Trainer train simplified, tests for load (#168)
- the arguments of Trainer.train now are passed to the fit - unittest for load/restoring from checkpoint
This commit is contained in:
@@ -7,7 +7,7 @@ from .solvers.solver import SolverInterface
|
||||
|
||||
class Trainer(pl.Trainer):
|
||||
|
||||
def __init__(self, solver, kwargs={}):
|
||||
def __init__(self, solver, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
|
||||
# get accellerator
|
||||
@@ -29,6 +29,6 @@ class Trainer(pl.Trainer):
|
||||
self._loader = DummyLoader(solver.problem.input_pts, device)
|
||||
|
||||
|
||||
def train(self): # TODO add kwargs and lightining capabilities
|
||||
return super().fit(self._model, self._loader)
|
||||
def train(self, **kwargs): # TODO add kwargs and lightining capabilities
|
||||
return super().fit(self._model, self._loader, **kwargs)
|
||||
|
||||
|
||||
@@ -134,7 +134,7 @@ def test_train_cpu():
|
||||
hidden_dimension=64)
|
||||
)
|
||||
|
||||
trainer = Trainer(solver=solver, kwargs={'max_epochs' : 4, 'accelerator': 'cpu'})
|
||||
trainer = Trainer(solver=solver, max_epochs=4, accelerator='cpu')
|
||||
trainer.train()
|
||||
|
||||
def test_sample():
|
||||
|
||||
@@ -56,12 +56,12 @@ class Poisson(SpatialProblem):
|
||||
|
||||
truth_solution = poisson_sol
|
||||
|
||||
|
||||
class myFeature(torch.nn.Module):
|
||||
"""
|
||||
Feature: sin(x)
|
||||
"""
|
||||
|
||||
|
||||
def __init__(self):
|
||||
super(myFeature, self).__init__()
|
||||
|
||||
@@ -92,9 +92,46 @@ def test_train_cpu():
|
||||
n = 10
|
||||
poisson_problem.discretise_domain(n, 'grid', locations=boundaries)
|
||||
pinn = PINN(problem = poisson_problem, model=model, extra_features=None, loss=LpLoss())
|
||||
trainer = Trainer(solver=pinn, kwargs={'max_epochs' : 5, 'accelerator':'cpu'})
|
||||
trainer = Trainer(solver=pinn, max_epochs=5, accelerator='cpu')
|
||||
trainer.train()
|
||||
|
||||
def test_train_restore():
|
||||
tmpdir = "tests/tmp_restore"
|
||||
poisson_problem = Poisson()
|
||||
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
n = 10
|
||||
poisson_problem.discretise_domain(n, 'grid', locations=boundaries)
|
||||
pinn = PINN(problem = poisson_problem, model=model, extra_features=None, loss=LpLoss())
|
||||
trainer = Trainer(solver=pinn, max_epochs=5, accelerator='cpu', default_root_dir=tmpdir)
|
||||
trainer.train()
|
||||
print('ggg')
|
||||
ntrainer = Trainer(solver=pinn, max_epochs=15, accelerator='cpu')
|
||||
t = ntrainer.train(
|
||||
ckpt_path=f'{tmpdir}/lightning_logs/version_0/checkpoints/epoch=4-step=5.ckpt')
|
||||
import shutil
|
||||
shutil.rmtree(tmpdir)
|
||||
|
||||
def test_train_load():
|
||||
tmpdir = "tests/tmp_load"
|
||||
poisson_problem = Poisson()
|
||||
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
n = 10
|
||||
poisson_problem.discretise_domain(n, 'grid', locations=boundaries)
|
||||
pinn = PINN(problem = poisson_problem, model=model, extra_features=None, loss=LpLoss())
|
||||
trainer = Trainer(solver=pinn, max_epochs=15, accelerator='cpu',
|
||||
default_root_dir=tmpdir)
|
||||
trainer.train()
|
||||
new_pinn = PINN.load_from_checkpoint(
|
||||
f'{tmpdir}/lightning_logs/version_0/checkpoints/epoch=14-step=15.ckpt',
|
||||
problem = poisson_problem, model=model)
|
||||
test_pts = CartesianDomain({'x': [0, 1], 'y': [0, 1]}).sample(10)
|
||||
assert new_pinn.forward(test_pts).extract(['u']).shape == (10, 1)
|
||||
assert new_pinn.forward(test_pts).extract(['u']).shape == pinn.forward(test_pts).extract(['u']).shape
|
||||
torch.testing.assert_close(new_pinn.forward(test_pts).extract(['u']), pinn.forward(test_pts).extract(['u']))
|
||||
import shutil
|
||||
shutil.rmtree(tmpdir)
|
||||
|
||||
|
||||
# # TODO fix asap. Basically sampling few variables
|
||||
# # works only if both variables are in a range.
|
||||
# # if one is fixed and the other not, this will
|
||||
@@ -118,7 +155,7 @@ def test_train_extra_feats_cpu():
|
||||
n = 10
|
||||
poisson_problem.discretise_domain(n, 'grid', locations=boundaries)
|
||||
pinn = PINN(problem = poisson_problem, model=model_extra_feats, extra_features=extra_feats)
|
||||
trainer = Trainer(solver=pinn, kwargs={'max_epochs' : 5, 'accelerator':'cpu'})
|
||||
trainer = Trainer(solver=pinn, max_epochs=5, accelerator='cpu')
|
||||
trainer.train()
|
||||
|
||||
# TODO, fix GitHub actions to run also on GPU
|
||||
|
||||
Reference in New Issue
Block a user