Adding new problems to problem.zoo (#484)
* adding problems * add tests * update doc + formatting --------- Co-authored-by: Dario Coscia <dariocos99@gmail.com>
This commit is contained in:
committed by
Nicola Demo
parent
2ae4a94e49
commit
f67467e5bd
@@ -1,15 +1,19 @@
|
||||
"""TODO"""
|
||||
|
||||
__all__ = [
|
||||
"Poisson2DSquareProblem",
|
||||
"SupervisedProblem",
|
||||
"InversePoisson2DSquareProblem",
|
||||
"HelmholtzProblem",
|
||||
"AllenCahnProblem",
|
||||
"AdvectionProblem",
|
||||
"Poisson2DSquareProblem",
|
||||
"DiffusionReactionProblem",
|
||||
"InverseDiffusionReactionProblem",
|
||||
"InversePoisson2DSquareProblem",
|
||||
]
|
||||
|
||||
from .poisson_2d_square import Poisson2DSquareProblem
|
||||
from .supervised_problem import SupervisedProblem
|
||||
from .inverse_poisson_2d_square import InversePoisson2DSquareProblem
|
||||
from .helmholtz import HelmholtzProblem
|
||||
from .allen_cahn import AllenCahnProblem
|
||||
from .advection import AdvectionProblem
|
||||
from .poisson_2d_square import Poisson2DSquareProblem
|
||||
from .diffusion_reaction import DiffusionReactionProblem
|
||||
from .inverse_diffusion_reaction import InverseDiffusionReactionProblem
|
||||
from .inverse_poisson_2d_square import InversePoisson2DSquareProblem
|
||||
|
||||
107
pina/problem/zoo/advection.py
Normal file
107
pina/problem/zoo/advection.py
Normal file
@@ -0,0 +1,107 @@
|
||||
"""Formulation of the advection problem."""
|
||||
|
||||
import torch
|
||||
from ... import Condition
|
||||
from ...operator import grad
|
||||
from ...equation import Equation
|
||||
from ...domain import CartesianDomain
|
||||
from ...utils import check_consistency
|
||||
from ...problem import SpatialProblem, TimeDependentProblem
|
||||
|
||||
|
||||
class AdvectionEquation(Equation):
|
||||
"""
|
||||
Implementation of the advection equation.
|
||||
"""
|
||||
|
||||
def __init__(self, c):
|
||||
"""
|
||||
Initialize the advection equation.
|
||||
|
||||
:param c: The advection velocity parameter.
|
||||
:type c: float | int
|
||||
"""
|
||||
self.c = c
|
||||
check_consistency(self.c, (float, int))
|
||||
|
||||
def equation(input_, output_):
|
||||
"""
|
||||
Implementation of the advection equation.
|
||||
|
||||
:param LabelTensor input_: Input data of the problem.
|
||||
:param LabelTensor output_: Output data of the problem.
|
||||
:return: The residual of the advection equation.
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
u_x = grad(output_, input_, components=["u"], d=["x"])
|
||||
u_t = grad(output_, input_, components=["u"], d=["t"])
|
||||
return u_t + self.c * u_x
|
||||
|
||||
super().__init__(equation)
|
||||
|
||||
|
||||
def initial_condition(input_, output_):
|
||||
"""
|
||||
Implementation of the initial condition.
|
||||
|
||||
:param LabelTensor input_: Input data of the problem.
|
||||
:param LabelTensor output_: Output data of the problem.
|
||||
:return: The residual of the initial condition.
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
return output_ - torch.sin(input_.extract("x"))
|
||||
|
||||
|
||||
class AdvectionProblem(SpatialProblem, TimeDependentProblem):
|
||||
r"""
|
||||
Implementation of the advection problem in the spatial interval
|
||||
:math:`[0, 2 \pi]` and temporal interval :math:`[0, 1]`.
|
||||
|
||||
.. seealso::
|
||||
|
||||
**Original reference**: Wang, Sifan, et al. *An expert's guide to
|
||||
training physics-informed neural networks*.
|
||||
arXiv preprint arXiv:2308.08468 (2023).
|
||||
DOI: `arXiv:2308.08468 <https://arxiv.org/abs/2308.08468>`_.
|
||||
"""
|
||||
|
||||
output_variables = ["u"]
|
||||
spatial_domain = CartesianDomain({"x": [0, 2 * torch.pi]})
|
||||
temporal_domain = CartesianDomain({"t": [0, 1]})
|
||||
|
||||
domains = {
|
||||
"D": CartesianDomain({"x": [0, 2 * torch.pi], "t": [0, 1]}),
|
||||
"t0": CartesianDomain({"x": [0, 2 * torch.pi], "t": 0.0}),
|
||||
}
|
||||
|
||||
conditions = {
|
||||
"t0": Condition(domain="t0", equation=Equation(initial_condition)),
|
||||
}
|
||||
|
||||
def __init__(self, c=1.0):
|
||||
"""
|
||||
Initialize the advection problem.
|
||||
|
||||
:param c: The advection velocity parameter.
|
||||
:type c: float | int
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
self.c = c
|
||||
check_consistency(self.c, (float, int))
|
||||
|
||||
self.conditions["D"] = Condition(
|
||||
domain="D", equation=AdvectionEquation(self.c)
|
||||
)
|
||||
|
||||
def solution(self, pts):
|
||||
"""
|
||||
Implementation of the analytical solution of the advection problem.
|
||||
|
||||
:param LabelTensor pts: Points where the solution is evaluated.
|
||||
:return: The analytical solution of the advection problem.
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
sol = torch.sin(pts.extract("x") - self.c * pts.extract("t"))
|
||||
sol.labels = self.output_variables
|
||||
return sol
|
||||
66
pina/problem/zoo/allen_cahn.py
Normal file
66
pina/problem/zoo/allen_cahn.py
Normal file
@@ -0,0 +1,66 @@
|
||||
"""Formulation of the Allen Cahn problem."""
|
||||
|
||||
import torch
|
||||
from ... import Condition
|
||||
from ...equation import Equation
|
||||
from ...domain import CartesianDomain
|
||||
from ...operator import grad, laplacian
|
||||
from ...problem import SpatialProblem, TimeDependentProblem
|
||||
|
||||
|
||||
def allen_cahn_equation(input_, output_):
|
||||
"""
|
||||
Implementation of the Allen Cahn equation.
|
||||
|
||||
:param LabelTensor input_: Input data of the problem.
|
||||
:param LabelTensor output_: Output data of the problem.
|
||||
:return: The residual of the Allen Cahn equation.
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
u_t = grad(output_, input_, components=["u"], d=["t"])
|
||||
u_xx = laplacian(output_, input_, components=["u"], d=["x"])
|
||||
return u_t - 0.0001 * u_xx + 5 * output_**3 - 5 * output_
|
||||
|
||||
|
||||
def initial_condition(input_, output_):
|
||||
"""
|
||||
Definition of the initial condition of the Allen Cahn problem.
|
||||
|
||||
:param LabelTensor input_: Input data of the problem.
|
||||
:param LabelTensor output_: Output data of the problem.
|
||||
:return: The residual of the initial condition.
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
x = input_.extract("x")
|
||||
u_0 = x**2 * torch.cos(torch.pi * x)
|
||||
return output_ - u_0
|
||||
|
||||
|
||||
class AllenCahnProblem(TimeDependentProblem, SpatialProblem):
|
||||
r"""
|
||||
Implementation of the Allen Cahn problem in the spatial interval
|
||||
:math:`[-1, 1]` and temporal interval :math:`[0, 1]`.
|
||||
|
||||
.. seealso::
|
||||
**Original reference**: Sokratis J. Anagnostopoulos, Juan D. Toscano,
|
||||
Nikolaos Stergiopulos, and George E. Karniadakis.
|
||||
*Residual-based attention and connection to information
|
||||
bottleneck theory in PINNs*.
|
||||
Computer Methods in Applied Mechanics and Engineering 421 (2024): 116805
|
||||
DOI: `10.1016/
|
||||
j.cma.2024.116805 <https://doi.org/10.1016/j.cma.2024.116805>`_.
|
||||
"""
|
||||
|
||||
output_variables = ["u"]
|
||||
spatial_domain = CartesianDomain({"x": [-1, 1]})
|
||||
temporal_domain = CartesianDomain({"t": [0, 1]})
|
||||
|
||||
domains = {
|
||||
"D": CartesianDomain({"x": [-1, 1], "t": [0, 1]}),
|
||||
"t0": CartesianDomain({"x": [-1, 1], "t": 0.0}),
|
||||
}
|
||||
|
||||
conditions = {
|
||||
"D": Condition(domain="D", equation=Equation(allen_cahn_equation)),
|
||||
"t0": Condition(domain="t0", equation=Equation(initial_condition)),
|
||||
}
|
||||
@@ -1,22 +1,26 @@
|
||||
"""Definition of the diffusion-reaction problem."""
|
||||
"""Formulation of the diffusion-reaction problem."""
|
||||
|
||||
import torch
|
||||
from pina import Condition
|
||||
from pina.problem import SpatialProblem, TimeDependentProblem
|
||||
from pina.equation.equation import Equation
|
||||
from pina.domain import CartesianDomain
|
||||
from pina.operator import grad
|
||||
from ... import Condition
|
||||
from ...domain import CartesianDomain
|
||||
from ...operator import grad, laplacian
|
||||
from ...equation import Equation, FixedValue
|
||||
from ...problem import SpatialProblem, TimeDependentProblem
|
||||
|
||||
|
||||
def diffusion_reaction(input_, output_):
|
||||
"""
|
||||
Implementation of the diffusion-reaction equation.
|
||||
|
||||
:param LabelTensor input_: Input data of the problem.
|
||||
:param LabelTensor output_: Output data of the problem.
|
||||
:return: The residual of the diffusion-reaction equation.
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
x = input_.extract("x")
|
||||
t = input_.extract("t")
|
||||
u_t = grad(output_, input_, d="t")
|
||||
u_x = grad(output_, input_, d="x")
|
||||
u_xx = grad(u_x, input_, d="x")
|
||||
u_t = grad(output_, input_, components=["u"], d=["t"])
|
||||
u_xx = laplacian(output_, input_, components=["u"], d=["x"])
|
||||
r = torch.exp(-t) * (
|
||||
1.5 * torch.sin(2 * x)
|
||||
+ (8 / 3) * torch.sin(3 * x)
|
||||
@@ -26,30 +30,72 @@ def diffusion_reaction(input_, output_):
|
||||
return u_t - u_xx - r
|
||||
|
||||
|
||||
class DiffusionReactionProblem(TimeDependentProblem, SpatialProblem):
|
||||
def initial_condition(input_, output_):
|
||||
"""
|
||||
Implementation of the diffusion-reaction problem on the spatial interval
|
||||
[-pi, pi] and temporal interval [0,1].
|
||||
Definition of the initial condition of the diffusion-reaction problem.
|
||||
|
||||
:param LabelTensor input_: Input data of the problem.
|
||||
:param LabelTensor output_: Output data of the problem.
|
||||
:return: The residual of the initial condition.
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
x = input_.extract("x")
|
||||
u_0 = (
|
||||
torch.sin(x)
|
||||
+ (1 / 2) * torch.sin(2 * x)
|
||||
+ (1 / 3) * torch.sin(3 * x)
|
||||
+ (1 / 4) * torch.sin(4 * x)
|
||||
+ (1 / 8) * torch.sin(8 * x)
|
||||
)
|
||||
return output_ - u_0
|
||||
|
||||
|
||||
class DiffusionReactionProblem(TimeDependentProblem, SpatialProblem):
|
||||
r"""
|
||||
Implementation of the diffusion-reaction problem in the spatial interval
|
||||
:math:`[-\pi, \pi]` and temporal interval :math:`[0, 1]`.
|
||||
|
||||
.. seealso::
|
||||
**Original reference**: Si, Chenhao, et al. *Complex Physics-Informed
|
||||
Neural Network.* arXiv preprint arXiv:2502.04917 (2025).
|
||||
DOI: `arXiv:2502.04917 <https://arxiv.org/abs/2502.04917>`_.
|
||||
"""
|
||||
|
||||
output_variables = ["u"]
|
||||
spatial_domain = CartesianDomain({"x": [-torch.pi, torch.pi]})
|
||||
temporal_domain = CartesianDomain({"t": [0, 1]})
|
||||
|
||||
conditions = {
|
||||
"D": Condition(
|
||||
domain=CartesianDomain({"x": [-torch.pi, torch.pi], "t": [0, 1]}),
|
||||
equation=Equation(diffusion_reaction),
|
||||
)
|
||||
domains = {
|
||||
"D": CartesianDomain({"x": [-torch.pi, torch.pi], "t": [0, 1]}),
|
||||
"g1": CartesianDomain({"x": -torch.pi, "t": [0, 1]}),
|
||||
"g2": CartesianDomain({"x": torch.pi, "t": [0, 1]}),
|
||||
"t0": CartesianDomain({"x": [-torch.pi, torch.pi], "t": 0.0}),
|
||||
}
|
||||
|
||||
def _solution(self, pts):
|
||||
conditions = {
|
||||
"D": Condition(domain="D", equation=Equation(diffusion_reaction)),
|
||||
"g1": Condition(domain="g1", equation=FixedValue(0.0)),
|
||||
"g2": Condition(domain="g2", equation=FixedValue(0.0)),
|
||||
"t0": Condition(domain="t0", equation=Equation(initial_condition)),
|
||||
}
|
||||
|
||||
def solution(self, pts):
|
||||
"""
|
||||
Implementation of the analytical solution of the diffusion-reaction
|
||||
problem.
|
||||
|
||||
:param LabelTensor pts: Points where the solution is evaluated.
|
||||
:return: The analytical solution of the diffusion-reaction problem.
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
t = pts.extract("t")
|
||||
x = pts.extract("x")
|
||||
return torch.exp(-t) * (
|
||||
sol = torch.exp(-t) * (
|
||||
torch.sin(x)
|
||||
+ (1 / 2) * torch.sin(2 * x)
|
||||
+ (1 / 3) * torch.sin(3 * x)
|
||||
+ (1 / 4) * torch.sin(4 * x)
|
||||
+ (1 / 8) * torch.sin(8 * x)
|
||||
)
|
||||
sol.labels = self.output_variables
|
||||
return sol
|
||||
|
||||
104
pina/problem/zoo/helmholtz.py
Normal file
104
pina/problem/zoo/helmholtz.py
Normal file
@@ -0,0 +1,104 @@
|
||||
"""Formulation of the Helmholtz problem."""
|
||||
|
||||
import torch
|
||||
from ... import Condition
|
||||
from ...operator import laplacian
|
||||
from ...domain import CartesianDomain
|
||||
from ...problem import SpatialProblem
|
||||
from ...utils import check_consistency
|
||||
from ...equation import Equation, FixedValue
|
||||
|
||||
|
||||
class HelmholtzEquation(Equation):
|
||||
"""
|
||||
Implementation of the Helmholtz equation.
|
||||
"""
|
||||
|
||||
def __init__(self, alpha):
|
||||
"""
|
||||
Initialize the Helmholtz equation.
|
||||
|
||||
:param alpha: Parameter of the forcing term.
|
||||
:type alpha: float | int
|
||||
"""
|
||||
self.alpha = alpha
|
||||
check_consistency(alpha, (int, float))
|
||||
|
||||
def equation(input_, output_):
|
||||
"""
|
||||
Implementation of the Helmholtz equation.
|
||||
|
||||
:param LabelTensor input_: Input data of the problem.
|
||||
:param LabelTensor output_: Output data of the problem.
|
||||
:return: The residual of the Helmholtz equation.
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
lap = laplacian(output_, input_, components=["u"], d=["x", "y"])
|
||||
q = (
|
||||
(1 - 2 * (self.alpha * torch.pi) ** 2)
|
||||
* torch.sin(self.alpha * torch.pi * input_.extract("x"))
|
||||
* torch.sin(self.alpha * torch.pi * input_.extract("y"))
|
||||
)
|
||||
return lap + output_ - q
|
||||
|
||||
super().__init__(equation)
|
||||
|
||||
|
||||
class HelmholtzProblem(SpatialProblem):
|
||||
r"""
|
||||
Implementation of the Helmholtz problem in the square domain
|
||||
:math:`[-1, 1] \times [-1, 1]`.
|
||||
|
||||
.. seealso::
|
||||
**Original reference**: Si, Chenhao, et al. *Complex Physics-Informed
|
||||
Neural Network.* arXiv preprint arXiv:2502.04917 (2025).
|
||||
DOI: `arXiv:2502.04917 <https://arxiv.org/abs/2502.04917>`_.
|
||||
"""
|
||||
|
||||
output_variables = ["u"]
|
||||
spatial_domain = CartesianDomain({"x": [-1, 1], "y": [-1, 1]})
|
||||
|
||||
domains = {
|
||||
"D": CartesianDomain({"x": [-1, 1], "y": [-1, 1]}),
|
||||
"g1": CartesianDomain({"x": [-1, 1], "y": 1.0}),
|
||||
"g2": CartesianDomain({"x": [-1, 1], "y": -1.0}),
|
||||
"g3": CartesianDomain({"x": 1.0, "y": [-1, 1]}),
|
||||
"g4": CartesianDomain({"x": -1.0, "y": [-1, 1]}),
|
||||
}
|
||||
|
||||
conditions = {
|
||||
"g1": Condition(domain="g1", equation=FixedValue(0.0)),
|
||||
"g2": Condition(domain="g2", equation=FixedValue(0.0)),
|
||||
"g3": Condition(domain="g3", equation=FixedValue(0.0)),
|
||||
"g4": Condition(domain="g4", equation=FixedValue(0.0)),
|
||||
}
|
||||
|
||||
def __init__(self, alpha=3.0):
|
||||
"""
|
||||
Initialize the Helmholtz problem.
|
||||
|
||||
:param alpha: Parameter of the forcing term.
|
||||
:type alpha: float | int
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
self.alpha = alpha
|
||||
check_consistency(alpha, (int, float))
|
||||
|
||||
self.conditions["D"] = Condition(
|
||||
domain="D", equation=HelmholtzEquation(self.alpha)
|
||||
)
|
||||
|
||||
def solution(self, pts):
|
||||
"""
|
||||
Implementation of the analytical solution of the Helmholtz problem.
|
||||
|
||||
:param LabelTensor pts: Points where the solution is evaluated.
|
||||
:return: The analytical solution of the Poisson problem.
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
sol = torch.sin(self.alpha * torch.pi * pts.extract("x")) * torch.sin(
|
||||
self.alpha * torch.pi * pts.extract("y")
|
||||
)
|
||||
sol.labels = self.output_variables
|
||||
return sol
|
||||
@@ -1,63 +0,0 @@
|
||||
"""Definition of the diffusion-reaction problem."""
|
||||
|
||||
import torch
|
||||
from pina import Condition, LabelTensor
|
||||
from pina.problem import SpatialProblem, TimeDependentProblem, InverseProblem
|
||||
from pina.equation.equation import Equation
|
||||
from pina.domain import CartesianDomain
|
||||
from pina.operator import grad
|
||||
|
||||
|
||||
def diffusion_reaction(input_, output_):
|
||||
"""
|
||||
Implementation of the diffusion-reaction equation.
|
||||
"""
|
||||
x = input_.extract("x")
|
||||
t = input_.extract("t")
|
||||
u_t = grad(output_, input_, d="t")
|
||||
u_x = grad(output_, input_, d="x")
|
||||
u_xx = grad(u_x, input_, d="x")
|
||||
r = torch.exp(-t) * (
|
||||
1.5 * torch.sin(2 * x)
|
||||
+ (8 / 3) * torch.sin(3 * x)
|
||||
+ (15 / 4) * torch.sin(4 * x)
|
||||
+ (63 / 8) * torch.sin(8 * x)
|
||||
)
|
||||
return u_t - u_xx - r
|
||||
|
||||
|
||||
class InverseDiffusionReactionProblem(
|
||||
TimeDependentProblem, SpatialProblem, InverseProblem
|
||||
):
|
||||
"""
|
||||
Implementation of the diffusion-reaction inverse problem on the spatial
|
||||
interval [-pi, pi] and temporal interval [0,1], with unknown parameters
|
||||
in the interval [-1,1].
|
||||
"""
|
||||
|
||||
output_variables = ["u"]
|
||||
spatial_domain = CartesianDomain({"x": [-torch.pi, torch.pi]})
|
||||
temporal_domain = CartesianDomain({"t": [0, 1]})
|
||||
unknown_parameter_domain = CartesianDomain({"mu": [-1, 1]})
|
||||
|
||||
conditions = {
|
||||
"D": Condition(
|
||||
domain=CartesianDomain({"x": [-torch.pi, torch.pi], "t": [0, 1]}),
|
||||
equation=Equation(diffusion_reaction),
|
||||
),
|
||||
"data": Condition(
|
||||
input=LabelTensor(torch.randn(10, 2), ["x", "t"]),
|
||||
target=LabelTensor(torch.randn(10, 1), ["u"]),
|
||||
),
|
||||
}
|
||||
|
||||
def _solution(self, pts):
|
||||
t = pts.extract("t")
|
||||
x = pts.extract("x")
|
||||
return torch.exp(-t) * (
|
||||
torch.sin(x)
|
||||
+ (1 / 2) * torch.sin(2 * x)
|
||||
+ (1 / 3) * torch.sin(3 * x)
|
||||
+ (1 / 4) * torch.sin(4 * x)
|
||||
+ (1 / 8) * torch.sin(8 * x)
|
||||
)
|
||||
@@ -1,17 +1,23 @@
|
||||
"""Definition of the inverse Poisson problem on a square domain."""
|
||||
"""Formulation of the inverse Poisson problem in a square domain."""
|
||||
|
||||
import os
|
||||
import torch
|
||||
from pina import Condition, LabelTensor
|
||||
from pina.problem import SpatialProblem, InverseProblem
|
||||
from pina.operator import laplacian
|
||||
from pina.domain import CartesianDomain
|
||||
from pina.equation.equation import Equation
|
||||
from pina.equation.equation_factory import FixedValue
|
||||
from ... import Condition
|
||||
from ...operator import laplacian
|
||||
from ...domain import CartesianDomain
|
||||
from ...equation import Equation, FixedValue
|
||||
from ...problem import SpatialProblem, InverseProblem
|
||||
|
||||
|
||||
def laplace_equation(input_, output_, params_):
|
||||
"""
|
||||
Implementation of the laplace equation.
|
||||
|
||||
:param LabelTensor input_: Input data of the problem.
|
||||
:param LabelTensor output_: Output data of the problem.
|
||||
:param dict params_: Parameters of the problem.
|
||||
:return: The residual of the laplace equation.
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
force_term = torch.exp(
|
||||
-2 * (input_.extract(["x"]) - params_["mu1"]) ** 2
|
||||
@@ -21,17 +27,34 @@ def laplace_equation(input_, output_, params_):
|
||||
return delta_u - force_term
|
||||
|
||||
|
||||
# Absolute path to the data directory
|
||||
data_dir = os.path.abspath(
|
||||
os.path.join(
|
||||
os.path.dirname(__file__), "../../../tutorials/tutorial7/data/"
|
||||
)
|
||||
)
|
||||
|
||||
# Load input data
|
||||
input_data = torch.load(
|
||||
f=os.path.join(data_dir, "pts_0.5_0.5"), weights_only=False
|
||||
).extract(["x", "y"])
|
||||
|
||||
# Load output data
|
||||
output_data = torch.load(
|
||||
f=os.path.join(data_dir, "pinn_solution_0.5_0.5"), weights_only=False
|
||||
)
|
||||
|
||||
|
||||
class InversePoisson2DSquareProblem(SpatialProblem, InverseProblem):
|
||||
"""
|
||||
Implementation of the inverse 2-dimensional Poisson problem
|
||||
on a square domain, with parameter domain [-1, 1] x [-1, 1].
|
||||
r"""
|
||||
Implementation of the inverse 2-dimensional Poisson problem in the square
|
||||
domain :math:`[0, 1] \times [0, 1]`,
|
||||
with unknown parameter domain :math:`[-1, 1] \times [-1, 1]`.
|
||||
"""
|
||||
|
||||
output_variables = ["u"]
|
||||
x_min, x_max = -2, 2
|
||||
y_min, y_max = -2, 2
|
||||
data_input = LabelTensor(torch.rand(10, 2), ["x", "y"])
|
||||
data_output = LabelTensor(torch.rand(10, 1), ["u"])
|
||||
spatial_domain = CartesianDomain({"x": [x_min, x_max], "y": [y_min, y_max]})
|
||||
unknown_parameter_domain = CartesianDomain({"mu1": [-1, 1], "mu2": [-1, 1]})
|
||||
|
||||
@@ -44,13 +67,10 @@ class InversePoisson2DSquareProblem(SpatialProblem, InverseProblem):
|
||||
}
|
||||
|
||||
conditions = {
|
||||
"nil_g1": Condition(domain="g1", equation=FixedValue(0.0)),
|
||||
"nil_g2": Condition(domain="g2", equation=FixedValue(0.0)),
|
||||
"nil_g3": Condition(domain="g3", equation=FixedValue(0.0)),
|
||||
"nil_g4": Condition(domain="g4", equation=FixedValue(0.0)),
|
||||
"laplace_D": Condition(domain="D", equation=Equation(laplace_equation)),
|
||||
"data": Condition(
|
||||
input=data_input.extract(["x", "y"]),
|
||||
target=data_output,
|
||||
),
|
||||
"g1": Condition(domain="g1", equation=FixedValue(0.0)),
|
||||
"g2": Condition(domain="g2", equation=FixedValue(0.0)),
|
||||
"g3": Condition(domain="g3", equation=FixedValue(0.0)),
|
||||
"g4": Condition(domain="g4", equation=FixedValue(0.0)),
|
||||
"D": Condition(domain="D", equation=Equation(laplace_equation)),
|
||||
"data": Condition(input=input_data, target=output_data),
|
||||
}
|
||||
|
||||
@@ -1,31 +1,35 @@
|
||||
"""Definition of the Poisson problem on a square domain."""
|
||||
"""Formulation of the Poisson problem in a square domain."""
|
||||
|
||||
import torch
|
||||
from ..spatial_problem import SpatialProblem
|
||||
from ...operator import laplacian
|
||||
from ... import Condition
|
||||
from ...operator import laplacian
|
||||
from ...problem import SpatialProblem
|
||||
from ...domain import CartesianDomain
|
||||
from ...equation.equation import Equation
|
||||
from ...equation.equation_factory import FixedValue
|
||||
from ...equation import Equation, FixedValue
|
||||
|
||||
|
||||
def laplace_equation(input_, output_):
|
||||
"""
|
||||
Implementation of the laplace equation.
|
||||
|
||||
:param LabelTensor input_: Input data of the problem.
|
||||
:param LabelTensor output_: Output data of the problem.
|
||||
:return: The residual of the laplace equation.
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
force_term = torch.sin(input_.extract(["x"]) * torch.pi) * torch.sin(
|
||||
input_.extract(["y"]) * torch.pi
|
||||
force_term = (
|
||||
torch.sin(input_.extract(["x"]) * torch.pi)
|
||||
* torch.sin(input_.extract(["y"]) * torch.pi)
|
||||
* (2 * torch.pi**2)
|
||||
)
|
||||
delta_u = laplacian(output_.extract(["u"]), input_)
|
||||
delta_u = laplacian(output_, input_, components=["u"], d=["x", "y"])
|
||||
return delta_u - force_term
|
||||
|
||||
|
||||
my_laplace = Equation(laplace_equation)
|
||||
|
||||
|
||||
class Poisson2DSquareProblem(SpatialProblem):
|
||||
"""
|
||||
Implementation of the 2-dimensional Poisson problem on a square domain.
|
||||
r"""
|
||||
Implementation of the 2-dimensional Poisson problem in the square domain
|
||||
:math:`[0, 1] \times [0, 1]`.
|
||||
"""
|
||||
|
||||
output_variables = ["u"]
|
||||
@@ -33,24 +37,31 @@ class Poisson2DSquareProblem(SpatialProblem):
|
||||
|
||||
domains = {
|
||||
"D": CartesianDomain({"x": [0, 1], "y": [0, 1]}),
|
||||
"g1": CartesianDomain({"x": [0, 1], "y": 1}),
|
||||
"g2": CartesianDomain({"x": [0, 1], "y": 0}),
|
||||
"g3": CartesianDomain({"x": 1, "y": [0, 1]}),
|
||||
"g4": CartesianDomain({"x": 0, "y": [0, 1]}),
|
||||
"g1": CartesianDomain({"x": [0, 1], "y": 1.0}),
|
||||
"g2": CartesianDomain({"x": [0, 1], "y": 0.0}),
|
||||
"g3": CartesianDomain({"x": 1.0, "y": [0, 1]}),
|
||||
"g4": CartesianDomain({"x": 0.0, "y": [0, 1]}),
|
||||
}
|
||||
|
||||
conditions = {
|
||||
"nil_g1": Condition(domain="g1", equation=FixedValue(0.0)),
|
||||
"nil_g2": Condition(domain="g2", equation=FixedValue(0.0)),
|
||||
"nil_g3": Condition(domain="g3", equation=FixedValue(0.0)),
|
||||
"nil_g4": Condition(domain="g4", equation=FixedValue(0.0)),
|
||||
"laplace_D": Condition(domain="D", equation=my_laplace),
|
||||
"g1": Condition(domain="g1", equation=FixedValue(0.0)),
|
||||
"g2": Condition(domain="g2", equation=FixedValue(0.0)),
|
||||
"g3": Condition(domain="g3", equation=FixedValue(0.0)),
|
||||
"g4": Condition(domain="g4", equation=FixedValue(0.0)),
|
||||
"D": Condition(domain="D", equation=Equation(laplace_equation)),
|
||||
}
|
||||
|
||||
def poisson_sol(self, pts):
|
||||
"""TODO"""
|
||||
def solution(self, pts):
|
||||
"""
|
||||
Implementation of the analytical solution of the Poisson problem.
|
||||
|
||||
return -(
|
||||
:param LabelTensor pts: Points where the solution is evaluated.
|
||||
:return: The analytical solution of the Poisson problem.
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
sol = -(
|
||||
torch.sin(pts.extract(["x"]) * torch.pi)
|
||||
* torch.sin(pts.extract(["y"]) * torch.pi)
|
||||
)
|
||||
sol.labels = self.output_variables
|
||||
return sol
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
"""TODO"""
|
||||
"""Formulation of a Supervised Problem in PINA."""
|
||||
|
||||
from ..abstract_problem import AbstractProblem
|
||||
from ... import Condition
|
||||
@@ -7,11 +7,11 @@ from ... import Graph
|
||||
|
||||
class SupervisedProblem(AbstractProblem):
|
||||
"""
|
||||
A problem definition for supervised learning in PINA.
|
||||
Definition of a supervised learning problem in PINA.
|
||||
|
||||
This class allows an easy and straightforward definition of a
|
||||
Supervised problem, based on a single condition of type
|
||||
`InputTargetCondition`
|
||||
This class provides a simple way to define a supervised problem
|
||||
using a single condition of type
|
||||
:class:`~pina.condition.input_target_condition.InputTargetCondition`.
|
||||
|
||||
:Example:
|
||||
>>> import torch
|
||||
@@ -25,12 +25,11 @@ class SupervisedProblem(AbstractProblem):
|
||||
|
||||
def __init__(self, input_, output_):
|
||||
"""
|
||||
Initialize the SupervisedProblem class
|
||||
Initialize the SupervisedProblem class.
|
||||
|
||||
:param input_: Input data of the problem
|
||||
:type input_: torch.Tensor | Graph
|
||||
:param output_: Output data of the problem
|
||||
:type output_: torch.Tensor
|
||||
:param input_: Input data of the problem.
|
||||
:param output_: Output data of the problem.
|
||||
:type output_: torch.Tensor | Graph
|
||||
"""
|
||||
if isinstance(input_, Graph):
|
||||
input_ = input_.data
|
||||
|
||||
Reference in New Issue
Block a user