("test_loss", loss, self.get_batch_size(batch))
|
||||
return loss
|
||||
|
||||
def _optimization_cycle(self, batch, batch_idx, **kwargs):
|
||||
"""
|
||||
Aggregate the loss for each condition in the batch.
|
||||
|
||||
:param list[tuple[str, dict]] batch: A batch of data. Each element is a
|
||||
tuple containing a condition name and a dictionary of points.
|
||||
:param int batch_idx: The index of the current batch.
|
||||
:param dict kwargs: Additional keyword arguments passed to
|
||||
``optimization_cycle``.
|
||||
:return: The losses computed for all conditions in the batch, casted
|
||||
to a subclass of :class:`torch.Tensor`. It should return a dict
|
||||
containing the condition name and the associated scalar loss.
|
||||
:rtype: dict
|
||||
"""
|
||||
# compute non-aggregated residuals
|
||||
residuals = self.optimization_cycle(batch)
|
||||
|
||||
# update weights based on residuals
|
||||
self._update_weights(batch, batch_idx, residuals)
|
||||
|
||||
# compute losses
|
||||
losses = {}
|
||||
for cond, res in residuals.items():
|
||||
|
||||
# Get the correct indices for the weights. Modulus is used according
|
||||
# to the number of points in the condition, as in the PinaDataset.
|
||||
len_res = len(res)
|
||||
idx = torch.arange(
|
||||
batch_idx * len_res,
|
||||
(batch_idx + 1) * len_res,
|
||||
device=res.device,
|
||||
) % len(self.problem.input_pts[cond])
|
||||
|
||||
losses[cond] = self._apply_reduction(
|
||||
loss=(res * self.weights[cond][idx])
|
||||
)
|
||||
|
||||
# store log
|
||||
self.store_log(
|
||||
f"{cond}_loss", losses[cond].item(), self.get_batch_size(batch)
|
||||
)
|
||||
|
||||
# clamp unknown parameters in InverseProblem (if needed)
|
||||
self._clamp_params()
|
||||
|
||||
# aggregate
|
||||
loss = self.weighting.aggregate(losses).as_subclass(torch.Tensor)
|
||||
|
||||
return loss
|
||||
|
||||
def _update_weights(self, batch, batch_idx, residuals):
|
||||
"""
|
||||
Update weights based on residuals.
|
||||
|
||||
:param list[tuple[str, dict]] batch: A batch of data. Each element is a
|
||||
tuple containing a condition name and a dictionary of points.
|
||||
:param int batch_idx: The index of the current batch.
|
||||
:param dict residuals: A dictionary containing the residuals for each
|
||||
condition. The keys are the condition names and the values are the
|
||||
residuals as tensors.
|
||||
"""
|
||||
# Iterate over each condition in the batch
|
||||
for cond, data in batch:
|
||||
|
||||
# Compute normalized residuals
|
||||
res = residuals[cond]
|
||||
res_abs = res.abs()
|
||||
r_norm = (self.eta * res_abs) / (res_abs.max() + 1e-12)
|
||||
|
||||
# Get the correct indices for the weights. Modulus is used according
|
||||
# to the number of points in the condition, as in the PinaDataset.
|
||||
len_pts = len(data["input"])
|
||||
idx = torch.arange(
|
||||
batch_idx * len_pts,
|
||||
(batch_idx + 1) * len_pts,
|
||||
device=res.device,
|
||||
) % len(self.problem.input_pts[cond])
|
||||
|
||||
# Update weights
|
||||
weights = self.weights[cond]
|
||||
update = self.gamma * weights[idx] + r_norm
|
||||
weights[idx] = update.detach()
|
||||
|
||||
def _apply_reduction(self, loss):
|
||||
"""
|
||||
Apply the specified reduction to the loss. The reduction is deferred
|
||||
until the end of the optimization cycle to allow residual-based weights
|
||||
to be applied to each point beforehand.
|
||||
|
||||
:param torch.Tensor loss: The loss tensor to be reduced.
|
||||
:return: The reduced loss tensor.
|
||||
:rtype: torch.Tensor
|
||||
:raises ValueError: If the reduction method is neither "mean" nor "sum".
|
||||
"""
|
||||
# Apply the specified reduction method
|
||||
if self._reduction == "mean":
|
||||
return loss.mean()
|
||||
if self._reduction == "sum":
|
||||
return loss.sum()
|
||||
|
||||
# Raise an error if the reduction method is not recognized
|
||||
raise ValueError(
|
||||
f"Unknown reduction: {self._reduction}."
|
||||
" Supported reductions are 'mean' and 'sum'."
|
||||
)
|
||||
|
||||
return self._vect_to_scalar(self.weights[cond] ** 2 * loss_value)
|
||||
|
||||
@@ -42,10 +42,14 @@ model = FeedForward(len(problem.input_variables), len(problem.output_variables))
|
||||
@pytest.mark.parametrize("eta", [1, 0.001])
|
||||
@pytest.mark.parametrize("gamma", [0.5, 0.9])
|
||||
def test_constructor(problem, eta, gamma):
|
||||
with pytest.raises(AssertionError):
|
||||
solver = RBAPINN(model=model, problem=problem, gamma=1.5)
|
||||
solver = RBAPINN(model=model, problem=problem, eta=eta, gamma=gamma)
|
||||
|
||||
with pytest.raises(ValueError):
|
||||
solver = RBAPINN(model=model, problem=problem, gamma=1.5)
|
||||
|
||||
with pytest.raises(ValueError):
|
||||
solver = RBAPINN(model=model, problem=problem, eta=-0.1)
|
||||
|
||||
assert solver.accepted_conditions_types == (
|
||||
InputTargetCondition,
|
||||
InputEquationCondition,
|
||||
@@ -54,30 +58,18 @@ def test_constructor(problem, eta, gamma):
|
||||
|
||||
|
||||
@pytest.mark.parametrize("problem", [problem, inverse_problem])
|
||||
def test_wrong_batch(problem):
|
||||
with pytest.raises(NotImplementedError):
|
||||
solver = RBAPINN(model=model, problem=problem)
|
||||
trainer = Trainer(
|
||||
solver=solver,
|
||||
max_epochs=2,
|
||||
accelerator="cpu",
|
||||
batch_size=10,
|
||||
train_size=1.0,
|
||||
val_size=0.0,
|
||||
test_size=0.0,
|
||||
)
|
||||
trainer.train()
|
||||
|
||||
|
||||
@pytest.mark.parametrize("problem", [problem, inverse_problem])
|
||||
@pytest.mark.parametrize("batch_size", [None, 1, 5, 20])
|
||||
@pytest.mark.parametrize("compile", [True, False])
|
||||
def test_solver_train(problem, compile):
|
||||
solver = RBAPINN(model=model, problem=problem)
|
||||
@pytest.mark.parametrize(
|
||||
"loss", [torch.nn.L1Loss(reduction="sum"), torch.nn.MSELoss()]
|
||||
)
|
||||
def test_solver_train(problem, batch_size, loss, compile):
|
||||
solver = RBAPINN(model=model, problem=problem, loss=loss)
|
||||
trainer = Trainer(
|
||||
solver=solver,
|
||||
max_epochs=2,
|
||||
accelerator="cpu",
|
||||
batch_size=None,
|
||||
batch_size=batch_size,
|
||||
train_size=1.0,
|
||||
val_size=0.0,
|
||||
test_size=0.0,
|
||||
@@ -89,14 +81,18 @@ def test_solver_train(problem, compile):
|
||||
|
||||
|
||||
@pytest.mark.parametrize("problem", [problem, inverse_problem])
|
||||
@pytest.mark.parametrize("batch_size", [None, 1, 5, 20])
|
||||
@pytest.mark.parametrize("compile", [True, False])
|
||||
def test_solver_validation(problem, compile):
|
||||
solver = RBAPINN(model=model, problem=problem)
|
||||
@pytest.mark.parametrize(
|
||||
"loss", [torch.nn.L1Loss(reduction="sum"), torch.nn.MSELoss()]
|
||||
)
|
||||
def test_solver_validation(problem, batch_size, loss, compile):
|
||||
solver = RBAPINN(model=model, problem=problem, loss=loss)
|
||||
trainer = Trainer(
|
||||
solver=solver,
|
||||
max_epochs=2,
|
||||
accelerator="cpu",
|
||||
batch_size=None,
|
||||
batch_size=batch_size,
|
||||
train_size=0.9,
|
||||
val_size=0.1,
|
||||
test_size=0.0,
|
||||
@@ -108,14 +104,18 @@ def test_solver_validation(problem, compile):
|
||||
|
||||
|
||||
@pytest.mark.parametrize("problem", [problem, inverse_problem])
|
||||
@pytest.mark.parametrize("batch_size", [None, 1, 5, 20])
|
||||
@pytest.mark.parametrize("compile", [True, False])
|
||||
def test_solver_test(problem, compile):
|
||||
solver = RBAPINN(model=model, problem=problem)
|
||||
@pytest.mark.parametrize(
|
||||
"loss", [torch.nn.L1Loss(reduction="sum"), torch.nn.MSELoss()]
|
||||
)
|
||||
def test_solver_test(problem, batch_size, loss, compile):
|
||||
solver = RBAPINN(model=model, problem=problem, loss=loss)
|
||||
trainer = Trainer(
|
||||
solver=solver,
|
||||
max_epochs=2,
|
||||
accelerator="cpu",
|
||||
batch_size=None,
|
||||
batch_size=batch_size,
|
||||
train_size=0.7,
|
||||
val_size=0.2,
|
||||
test_size=0.1,
|
||||
|
||||
Reference in New Issue
Block a user