Refactoring code

This commit is contained in:
Your Name
2022-01-27 14:55:42 +01:00
parent fb16fc7f3a
commit fa8ffd5042
32 changed files with 417 additions and 442 deletions

View File

@@ -0,0 +1,49 @@
import numpy as np
import scipy.io
import torch
from pina.segment import Segment
from pina.cube import Cube
from pina.problem import TimeDependentProblem, Problem1D
from pina.operators import grad
def tmp_grad(output_, input_):
return torch.autograd.grad(
output_,
input_.tensor,
grad_outputs=torch.ones(output_.size()).to(
dtype=input_.tensor.dtype,
device=input_.tensor.device),
create_graph=True, retain_graph=True, allow_unused=True)[0]
class Burgers1D(TimeDependentProblem, Problem1D):
input_variables = ['x', 't']
output_variables = ['u']
spatial_domain = Cube([[-1, 1]])
temporal_domain = Cube([[0, 1]])
def burger_equation(input_, output_):
grad_u = grad(output_['u'], input_)
grad_x, grad_t = tmp_grad(output_['u'], input_).T
gradgrad_u_x = grad(grad_u['x'], input_)
grad_xx = tmp_grad(grad_x, input_)[:, 0]
return grad_u['t'] + output_['u']*grad_u['x'] - (0.01/torch.pi)*gradgrad_u_x['x']
def nil_dirichlet(input_, output_):
u_expected = 0.0
return output_['u'] - u_expected
def initial_condition(input_, output_):
u_expected = -torch.sin(torch.pi*input_['x'])
return output_['u'] - u_expected
conditions = {
'gamma1': {'location': Segment((-1, 0), (-1, 1)), 'func': nil_dirichlet},
'gamma2': {'location': Segment(( 1, 0), ( 1, 1)), 'func': nil_dirichlet},
'initia': {'location': Segment((-1, 0), ( 1, 0)), 'func': initial_condition},
'D': {'location': Cube([[-1, 1],[0,1]]), 'func': burger_equation}
}

View File

@@ -0,0 +1,49 @@
import numpy as np
import torch
from pina.problem import Problem
from pina.segment import Segment
from pina.cube import Cube
from pina.problem2d import Problem2D
xmin, xmax, ymin, ymax = -1, 1, -1, 1
class EllipticOptimalControl(Problem2D):
def __init__(self, alpha=1):
def term1(input_, output_):
grad_p = self.grad(output_['p'], input_)
gradgrad_p_x1 = self.grad(grad_p['x1'], input_)
gradgrad_p_x2 = self.grad(grad_p['x2'], input_)
yd = 2.0
return output_['y'] - yd - (gradgrad_p_x1['x1'] + gradgrad_p_x2['x2'])
def term2(input_, output_):
grad_y = self.grad(output_['y'], input_)
gradgrad_y_x1 = self.grad(grad_y['x1'], input_)
gradgrad_y_x2 = self.grad(grad_y['x2'], input_)
return - (gradgrad_y_x1['x1'] + gradgrad_y_x2['x2']) - output_['u']
def term3(input_, output_):
return output_['p'] - output_['u']*alpha
def nil_dirichlet(input_, output_):
y_value = 0.0
p_value = 0.0
return torch.abs(output_['y'] - y_value) + torch.abs(output_['p'] - p_value)
self.conditions = {
'gamma1': {'location': Segment((xmin, ymin), (xmax, ymin)), 'func': nil_dirichlet},
'gamma2': {'location': Segment((xmax, ymin), (xmax, ymax)), 'func': nil_dirichlet},
'gamma3': {'location': Segment((xmax, ymax), (xmin, ymax)), 'func': nil_dirichlet},
'gamma4': {'location': Segment((xmin, ymax), (xmin, ymin)), 'func': nil_dirichlet},
'D1': {'location': Cube([[xmin, xmax], [ymin, ymax]]), 'func': [term1, term2, term3]},
#'D2': {'location': Cube([[0, 1], [0, 1]]), 'func': term2},
#'D3': {'location': Cube([[0, 1], [0, 1]]), 'func': term3}
}
self.input_variables = ['x1', 'x2']
self.output_variables = ['u', 'p', 'y']
self.spatial_domain = Cube([[xmin, xmax], [xmin, xmax]])

View File

@@ -0,0 +1,53 @@
import numpy as np
import torch
from pina.problem import Problem
from pina.segment import Segment
from pina.cube import Cube
from pina.problem2d import Problem2D
xmin, xmax, ymin, ymax = -1, 1, -1, 1
class ParametricEllipticOptimalControl(Problem2D):
def __init__(self, alpha=1):
def term1(input_, param_, output_):
grad_p = self.grad(output_['p'], input_)
gradgrad_p_x1 = self.grad(grad_p['x1'], input_)
gradgrad_p_x2 = self.grad(grad_p['x2'], input_)
return output_['y'] - param_ - (gradgrad_p_x1['x1'] + gradgrad_p_x2['x2'])
def term2(input_, param_, output_):
grad_y = self.grad(output_['y'], input_)
gradgrad_y_x1 = self.grad(grad_y['x1'], input_)
gradgrad_y_x2 = self.grad(grad_y['x2'], input_)
return - (gradgrad_y_x1['x1'] + gradgrad_y_x2['x2']) - output_['u_param']
def term3(input_, param_, output_):
return output_['p'] - output_['u_param']*alpha
def term(input_, param_, output_):
return term1( input_, param_, output_) +term2( input_, param_, output_) + term3( input_, param_, output_)
def nil_dirichlet(input_, param_, output_):
y_value = 0.0
p_value = 0.0
return torch.abs(output_['y'] - y_value) + torch.abs(output_['p'] - p_value)
self.conditions = {
'gamma1': {'location': Segment((xmin, ymin), (xmax, ymin)), 'func': nil_dirichlet},
'gamma2': {'location': Segment((xmax, ymin), (xmax, ymax)), 'func': nil_dirichlet},
'gamma3': {'location': Segment((xmax, ymax), (xmin, ymax)), 'func': nil_dirichlet},
'gamma4': {'location': Segment((xmin, ymax), (xmin, ymin)), 'func': nil_dirichlet},
'D1': {'location': Cube([[xmin, xmax], [ymin, ymax]]), 'func': term},
#'D2': {'location': Cube([[0, 1], [0, 1]]), 'func': term2},
#'D3': {'location': Cube([[0, 1], [0, 1]]), 'func': term3}
}
self.input_variables = ['x1', 'x2']
self.output_variables = ['u', 'p', 'y']
self.parameters = ['mu']
self.spatial_domain = Cube([[xmin, xmax], [xmin, xmax]])
self.parameter_domain = np.array([[0.5, 3]])

View File

@@ -0,0 +1,52 @@
import numpy as np
import torch
from pina.problem import Problem
from pina.segment import Segment
from pina.cube import Cube
from pina.problem2d import Problem2D
xmin, xmax, ymin, ymax = -1, 1, -1, 1
class ParametricEllipticOptimalControl(Problem2D):
def __init__(self, alpha=1):
def term1(input_, param_, output_):
grad_p = self.grad(output_['p'], input_)
gradgrad_p_x1 = self.grad(grad_p['x1'], input_)
gradgrad_p_x2 = self.grad(grad_p['x2'], input_)
#print('mu', input_['mu'])
return output_['y'] - input_['mu'] - (gradgrad_p_x1['x1'] + gradgrad_p_x2['x2'])
def term2(input_, param_, output_):
grad_y = self.grad(output_['y'], input_)
gradgrad_y_x1 = self.grad(grad_y['x1'], input_)
gradgrad_y_x2 = self.grad(grad_y['x2'], input_)
return - (gradgrad_y_x1['x1'] + gradgrad_y_x2['x2']) - output_['u_param']
def term3(input_, param_, output_):
#print('a', input_['alpha'], output_['p'], output_['u_param'])
return output_['p'] - output_['u_param']*input_['alpha']
def nil_dirichlet(input_, param_, output_):
y_value = 0.0
p_value = 0.0
return torch.abs(output_['y'] - y_value) + torch.abs(output_['p'] - p_value)
self.conditions = {
'gamma1': {'location': Segment((xmin, ymin), (xmax, ymin)), 'func': nil_dirichlet},
'gamma2': {'location': Segment((xmax, ymin), (xmax, ymax)), 'func': nil_dirichlet},
'gamma3': {'location': Segment((xmax, ymax), (xmin, ymax)), 'func': nil_dirichlet},
'gamma4': {'location': Segment((xmin, ymax), (xmin, ymin)), 'func': nil_dirichlet},
'D1': {'location': Cube([[xmin, xmax], [ymin, ymax]]), 'func': [term1, term2]},
#'D2': {'location': Cube([[0, 1], [0, 1]]), 'func': term2},
#'D3': {'location': Cube([[0, 1], [0, 1]]), 'func': term3}
}
self.input_variables = ['x1', 'x2']
self.output_variables = ['u', 'p', 'y']
self.parameters = ['mu', 'alpha']
self.spatial_domain = Cube([[xmin, xmax], [xmin, xmax]])
self.parameter_domain = np.array([[0.5, 3], [0.0001, 1]])

View File

@@ -0,0 +1,43 @@
import numpy as np
import torch
from pina.segment import Segment
from pina.cube import Cube
from pina.problem2d import Problem2D
from pina.problem import Problem
class ParametricPoisson2DProblem(Problem2D):
def __init__(self):
def laplace_equation(input_, param_, output_):
grad_u = self.grad(output_['u'], input_)
gradgrad_u_x = self.grad(grad_u['x'], input_)
gradgrad_u_y = self.grad(grad_u['y'], input_)
force_term = torch.exp(
- 2*(input_['x'] - input_['mu1'])**2 -
2*(input_['y'] - input_['mu2'])**2
)
return gradgrad_u_x['x'] + gradgrad_u_y['y'] - force_term
def nil_dirichlet(input_, param_, output_):
value = 0.0
return output_['u'] - value
self.conditions = {
'gamma1': {'location': Segment((-1, -1), ( 1, -1)),'func': nil_dirichlet},
'gamma2': {'location': Segment(( 1, -1), ( 1, 1)),'func': nil_dirichlet},
'gamma3': {'location': Segment(( 1, 1), (-1, 1)),'func': nil_dirichlet},
'gamma4': {'location': Segment((-1, 1), (-1, -1)),'func': nil_dirichlet},
'D': {'location': Cube([[-1, 1], [-1, 1]]), 'func': laplace_equation}
}
self.input_variables = ['x', 'y']
self.output_variables = ['u']
self.parameters = ['mu1', 'mu2']
#self.truth_solution = poisson_sol
self.spatial_domain = Cube([[0, 1], [0, 1]])
self.parameter_domain = np.array([[-1, 1], [-1, 1]])
#self.check() # Check the problem is correctly set

View File

@@ -0,0 +1,35 @@
import numpy as np
import torch
from pina.segment import Segment
from pina.cube import Cube
from pina.problem import Problem2D
from pina.operators import grad, div, nabla
class Poisson2D(Problem2D):
input_variables = ['x', 'y']
output_variables = ['u']
spatial_domain = Cube([[0, 1], [0, 1]])
def laplace_equation(input_, output_):
force_term = (torch.sin(input_['x']*torch.pi)
* torch.sin(input_['y']*torch.pi))
return nabla(output_['u'], input_).flatten() - force_term
def nil_dirichlet(input_, output_):
value = 0.0
return output_['u'] - value
conditions = {
'gamma1': {'location': Segment((0, 0), (1, 0)), 'func': nil_dirichlet},
'gamma2': {'location': Segment((1, 0), (1, 1)), 'func': nil_dirichlet},
'gamma3': {'location': Segment((1, 1), (0, 1)), 'func': nil_dirichlet},
'gamma4': {'location': Segment((0, 1), (0, 0)), 'func': nil_dirichlet},
'D': {'location': Cube([[0, 1], [0, 1]]), 'func': laplace_equation}
}
def poisson_sol(self, x, y):
return -(np.sin(x*np.pi)*np.sin(y*np.pi))/(2*np.pi**2)
truth_solution = poisson_sol

View File

@@ -9,34 +9,20 @@ from torch.nn import ReLU, Tanh, Softplus
from problems.burgers import Burgers1D
from pina.deep_feed_forward import DeepFeedForward
from pina.adaptive_functions import AdaptiveSin, AdaptiveCos, AdaptiveTanh
from pina import Plotter
class myFeature(torch.nn.Module):
"""
Feature: sin(x)
Feature: sin(pi*x)
"""
def __init__(self, idx):
super(myFeature, self).__init__()
self.idx = idx
def forward(self, x):
return torch.sin(torch.pi * x[:, self.idx])
class myExp(torch.nn.Module):
def __init__(self, idx):
super().__init__()
self.idx = idx
def forward(self, x):
return torch.exp(x[:, self.idx])
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run PINA")
@@ -51,13 +37,13 @@ if __name__ == "__main__":
burgers_problem = Burgers1D()
model = DeepFeedForward(
layers=[20, 10, 5],
#layers=[8, 4, 2],
layers=[30, 20, 10, 5],
#layers=[8, 8, 8],
#layers=[16, 8, 4, 4],
#layers=[20, 4, 4, 4],
output_variables=burgers_problem.output_variables,
input_variables=burgers_problem.input_variables,
func=Tanh,
func=Softplus,
extra_features=feat
)
@@ -70,46 +56,11 @@ if __name__ == "__main__":
lr_accelerate=None)
if args.s:
pinn.span_pts(8000, 'latin', ['D'])
pinn.span_pts(50, 'random', ['gamma1', 'gamma2', 'initia'])
#pinn.plot_pts()
pinn.train(10000, 1000)
#with open('burgers_history_{}_{}.txt'.format(args.id_run, args.features), 'w') as file_:
# for i, losses in enumerate(pinn.history):
# file_.write('{} {}\n'.format(i, sum(losses).item()))
pinn.span_pts(2000, 'latin', ['D'])
pinn.span_pts(150, 'random', ['gamma1', 'gamma2', 'initia'])
pinn.train(5000, 100)
pinn.save_state('pina.burger.{}.{}'.format(args.id_run, args.features))
else:
pinn.load_state('pina.burger.{}.{}'.format(args.id_run, args.features))
#pinn.plot(256,filename='pina.burger.{}.{}.jpg'.format(args.id_run, args.features))
print(pinn.history)
with open('burgers_history_{}_{}.txt'.format(args.id_run, args.features), 'w') as file_:
for i, losses in enumerate(pinn.history):
print(losses)
file_.write('{} {}\n'.format(i, sum(losses)))
import scipy
data = scipy.io.loadmat('Data/burgers_shock.mat')
data_solution = {'grid': np.meshgrid(data['x'], data['t']), 'grid_solution': data['usol'].T}
import matplotlib
matplotlib.use('Qt5Agg')
import matplotlib.pyplot as plt
t =75
for t in [25, 50, 75]:
input = torch.cat([
torch.linspace(-1, 1, 256).reshape(-1, 1),
torch.ones(size=(256, 1)) * t /100],
axis=1).double()
output = pinn.model(input)
fout = 'pina.burgers.{}.{}.t{}.dat'.format(args.id_run, args.features, t)
with open(fout, 'w') as f_:
f_.write('x utruth upinn\n')
for x, utruth, upinn in zip(data['x'], data['usol'][:, t], output.tensor.detach()):
f_.write('{} {} {}\n'.format(x[0], utruth, upinn.item()))
plt.plot(data['usol'][:, t], label='truth')
plt.plot(output.tensor.detach(), 'x', label='pinn')
plt.legend()
plt.show()
plotter = Plotter()
plotter.plot(pinn)

View File

@@ -2,15 +2,16 @@ import sys
import numpy as np
import torch
import argparse
from pina.pinn import PINN
from pina import PINN
from pina.ppinn import ParametricPINN as pPINN
from pina.label_tensor import LabelTensor
from torch.nn import ReLU, Tanh, Softplus
from problems.poisson2D import Poisson2DProblem as Poisson2D
from problems.poisson2D import Poisson2D
from pina.deep_feed_forward import DeepFeedForward
from pina.adaptive_functions import AdaptiveSin, AdaptiveCos, AdaptiveTanh
from pina import Plotter
class myFeature(torch.nn.Module):
"""
@@ -54,17 +55,18 @@ if __name__ == "__main__":
if args.s:
pinn.span_pts(10, 'grid', ['D'])
pinn.span_pts(10, 'grid', ['gamma1', 'gamma2', 'gamma3', 'gamma4'])
pinn.span_pts(20, 'grid', ['D'])
pinn.span_pts(20, 'grid', ['gamma1', 'gamma2', 'gamma3', 'gamma4'])
#pinn.plot_pts()
pinn.train(10000, 100)
pinn.train(1000, 100)
with open('poisson_history_{}_{}.txt'.format(args.id_run, args.features), 'w') as file_:
for i, losses in enumerate(pinn.history):
file_.write('{} {}\n'.format(i, sum(losses).item()))
file_.write('{} {}\n'.format(i, sum(losses)))
pinn.save_state('pina.poisson')
else:
pinn.load_state('pina.poisson')
pinn.plot(40)
plotter = Plotter()
plotter.plot(pinn)