Filippo0.2 (#361)

* Add summation and remove deepcopy (only for tensors) in LabelTensor class
* Update operators for compatibility with updated LabelTensor implementation
* Implement labels.setter in LabelTensor class
* Update LabelTensor

---------

Co-authored-by: FilippoOlivo <filippo@filippoolivo.com>
This commit is contained in:
Dario Coscia
2024-10-04 15:59:09 +02:00
committed by Nicola Demo
parent 1d3df2a127
commit fdb8f65143
4 changed files with 212 additions and 92 deletions

View File

@@ -35,14 +35,34 @@ class LabelTensor(torch.Tensor):
{1: {"name": "space"['a', 'b', 'c'])
"""
self.labels = None
self.labels = labels
@property
def labels(self):
"""Property decorator for labels
:return: labels of self
:rtype: list
"""
return self._labels
@labels.setter
def labels(self, labels):
""""
Set properly the parameter _labels
:param labels: Labels to assign to the class variable _labels.
:type: labels: str | list(str) | dict
"""
if hasattr(self, 'labels') is False:
self.init_labels()
if isinstance(labels, dict):
self.update_labels(labels)
self.update_labels_from_dict(labels)
elif isinstance(labels, list):
self.init_labels_from_list(labels)
self.update_labels_from_list(labels)
elif isinstance(labels, str):
labels = [labels]
self.init_labels_from_list(labels)
self.update_labels_from_list(labels)
else:
raise ValueError(f"labels must be list, dict or string.")
@@ -60,38 +80,38 @@ class LabelTensor(torch.Tensor):
if isinstance(label_to_extract, (str, int)):
label_to_extract = [label_to_extract]
if isinstance(label_to_extract, (tuple, list)):
last_dim_label = self.labels[self.tensor.ndim - 1]['dof']
last_dim_label = self._labels[self.tensor.ndim - 1]['dof']
if set(label_to_extract).issubset(last_dim_label) is False:
raise ValueError('Cannot extract a dof which is not in the original LabelTensor')
idx_to_extract = [last_dim_label.index(i) for i in label_to_extract]
new_tensor = deepcopy(self.tensor)
new_tensor = self.tensor
new_tensor = new_tensor[..., idx_to_extract]
new_labels = deepcopy(self.labels)
new_labels = deepcopy(self._labels)
last_dim_new_label = {self.tensor.ndim - 1: {
'dof': label_to_extract,
'name': self.labels[self.tensor.ndim - 1]['name']
'name': self._labels[self.tensor.ndim - 1]['name']
}}
new_labels.update(last_dim_new_label)
elif isinstance(label_to_extract, dict):
new_labels = (deepcopy(self.labels))
new_tensor = deepcopy(self.tensor)
new_labels = (deepcopy(self._labels))
new_tensor = self.tensor
for k, v in label_to_extract.items():
idx_dim = None
for kl, vl in self.labels.items():
for kl, vl in self._labels.items():
if vl['name'] == k:
idx_dim = kl
break
dim_labels = self.labels[idx_dim]['dof']
dim_labels = self._labels[idx_dim]['dof']
if isinstance(label_to_extract[k], (int, str)):
label_to_extract[k] = [label_to_extract[k]]
if set(label_to_extract[k]).issubset(dim_labels) is False:
raise ValueError('Cannot extract a dof which is not in the original labeltensor')
raise ValueError('Cannot extract a dof which is not in the original LabelTensor')
idx_to_extract = [dim_labels.index(i) for i in label_to_extract[k]]
indexer = [slice(None)] * idx_dim + [idx_to_extract] + [slice(None)] * (self.tensor.ndim - idx_dim - 1)
new_tensor = new_tensor[indexer]
dim_new_label = {idx_dim: {
'dof': label_to_extract[k],
'name': self.labels[idx_dim]['name']
'name': self._labels[idx_dim]['name']
}}
new_labels.update(dim_new_label)
else:
@@ -104,7 +124,7 @@ class LabelTensor(torch.Tensor):
"""
s = ''
for key, value in self.labels.items():
for key, value in self._labels.items():
s += f"{key}: {value}\n"
s += '\n'
s += super().__str__()
@@ -155,7 +175,7 @@ class LabelTensor(torch.Tensor):
def requires_grad_(self, mode=True):
lt = super().requires_grad_(mode)
lt.labels = self.labels
lt.labels = self._labels
return lt
@property
@@ -181,10 +201,19 @@ class LabelTensor(torch.Tensor):
:rtype: LabelTensor
"""
out = LabelTensor(super().clone(*args, **kwargs), self.labels)
out = LabelTensor(super().clone(*args, **kwargs), self._labels)
return out
def update_labels(self, labels):
def init_labels(self):
self._labels = {
idx_: {
'dof': range(self.tensor.shape[idx_]),
'name': idx_
} for idx_ in range(self.tensor.ndim)
}
def update_labels_from_dict(self, labels):
"""
Update the internal label representation according to the values passed as input.
@@ -192,21 +221,16 @@ class LabelTensor(torch.Tensor):
:type labels: dict
:raises ValueError: dof list contain duplicates or number of dof does not match with tensor shape
"""
self.labels = {
idx_: {
'dof': range(self.tensor.shape[idx_]),
'name': idx_
} for idx_ in range(self.tensor.ndim)
}
tensor_shape = self.tensor.shape
for k, v in labels.items():
if len(v['dof']) != len(set(v['dof'])):
raise ValueError("dof must be unique")
if len(v['dof']) != tensor_shape[k]:
raise ValueError('Number of dof does not match with tensor dimension')
self.labels.update(labels)
self._labels.update(labels)
def init_labels_from_list(self, labels):
def update_labels_from_list(self, labels):
"""
Given a list of dof, this method update the internal label representation
@@ -214,4 +238,34 @@ class LabelTensor(torch.Tensor):
:type labels: list
"""
last_dim_labels = {self.tensor.ndim - 1: {'dof': labels, 'name': self.tensor.ndim - 1}}
self.update_labels(last_dim_labels)
self.update_labels_from_dict(last_dim_labels)
@staticmethod
def summation(tensors):
if len(tensors) == 0:
raise ValueError('tensors list must not be empty')
if len(tensors) == 1:
return tensors[0]
labels = tensors[0].labels
for j in range(tensors[0].ndim):
for i in range(1, len(tensors)):
if labels[j] != tensors[i].labels[j]:
labels.pop(j)
break
data = torch.zeros(tensors[0].tensor.shape)
for i in range(len(tensors)):
data += tensors[i].tensor
new_tensor = LabelTensor(data, labels)
return new_tensor
def last_dim_dof(self):
return self._labels[self.tensor.ndim - 1]['dof']
def append(self, tensor, mode='std'):
print(self.labels)
print(tensor.labels)
if mode == 'std':
new_label_tensor = LabelTensor.cat([self, tensor], dim=self.tensor.ndim - 1)
return new_label_tensor