Trainer train simplified, tests for load (#168)

- the arguments of Trainer.train now are passed to the fit
- unittest for load/restoring from checkpoint
This commit is contained in:
Nicola Demo
2023-07-25 17:23:12 +02:00
parent de0c3fca82
commit e84def3bf9
3 changed files with 44 additions and 7 deletions

View File

@@ -134,7 +134,7 @@ def test_train_cpu():
hidden_dimension=64)
)
trainer = Trainer(solver=solver, kwargs={'max_epochs' : 4, 'accelerator': 'cpu'})
trainer = Trainer(solver=solver, max_epochs=4, accelerator='cpu')
trainer.train()
def test_sample():

View File

@@ -56,12 +56,12 @@ class Poisson(SpatialProblem):
truth_solution = poisson_sol
class myFeature(torch.nn.Module):
"""
Feature: sin(x)
"""
def __init__(self):
super(myFeature, self).__init__()
@@ -92,9 +92,46 @@ def test_train_cpu():
n = 10
poisson_problem.discretise_domain(n, 'grid', locations=boundaries)
pinn = PINN(problem = poisson_problem, model=model, extra_features=None, loss=LpLoss())
trainer = Trainer(solver=pinn, kwargs={'max_epochs' : 5, 'accelerator':'cpu'})
trainer = Trainer(solver=pinn, max_epochs=5, accelerator='cpu')
trainer.train()
def test_train_restore():
tmpdir = "tests/tmp_restore"
poisson_problem = Poisson()
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
n = 10
poisson_problem.discretise_domain(n, 'grid', locations=boundaries)
pinn = PINN(problem = poisson_problem, model=model, extra_features=None, loss=LpLoss())
trainer = Trainer(solver=pinn, max_epochs=5, accelerator='cpu', default_root_dir=tmpdir)
trainer.train()
print('ggg')
ntrainer = Trainer(solver=pinn, max_epochs=15, accelerator='cpu')
t = ntrainer.train(
ckpt_path=f'{tmpdir}/lightning_logs/version_0/checkpoints/epoch=4-step=5.ckpt')
import shutil
shutil.rmtree(tmpdir)
def test_train_load():
tmpdir = "tests/tmp_load"
poisson_problem = Poisson()
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
n = 10
poisson_problem.discretise_domain(n, 'grid', locations=boundaries)
pinn = PINN(problem = poisson_problem, model=model, extra_features=None, loss=LpLoss())
trainer = Trainer(solver=pinn, max_epochs=15, accelerator='cpu',
default_root_dir=tmpdir)
trainer.train()
new_pinn = PINN.load_from_checkpoint(
f'{tmpdir}/lightning_logs/version_0/checkpoints/epoch=14-step=15.ckpt',
problem = poisson_problem, model=model)
test_pts = CartesianDomain({'x': [0, 1], 'y': [0, 1]}).sample(10)
assert new_pinn.forward(test_pts).extract(['u']).shape == (10, 1)
assert new_pinn.forward(test_pts).extract(['u']).shape == pinn.forward(test_pts).extract(['u']).shape
torch.testing.assert_close(new_pinn.forward(test_pts).extract(['u']), pinn.forward(test_pts).extract(['u']))
import shutil
shutil.rmtree(tmpdir)
# # TODO fix asap. Basically sampling few variables
# # works only if both variables are in a range.
# # if one is fixed and the other not, this will
@@ -118,7 +155,7 @@ def test_train_extra_feats_cpu():
n = 10
poisson_problem.discretise_domain(n, 'grid', locations=boundaries)
pinn = PINN(problem = poisson_problem, model=model_extra_feats, extra_features=extra_feats)
trainer = Trainer(solver=pinn, kwargs={'max_epochs' : 5, 'accelerator':'cpu'})
trainer = Trainer(solver=pinn, max_epochs=5, accelerator='cpu')
trainer.train()
# TODO, fix GitHub actions to run also on GPU