* Add summation and remove deepcopy (only for tensors) in LabelTensor class * Update operators for compatibility with updated LabelTensor implementation * Implement labels.setter in LabelTensor class * Update LabelTensor --------- Co-authored-by: FilippoOlivo <filippo@filippoolivo.com>
272 lines
9.5 KiB
Python
272 lines
9.5 KiB
Python
""" Module for LabelTensor """
|
|
|
|
import torch
|
|
from torch import Tensor
|
|
|
|
def issubset(a, b):
|
|
"""
|
|
Check if a is a subset of b.
|
|
"""
|
|
return set(a).issubset(set(b))
|
|
|
|
|
|
class LabelTensor(torch.Tensor):
|
|
"""Torch tensor with a label for any column."""
|
|
|
|
@staticmethod
|
|
def __new__(cls, x, labels, *args, **kwargs):
|
|
return super().__new__(cls, x, *args, **kwargs)
|
|
|
|
@property
|
|
def tensor(self):
|
|
return self.as_subclass(Tensor)
|
|
|
|
def __len__(self) -> int:
|
|
return super().__len__()
|
|
|
|
def __init__(self, x, labels):
|
|
"""
|
|
Construct a `LabelTensor` by passing a dict of the labels
|
|
|
|
:Example:
|
|
>>> from pina import LabelTensor
|
|
>>> tensor = LabelTensor(
|
|
>>> torch.rand((2000, 3)),
|
|
{1: {"name": "space"['a', 'b', 'c'])
|
|
|
|
"""
|
|
self.labels = labels
|
|
|
|
@property
|
|
def labels(self):
|
|
"""Property decorator for labels
|
|
|
|
:return: labels of self
|
|
:rtype: list
|
|
"""
|
|
return self._labels
|
|
|
|
@labels.setter
|
|
def labels(self, labels):
|
|
""""
|
|
Set properly the parameter _labels
|
|
|
|
:param labels: Labels to assign to the class variable _labels.
|
|
:type: labels: str | list(str) | dict
|
|
"""
|
|
if hasattr(self, 'labels') is False:
|
|
self.init_labels()
|
|
if isinstance(labels, dict):
|
|
self.update_labels_from_dict(labels)
|
|
elif isinstance(labels, list):
|
|
self.update_labels_from_list(labels)
|
|
elif isinstance(labels, str):
|
|
labels = [labels]
|
|
self.update_labels_from_list(labels)
|
|
else:
|
|
raise ValueError(f"labels must be list, dict or string.")
|
|
|
|
def extract(self, label_to_extract):
|
|
"""
|
|
Extract the subset of the original tensor by returning all the columns
|
|
corresponding to the passed ``label_to_extract``.
|
|
|
|
:param label_to_extract: The label(s) to extract.
|
|
:type label_to_extract: str | list(str) | tuple(str)
|
|
:raises TypeError: Labels are not ``str``.
|
|
:raises ValueError: Label to extract is not in the labels ``list``.
|
|
"""
|
|
from copy import deepcopy
|
|
if isinstance(label_to_extract, (str, int)):
|
|
label_to_extract = [label_to_extract]
|
|
if isinstance(label_to_extract, (tuple, list)):
|
|
last_dim_label = self._labels[self.tensor.ndim - 1]['dof']
|
|
if set(label_to_extract).issubset(last_dim_label) is False:
|
|
raise ValueError('Cannot extract a dof which is not in the original LabelTensor')
|
|
idx_to_extract = [last_dim_label.index(i) for i in label_to_extract]
|
|
new_tensor = self.tensor
|
|
new_tensor = new_tensor[..., idx_to_extract]
|
|
new_labels = deepcopy(self._labels)
|
|
last_dim_new_label = {self.tensor.ndim - 1: {
|
|
'dof': label_to_extract,
|
|
'name': self._labels[self.tensor.ndim - 1]['name']
|
|
}}
|
|
new_labels.update(last_dim_new_label)
|
|
elif isinstance(label_to_extract, dict):
|
|
new_labels = (deepcopy(self._labels))
|
|
new_tensor = self.tensor
|
|
for k, v in label_to_extract.items():
|
|
idx_dim = None
|
|
for kl, vl in self._labels.items():
|
|
if vl['name'] == k:
|
|
idx_dim = kl
|
|
break
|
|
dim_labels = self._labels[idx_dim]['dof']
|
|
if isinstance(label_to_extract[k], (int, str)):
|
|
label_to_extract[k] = [label_to_extract[k]]
|
|
if set(label_to_extract[k]).issubset(dim_labels) is False:
|
|
raise ValueError('Cannot extract a dof which is not in the original LabelTensor')
|
|
idx_to_extract = [dim_labels.index(i) for i in label_to_extract[k]]
|
|
indexer = [slice(None)] * idx_dim + [idx_to_extract] + [slice(None)] * (self.tensor.ndim - idx_dim - 1)
|
|
new_tensor = new_tensor[indexer]
|
|
dim_new_label = {idx_dim: {
|
|
'dof': label_to_extract[k],
|
|
'name': self._labels[idx_dim]['name']
|
|
}}
|
|
new_labels.update(dim_new_label)
|
|
else:
|
|
raise ValueError('labels_to_extract must be str or list or dict')
|
|
return LabelTensor(new_tensor, new_labels)
|
|
|
|
def __str__(self):
|
|
"""
|
|
returns a string with the representation of the class
|
|
"""
|
|
|
|
s = ''
|
|
for key, value in self._labels.items():
|
|
s += f"{key}: {value}\n"
|
|
s += '\n'
|
|
s += super().__str__()
|
|
return s
|
|
|
|
@staticmethod
|
|
def cat(tensors, dim=0):
|
|
"""
|
|
Stack a list of tensors. For example, given a tensor `a` of shape `(n,m,dof)` and a tensor `b` of dimension `(n',m,dof)`
|
|
the resulting tensor is of shape `(n+n',m,dof)`
|
|
|
|
:param tensors: tensors to concatenate
|
|
:type tensors: list(LabelTensor)
|
|
:param dim: dimensions on which you want to perform the operation (default 0)
|
|
:type dim: int
|
|
:rtype: LabelTensor
|
|
:raises ValueError: either number dof or dimensions names differ
|
|
"""
|
|
if len(tensors) == 0:
|
|
return []
|
|
if len(tensors) == 1:
|
|
return tensors[0]
|
|
n_dims = tensors[0].ndim
|
|
new_labels_cat_dim = []
|
|
for i in range(n_dims):
|
|
name = tensors[0].labels[i]['name']
|
|
if i != dim:
|
|
dof = tensors[0].labels[i]['dof']
|
|
for tensor in tensors:
|
|
dof_to_check = tensor.labels[i]['dof']
|
|
name_to_check = tensor.labels[i]['name']
|
|
if dof != dof_to_check or name != name_to_check:
|
|
raise ValueError('dimensions must have the same dof and name')
|
|
else:
|
|
for tensor in tensors:
|
|
new_labels_cat_dim += tensor.labels[i]['dof']
|
|
name_to_check = tensor.labels[i]['name']
|
|
if name != name_to_check:
|
|
raise ValueError('dimensions must have the same dof and name')
|
|
new_tensor = torch.cat(tensors, dim=dim)
|
|
labels = tensors[0].labels
|
|
labels.pop(dim)
|
|
new_labels_cat_dim = new_labels_cat_dim if len(set(new_labels_cat_dim)) == len(new_labels_cat_dim) \
|
|
else range(new_tensor.shape[dim])
|
|
labels[dim] = {'dof': new_labels_cat_dim,
|
|
'name': tensors[1].labels[dim]['name']}
|
|
return LabelTensor(new_tensor, labels)
|
|
|
|
def requires_grad_(self, mode=True):
|
|
lt = super().requires_grad_(mode)
|
|
lt.labels = self._labels
|
|
return lt
|
|
|
|
@property
|
|
def dtype(self):
|
|
return super().dtype
|
|
|
|
def to(self, *args, **kwargs):
|
|
"""
|
|
Performs Tensor dtype and/or device conversion. For more details, see
|
|
:meth:`torch.Tensor.to`.
|
|
"""
|
|
tmp = super().to(*args, **kwargs)
|
|
new = self.__class__.clone(self)
|
|
new.data = tmp.data
|
|
return new
|
|
|
|
def clone(self, *args, **kwargs):
|
|
"""
|
|
Clone the LabelTensor. For more details, see
|
|
:meth:`torch.Tensor.clone`.
|
|
|
|
:return: A copy of the tensor.
|
|
:rtype: LabelTensor
|
|
"""
|
|
|
|
out = LabelTensor(super().clone(*args, **kwargs), self._labels)
|
|
return out
|
|
|
|
|
|
def init_labels(self):
|
|
self._labels = {
|
|
idx_: {
|
|
'dof': range(self.tensor.shape[idx_]),
|
|
'name': idx_
|
|
} for idx_ in range(self.tensor.ndim)
|
|
}
|
|
|
|
def update_labels_from_dict(self, labels):
|
|
"""
|
|
Update the internal label representation according to the values passed as input.
|
|
|
|
:param labels: The label(s) to update.
|
|
:type labels: dict
|
|
:raises ValueError: dof list contain duplicates or number of dof does not match with tensor shape
|
|
"""
|
|
|
|
tensor_shape = self.tensor.shape
|
|
for k, v in labels.items():
|
|
if len(v['dof']) != len(set(v['dof'])):
|
|
raise ValueError("dof must be unique")
|
|
if len(v['dof']) != tensor_shape[k]:
|
|
raise ValueError('Number of dof does not match with tensor dimension')
|
|
self._labels.update(labels)
|
|
|
|
def update_labels_from_list(self, labels):
|
|
"""
|
|
Given a list of dof, this method update the internal label representation
|
|
|
|
:param labels: The label(s) to update.
|
|
:type labels: list
|
|
"""
|
|
last_dim_labels = {self.tensor.ndim - 1: {'dof': labels, 'name': self.tensor.ndim - 1}}
|
|
self.update_labels_from_dict(last_dim_labels)
|
|
|
|
@staticmethod
|
|
def summation(tensors):
|
|
if len(tensors) == 0:
|
|
raise ValueError('tensors list must not be empty')
|
|
if len(tensors) == 1:
|
|
return tensors[0]
|
|
labels = tensors[0].labels
|
|
for j in range(tensors[0].ndim):
|
|
for i in range(1, len(tensors)):
|
|
if labels[j] != tensors[i].labels[j]:
|
|
labels.pop(j)
|
|
break
|
|
|
|
data = torch.zeros(tensors[0].tensor.shape)
|
|
for i in range(len(tensors)):
|
|
data += tensors[i].tensor
|
|
new_tensor = LabelTensor(data, labels)
|
|
return new_tensor
|
|
|
|
def last_dim_dof(self):
|
|
return self._labels[self.tensor.ndim - 1]['dof']
|
|
|
|
def append(self, tensor, mode='std'):
|
|
print(self.labels)
|
|
print(tensor.labels)
|
|
if mode == 'std':
|
|
new_label_tensor = LabelTensor.cat([self, tensor], dim=self.tensor.ndim - 1)
|
|
|
|
return new_label_tensor
|