Files
PINA/pina/label_tensor.py
Dario Coscia fdb8f65143 Filippo0.2 (#361)
* Add summation and remove deepcopy (only for tensors) in LabelTensor class
* Update operators for compatibility with updated LabelTensor implementation
* Implement labels.setter in LabelTensor class
* Update LabelTensor

---------

Co-authored-by: FilippoOlivo <filippo@filippoolivo.com>
2025-03-19 17:46:33 +01:00

272 lines
9.5 KiB
Python

""" Module for LabelTensor """
import torch
from torch import Tensor
def issubset(a, b):
"""
Check if a is a subset of b.
"""
return set(a).issubset(set(b))
class LabelTensor(torch.Tensor):
"""Torch tensor with a label for any column."""
@staticmethod
def __new__(cls, x, labels, *args, **kwargs):
return super().__new__(cls, x, *args, **kwargs)
@property
def tensor(self):
return self.as_subclass(Tensor)
def __len__(self) -> int:
return super().__len__()
def __init__(self, x, labels):
"""
Construct a `LabelTensor` by passing a dict of the labels
:Example:
>>> from pina import LabelTensor
>>> tensor = LabelTensor(
>>> torch.rand((2000, 3)),
{1: {"name": "space"['a', 'b', 'c'])
"""
self.labels = labels
@property
def labels(self):
"""Property decorator for labels
:return: labels of self
:rtype: list
"""
return self._labels
@labels.setter
def labels(self, labels):
""""
Set properly the parameter _labels
:param labels: Labels to assign to the class variable _labels.
:type: labels: str | list(str) | dict
"""
if hasattr(self, 'labels') is False:
self.init_labels()
if isinstance(labels, dict):
self.update_labels_from_dict(labels)
elif isinstance(labels, list):
self.update_labels_from_list(labels)
elif isinstance(labels, str):
labels = [labels]
self.update_labels_from_list(labels)
else:
raise ValueError(f"labels must be list, dict or string.")
def extract(self, label_to_extract):
"""
Extract the subset of the original tensor by returning all the columns
corresponding to the passed ``label_to_extract``.
:param label_to_extract: The label(s) to extract.
:type label_to_extract: str | list(str) | tuple(str)
:raises TypeError: Labels are not ``str``.
:raises ValueError: Label to extract is not in the labels ``list``.
"""
from copy import deepcopy
if isinstance(label_to_extract, (str, int)):
label_to_extract = [label_to_extract]
if isinstance(label_to_extract, (tuple, list)):
last_dim_label = self._labels[self.tensor.ndim - 1]['dof']
if set(label_to_extract).issubset(last_dim_label) is False:
raise ValueError('Cannot extract a dof which is not in the original LabelTensor')
idx_to_extract = [last_dim_label.index(i) for i in label_to_extract]
new_tensor = self.tensor
new_tensor = new_tensor[..., idx_to_extract]
new_labels = deepcopy(self._labels)
last_dim_new_label = {self.tensor.ndim - 1: {
'dof': label_to_extract,
'name': self._labels[self.tensor.ndim - 1]['name']
}}
new_labels.update(last_dim_new_label)
elif isinstance(label_to_extract, dict):
new_labels = (deepcopy(self._labels))
new_tensor = self.tensor
for k, v in label_to_extract.items():
idx_dim = None
for kl, vl in self._labels.items():
if vl['name'] == k:
idx_dim = kl
break
dim_labels = self._labels[idx_dim]['dof']
if isinstance(label_to_extract[k], (int, str)):
label_to_extract[k] = [label_to_extract[k]]
if set(label_to_extract[k]).issubset(dim_labels) is False:
raise ValueError('Cannot extract a dof which is not in the original LabelTensor')
idx_to_extract = [dim_labels.index(i) for i in label_to_extract[k]]
indexer = [slice(None)] * idx_dim + [idx_to_extract] + [slice(None)] * (self.tensor.ndim - idx_dim - 1)
new_tensor = new_tensor[indexer]
dim_new_label = {idx_dim: {
'dof': label_to_extract[k],
'name': self._labels[idx_dim]['name']
}}
new_labels.update(dim_new_label)
else:
raise ValueError('labels_to_extract must be str or list or dict')
return LabelTensor(new_tensor, new_labels)
def __str__(self):
"""
returns a string with the representation of the class
"""
s = ''
for key, value in self._labels.items():
s += f"{key}: {value}\n"
s += '\n'
s += super().__str__()
return s
@staticmethod
def cat(tensors, dim=0):
"""
Stack a list of tensors. For example, given a tensor `a` of shape `(n,m,dof)` and a tensor `b` of dimension `(n',m,dof)`
the resulting tensor is of shape `(n+n',m,dof)`
:param tensors: tensors to concatenate
:type tensors: list(LabelTensor)
:param dim: dimensions on which you want to perform the operation (default 0)
:type dim: int
:rtype: LabelTensor
:raises ValueError: either number dof or dimensions names differ
"""
if len(tensors) == 0:
return []
if len(tensors) == 1:
return tensors[0]
n_dims = tensors[0].ndim
new_labels_cat_dim = []
for i in range(n_dims):
name = tensors[0].labels[i]['name']
if i != dim:
dof = tensors[0].labels[i]['dof']
for tensor in tensors:
dof_to_check = tensor.labels[i]['dof']
name_to_check = tensor.labels[i]['name']
if dof != dof_to_check or name != name_to_check:
raise ValueError('dimensions must have the same dof and name')
else:
for tensor in tensors:
new_labels_cat_dim += tensor.labels[i]['dof']
name_to_check = tensor.labels[i]['name']
if name != name_to_check:
raise ValueError('dimensions must have the same dof and name')
new_tensor = torch.cat(tensors, dim=dim)
labels = tensors[0].labels
labels.pop(dim)
new_labels_cat_dim = new_labels_cat_dim if len(set(new_labels_cat_dim)) == len(new_labels_cat_dim) \
else range(new_tensor.shape[dim])
labels[dim] = {'dof': new_labels_cat_dim,
'name': tensors[1].labels[dim]['name']}
return LabelTensor(new_tensor, labels)
def requires_grad_(self, mode=True):
lt = super().requires_grad_(mode)
lt.labels = self._labels
return lt
@property
def dtype(self):
return super().dtype
def to(self, *args, **kwargs):
"""
Performs Tensor dtype and/or device conversion. For more details, see
:meth:`torch.Tensor.to`.
"""
tmp = super().to(*args, **kwargs)
new = self.__class__.clone(self)
new.data = tmp.data
return new
def clone(self, *args, **kwargs):
"""
Clone the LabelTensor. For more details, see
:meth:`torch.Tensor.clone`.
:return: A copy of the tensor.
:rtype: LabelTensor
"""
out = LabelTensor(super().clone(*args, **kwargs), self._labels)
return out
def init_labels(self):
self._labels = {
idx_: {
'dof': range(self.tensor.shape[idx_]),
'name': idx_
} for idx_ in range(self.tensor.ndim)
}
def update_labels_from_dict(self, labels):
"""
Update the internal label representation according to the values passed as input.
:param labels: The label(s) to update.
:type labels: dict
:raises ValueError: dof list contain duplicates or number of dof does not match with tensor shape
"""
tensor_shape = self.tensor.shape
for k, v in labels.items():
if len(v['dof']) != len(set(v['dof'])):
raise ValueError("dof must be unique")
if len(v['dof']) != tensor_shape[k]:
raise ValueError('Number of dof does not match with tensor dimension')
self._labels.update(labels)
def update_labels_from_list(self, labels):
"""
Given a list of dof, this method update the internal label representation
:param labels: The label(s) to update.
:type labels: list
"""
last_dim_labels = {self.tensor.ndim - 1: {'dof': labels, 'name': self.tensor.ndim - 1}}
self.update_labels_from_dict(last_dim_labels)
@staticmethod
def summation(tensors):
if len(tensors) == 0:
raise ValueError('tensors list must not be empty')
if len(tensors) == 1:
return tensors[0]
labels = tensors[0].labels
for j in range(tensors[0].ndim):
for i in range(1, len(tensors)):
if labels[j] != tensors[i].labels[j]:
labels.pop(j)
break
data = torch.zeros(tensors[0].tensor.shape)
for i in range(len(tensors)):
data += tensors[i].tensor
new_tensor = LabelTensor(data, labels)
return new_tensor
def last_dim_dof(self):
return self._labels[self.tensor.ndim - 1]['dof']
def append(self, tensor, mode='std'):
print(self.labels)
print(tensor.labels)
if mode == 'std':
new_label_tensor = LabelTensor.cat([self, tensor], dim=self.tensor.ndim - 1)
return new_label_tensor