This commit is contained in:
Nicola Demo
2024-09-09 10:50:54 +02:00
parent 9d9c2aa23e
commit f0d68b34c7
23 changed files with 480 additions and 229 deletions

118
pina/graph.py Normal file
View File

@@ -0,0 +1,118 @@
""" Module for Loss class """
import logging
from torch_geometric.nn import MessagePassing, InstanceNorm, radius_graph
from torch_geometric.data import Data
import torch
class Graph:
"""
PINA Graph managing the PyG Data class.
"""
def __init__(self, data):
self.data = data
@staticmethod
def _build_triangulation(**kwargs):
logging.debug("Creating graph with triangulation mode.")
# check for mandatory arguments
if "nodes_coordinates" not in kwargs:
raise ValueError("Nodes coordinates must be provided in the kwargs.")
if "nodes_data" not in kwargs:
raise ValueError("Nodes data must be provided in the kwargs.")
if "triangles" not in kwargs:
raise ValueError("Triangles must be provided in the kwargs.")
nodes_coordinates = kwargs["nodes_coordinates"]
nodes_data = kwargs["nodes_data"]
triangles = kwargs["triangles"]
def less_first(a, b):
return [a, b] if a < b else [b, a]
list_of_edges = []
for triangle in triangles:
for e1, e2 in [[0, 1], [1, 2], [2, 0]]:
list_of_edges.append(less_first(triangle[e1],triangle[e2]))
array_of_edges = torch.unique(torch.Tensor(list_of_edges), dim=0) # remove duplicates
array_of_edges = array_of_edges.t().contiguous()
print(array_of_edges)
# list_of_lengths = []
# for p1,p2 in array_of_edges:
# x1, y1 = tri.points[p1]
# x2, y2 = tri.points[p2]
# list_of_lengths.append((x1-x2)**2 + (y1-y2)**2)
# array_of_lengths = np.sqrt(np.array(list_of_lengths))
# return array_of_edges, array_of_lengths
return Data(
x=nodes_data,
pos=nodes_coordinates.T,
edge_index=array_of_edges,
)
@staticmethod
def _build_radius(**kwargs):
logging.debug("Creating graph with radius mode.")
# check for mandatory arguments
if "nodes_coordinates" not in kwargs:
raise ValueError("Nodes coordinates must be provided in the kwargs.")
if "nodes_data" not in kwargs:
raise ValueError("Nodes data must be provided in the kwargs.")
if "radius" not in kwargs:
raise ValueError("Radius must be provided in the kwargs.")
nodes_coordinates = kwargs["nodes_coordinates"]
nodes_data = kwargs["nodes_data"]
radius = kwargs["radius"]
edges_data = kwargs.get("edge_data", None)
loop = kwargs.get("loop", False)
batch = kwargs.get("batch", None)
logging.debug(f"radius: {radius}, loop: {loop}, "
f"batch: {batch}")
edge_index = radius_graph(
x=nodes_coordinates.tensor,
r=radius,
loop=loop,
batch=batch,
)
logging.debug(f"edge_index computed")
return Data(
x=nodes_data,
pos=nodes_coordinates,
edge_index=edge_index,
edge_attr=edges_data,
)
@staticmethod
def build(mode, **kwargs):
"""
Constructor for the `Graph` class.
"""
if mode == "radius":
graph = Graph._build_radius(**kwargs)
elif mode == "triangulation":
graph = Graph._build_triangulation(**kwargs)
else:
raise ValueError(f"Mode {mode} not recognized")
return Graph(graph)
def __repr__(self):
return f"Graph(data={self.data})"

View File

@@ -427,4 +427,8 @@ class LabelTensor(torch.Tensor):
def requires_grad_(self, mode=True):
lt = super().requires_grad_(mode)
lt.labels = self.labels
return lt
return lt
@property
def dtype(self):
return super().dtype

View File

@@ -1,209 +0,0 @@
""" Module for Loss class """
from abc import ABCMeta, abstractmethod
from torch.nn.modules.loss import _Loss
import torch
from .utils import check_consistency
__all__ = ["LossInterface", "LpLoss", "PowerLoss"]
class LossInterface(_Loss, metaclass=ABCMeta):
"""
The abstract ``LossInterface`` class. All the class defining a PINA Loss
should be inheritied from this class.
"""
def __init__(self, reduction="mean"):
"""
:param str reduction: Specifies the reduction to apply to the output:
``none`` | ``mean`` | ``sum``. When ``none``: no reduction
will be applied, ``mean``: the sum of the output will be divided
by the number of elements in the output, ``sum``: the output will
be summed. Note: ``size_average`` and ``reduce`` are in the
process of being deprecated, and in the meantime, specifying either of
those two args will override ``reduction``. Default: ``mean``.
"""
super().__init__(reduction=reduction, size_average=None, reduce=None)
@abstractmethod
def forward(self, input, target):
"""Forward method for loss function.
:param torch.Tensor input: Input tensor from real data.
:param torch.Tensor target: Model tensor output.
:return: Loss evaluation.
:rtype: torch.Tensor
"""
pass
def _reduction(self, loss):
"""Simple helper function to check reduction
:param reduction: Specifies the reduction to apply to the output:
``none`` | ``mean`` | ``sum``. When ``none``: no reduction
will be applied, ``mean``: the sum of the output will be divided
by the number of elements in the output, ``sum``: the output will
be summed. Note: ``size_average`` and ``reduce`` are in the
process of being deprecated, and in the meantime, specifying either of
those two args will override ``reduction``. Default: ``mean``.
:type reduction: str
:param loss: Loss tensor for each element.
:type loss: torch.Tensor
:return: Reduced loss.
:rtype: torch.Tensor
"""
if self.reduction == "none":
ret = loss
elif self.reduction == "mean":
ret = torch.mean(loss, keepdim=True, dim=-1)
elif self.reduction == "sum":
ret = torch.sum(loss, keepdim=True, dim=-1)
else:
raise ValueError(self.reduction + " is not valid")
return ret
class LpLoss(LossInterface):
r"""
The Lp loss implementation class. Creates a criterion that measures
the Lp error between each element in the input :math:`x` and
target :math:`y`.
The unreduced (i.e. with ``reduction`` set to ``none``) loss can
be described as:
.. math::
\ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad
l_n = \left[\sum_{i=1}^{D} \left| x_n^i - y_n^i \right|^p \right],
If ``'relative'`` is set to true:
.. math::
\ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad
l_n = \frac{ [\sum_{i=1}^{D} | x_n^i - y_n^i|^p] }{[\sum_{i=1}^{D}|y_n^i|^p]},
where :math:`N` is the batch size. If ``reduction`` is not ``none``
(default ``mean``), then:
.. math::
\ell(x, y) =
\begin{cases}
\operatorname{mean}(L), & \text{if reduction} = \text{`mean';}\\
\operatorname{sum}(L), & \text{if reduction} = \text{`sum'.}
\end{cases}
:math:`x` and :math:`y` are tensors of arbitrary shapes with a total
of :math:`n` elements each.
The sum operation still operates over all the elements, and divides by :math:`n`.
The division by :math:`n` can be avoided if one sets ``reduction`` to ``sum``.
"""
def __init__(self, p=2, reduction="mean", relative=False):
"""
:param int p: Degree of Lp norm. It specifies the type of norm to
be calculated. See `list of possible orders in torch linalg
<https://pytorch.org/docs/stable/generated/torch.linalg.norm.html#torch.linalg.norm>`_ to
for possible degrees. Default 2 (euclidean norm).
:param str reduction: Specifies the reduction to apply to the output:
``none`` | ``mean`` | ``sum``. ``none``: no reduction
will be applied, ``mean``: the sum of the output will be divided
by the number of elements in the output, ``sum``: the output will
be summed.
:param bool relative: Specifies if relative error should be computed.
"""
super().__init__(reduction=reduction)
# check consistency
check_consistency(p, (str, int, float))
check_consistency(relative, bool)
self.p = p
self.relative = relative
def forward(self, input, target):
"""Forward method for loss function.
:param torch.Tensor input: Input tensor from real data.
:param torch.Tensor target: Model tensor output.
:return: Loss evaluation.
:rtype: torch.Tensor
"""
loss = torch.linalg.norm((input - target), ord=self.p, dim=-1)
if self.relative:
loss = loss / torch.linalg.norm(input, ord=self.p, dim=-1)
return self._reduction(loss)
class PowerLoss(LossInterface):
r"""
The PowerLoss loss implementation class. Creates a criterion that measures
the error between each element in the input :math:`x` and
target :math:`y` powered to a specific integer.
The unreduced (i.e. with ``reduction`` set to ``none``) loss can
be described as:
.. math::
\ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad
l_n = \frac{1}{D}\left[\sum_{i=1}^{D} \left| x_n^i - y_n^i \right|^p \right],
If ``'relative'`` is set to true:
.. math::
\ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad
l_n = \frac{ \sum_{i=1}^{D} | x_n^i - y_n^i|^p }{\sum_{i=1}^{D}|y_n^i|^p},
where :math:`N` is the batch size. If ``reduction`` is not ``none``
(default ``mean``), then:
.. math::
\ell(x, y) =
\begin{cases}
\operatorname{mean}(L), & \text{if reduction} = \text{`mean';}\\
\operatorname{sum}(L), & \text{if reduction} = \text{`sum'.}
\end{cases}
:math:`x` and :math:`y` are tensors of arbitrary shapes with a total
of :math:`n` elements each.
The sum operation still operates over all the elements, and divides by :math:`n`.
The division by :math:`n` can be avoided if one sets ``reduction`` to ``sum``.
"""
def __init__(self, p=2, reduction="mean", relative=False):
"""
:param int p: Degree of Lp norm. It specifies the type of norm to
be calculated. See `list of possible orders in torch linalg
<https://pytorch.org/docs/stable/generated/torch.linalg.norm.html#torch.linalg.norm>`_ to
see the possible degrees. Default 2 (euclidean norm).
:param str reduction: Specifies the reduction to apply to the output:
``none`` | ``mean`` | ``sum``. When ``none``: no reduction
will be applied, ``mean``: the sum of the output will be divided
by the number of elements in the output, ``sum``: the output will
be summed.
:param bool relative: Specifies if relative error should be computed.
"""
super().__init__(reduction=reduction)
# check consistency
check_consistency(p, (str, int, float))
self.p = p
check_consistency(relative, bool)
self.relative = relative
def forward(self, input, target):
"""Forward method for loss function.
:param torch.Tensor input: Input tensor from real data.
:param torch.Tensor target: Model tensor output.
:return: Loss evaluation.
:rtype: torch.Tensor
"""
loss = torch.abs((input - target)).pow(self.p).mean(-1)
if self.relative:
loss = loss / torch.abs(input).pow(self.p).mean(-1)
return self._reduction(loss)

9
pina/loss/__init__.py Normal file
View File

@@ -0,0 +1,9 @@
__all__ = [
'LpLoss',
]
from .loss_interface import LossInterface
from .power_loss import PowerLoss
from .lp_loss import LpLoss
from .weightning_interface import weightningInterface

View File

@@ -0,0 +1,61 @@
""" Module for Loss Interface """
from abc import ABCMeta, abstractmethod
from torch.nn.modules.loss import _Loss
import torch
class LossInterface(_Loss, metaclass=ABCMeta):
"""
The abstract ``LossInterface`` class. All the class defining a PINA Loss
should be inheritied from this class.
"""
def __init__(self, reduction="mean"):
"""
:param str reduction: Specifies the reduction to apply to the output:
``none`` | ``mean`` | ``sum``. When ``none``: no reduction
will be applied, ``mean``: the sum of the output will be divided
by the number of elements in the output, ``sum``: the output will
be summed. Note: ``size_average`` and ``reduce`` are in the
process of being deprecated, and in the meantime, specifying either of
those two args will override ``reduction``. Default: ``mean``.
"""
super().__init__(reduction=reduction, size_average=None, reduce=None)
@abstractmethod
def forward(self, input, target):
"""Forward method for loss function.
:param torch.Tensor input: Input tensor from real data.
:param torch.Tensor target: Model tensor output.
:return: Loss evaluation.
:rtype: torch.Tensor
"""
pass
def _reduction(self, loss):
"""Simple helper function to check reduction
:param reduction: Specifies the reduction to apply to the output:
``none`` | ``mean`` | ``sum``. When ``none``: no reduction
will be applied, ``mean``: the sum of the output will be divided
by the number of elements in the output, ``sum``: the output will
be summed. Note: ``size_average`` and ``reduce`` are in the
process of being deprecated, and in the meantime, specifying either of
those two args will override ``reduction``. Default: ``mean``.
:type reduction: str
:param loss: Loss tensor for each element.
:type loss: torch.Tensor
:return: Reduced loss.
:rtype: torch.Tensor
"""
if self.reduction == "none":
ret = loss
elif self.reduction == "mean":
ret = torch.mean(loss, keepdim=True, dim=-1)
elif self.reduction == "sum":
ret = torch.sum(loss, keepdim=True, dim=-1)
else:
raise ValueError(self.reduction + " is not valid")
return ret

78
pina/loss/lp_loss.py Normal file
View File

@@ -0,0 +1,78 @@
""" Module for LpLoss class """
import torch
from ..utils import check_consistency
from .loss_interface import LossInterface
class LpLoss(LossInterface):
r"""
The Lp loss implementation class. Creates a criterion that measures
the Lp error between each element in the input :math:`x` and
target :math:`y`.
The unreduced (i.e. with ``reduction`` set to ``none``) loss can
be described as:
.. math::
\ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad
l_n = \left[\sum_{i=1}^{D} \left| x_n^i - y_n^i \right|^p \right],
If ``'relative'`` is set to true:
.. math::
\ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad
l_n = \frac{ [\sum_{i=1}^{D} | x_n^i - y_n^i|^p] }{[\sum_{i=1}^{D}|y_n^i|^p]},
where :math:`N` is the batch size. If ``reduction`` is not ``none``
(default ``mean``), then:
.. math::
\ell(x, y) =
\begin{cases}
\operatorname{mean}(L), & \text{if reduction} = \text{`mean';}\\
\operatorname{sum}(L), & \text{if reduction} = \text{`sum'.}
\end{cases}
:math:`x` and :math:`y` are tensors of arbitrary shapes with a total
of :math:`n` elements each.
The sum operation still operates over all the elements, and divides by :math:`n`.
The division by :math:`n` can be avoided if one sets ``reduction`` to ``sum``.
"""
def __init__(self, p=2, reduction="mean", relative=False):
"""
:param int p: Degree of Lp norm. It specifies the type of norm to
be calculated. See `list of possible orders in torch linalg
<https://pytorch.org/docs/stable/generated/torch.linalg.norm.html#torch.linalg.norm>`_ to
for possible degrees. Default 2 (euclidean norm).
:param str reduction: Specifies the reduction to apply to the output:
``none`` | ``mean`` | ``sum``. ``none``: no reduction
will be applied, ``mean``: the sum of the output will be divided
by the number of elements in the output, ``sum``: the output will
be summed.
:param bool relative: Specifies if relative error should be computed.
"""
super().__init__(reduction=reduction)
# check consistency
check_consistency(p, (str, int, float))
check_consistency(relative, bool)
self.p = p
self.relative = relative
def forward(self, input, target):
"""Forward method for loss function.
:param torch.Tensor input: Input tensor from real data.
:param torch.Tensor target: Model tensor output.
:return: Loss evaluation.
:rtype: torch.Tensor
"""
loss = torch.linalg.norm((input - target), ord=self.p, dim=-1)
if self.relative:
loss = loss / torch.linalg.norm(input, ord=self.p, dim=-1)
return self._reduction(loss)

79
pina/loss/power_loss.py Normal file
View File

@@ -0,0 +1,79 @@
""" Module for PowerLoss class """
import torch
from ..utils import check_consistency
from .loss_interface import LossInterface
class PowerLoss(LossInterface):
r"""
The PowerLoss loss implementation class. Creates a criterion that measures
the error between each element in the input :math:`x` and
target :math:`y` powered to a specific integer.
The unreduced (i.e. with ``reduction`` set to ``none``) loss can
be described as:
.. math::
\ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad
l_n = \frac{1}{D}\left[\sum_{i=1}^{D} \left| x_n^i - y_n^i \right|^p \right],
If ``'relative'`` is set to true:
.. math::
\ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad
l_n = \frac{ \sum_{i=1}^{D} | x_n^i - y_n^i|^p }{\sum_{i=1}^{D}|y_n^i|^p},
where :math:`N` is the batch size. If ``reduction`` is not ``none``
(default ``mean``), then:
.. math::
\ell(x, y) =
\begin{cases}
\operatorname{mean}(L), & \text{if reduction} = \text{`mean';}\\
\operatorname{sum}(L), & \text{if reduction} = \text{`sum'.}
\end{cases}
:math:`x` and :math:`y` are tensors of arbitrary shapes with a total
of :math:`n` elements each.
The sum operation still operates over all the elements, and divides by :math:`n`.
The division by :math:`n` can be avoided if one sets ``reduction`` to ``sum``.
"""
def __init__(self, p=2, reduction="mean", relative=False):
"""
:param int p: Degree of Lp norm. It specifies the type of norm to
be calculated. See `list of possible orders in torch linalg
<https://pytorch.org/docs/stable/generated/torch.linalg.norm.html#torch.linalg.norm>`_ to
see the possible degrees. Default 2 (euclidean norm).
:param str reduction: Specifies the reduction to apply to the output:
``none`` | ``mean`` | ``sum``. When ``none``: no reduction
will be applied, ``mean``: the sum of the output will be divided
by the number of elements in the output, ``sum``: the output will
be summed.
:param bool relative: Specifies if relative error should be computed.
"""
super().__init__(reduction=reduction)
# check consistency
check_consistency(p, (str, int, float))
check_consistency(relative, bool)
self.p = p
self.relative = relative
def forward(self, input, target):
"""Forward method for loss function.
:param torch.Tensor input: Input tensor from real data.
:param torch.Tensor target: Model tensor output.
:return: Loss evaluation.
:rtype: torch.Tensor
"""
loss = torch.abs((input - target)).pow(self.p).mean(-1)
if self.relative:
loss = loss / torch.abs(input).pow(self.p).mean(-1)
return self._reduction(loss)

View File

@@ -0,0 +1,35 @@
""" Module for Loss Interface """
from .weightning_interface import weightningInterface
class WeightedAggregation(WeightningInterface):
"""
TODO
"""
def __init__(self, aggr='mean', weights=None):
self.aggr = aggr
self.weights = weights
def aggregate(self, losses):
"""
Aggregate the losses.
:param dict(torch.Tensor) input: The dictionary of losses.
:return: The losses aggregation. It should be a scalar Tensor.
:rtype: torch.Tensor
"""
if self.weights:
weighted_losses = {
condition: self.weights[condition] * losses[condition]
for condition in losses
}
else:
weighted_losses = losses
if self.aggr == 'mean':
return sum(weighted_losses.values()) / len(weighted_losses)
elif self.aggr == 'sum':
return sum(weighted_losses.values())
else:
raise ValueError(self.aggr + " is not valid for aggregation.")

View File

@@ -0,0 +1,24 @@
""" Module for Loss Interface """
from abc import ABCMeta, abstractmethod
class weightningInterface(metaclass=ABCMeta):
"""
The ``weightingInterface`` class. TODO
"""
@abstractmethod
def __init__(self, *args, **kwargs):
pass
@abstractmethod
def aggregate(self, losses):
"""
Aggregate the losses.
:param list(torch.Tensor) input: The list
:return: The losses aggregation. It should be a scalar Tensor.
:rtype: torch.Tensor
"""
pass

View File

@@ -0,0 +1,11 @@
""" Module for Averaging Neural Operator Layer class. """
from torch import nn, mean
from torch_geometric.nn import MessagePassing, InstanceNorm, radius_graph
from pina.utils import check_consistency
class MessagePassingBlock(nn.Module):

View File

@@ -6,7 +6,7 @@ import torch
from ...solvers.solver import SolverInterface
from pina.utils import check_consistency
from pina.loss import LossInterface
from pina.loss.loss_interface import LossInterface
from pina.problem import InverseProblem
from torch.nn.modules.loss import _Loss

View File

@@ -8,7 +8,7 @@ from ..optim import Optimizer, Scheduler, TorchOptimizer, TorchScheduler
from .solver import SolverInterface
from ..label_tensor import LabelTensor
from ..utils import check_consistency
from ..loss import LossInterface
from ..loss.loss_interface import LossInterface
class SupervisedSolver(SolverInterface):
@@ -172,10 +172,6 @@ class SupervisedSolver(SolverInterface):
:return: The residual loss averaged on the input coordinates
:rtype: torch.Tensor
"""
print(input_pts)
print(output_pts)
print(self.loss)
print(self.forward(input_pts))
return self.loss(self.forward(input_pts), output_pts)
@property