Filippo0.2 (#361)
* Add summation and remove deepcopy (only for tensors) in LabelTensor class * Update operators for compatibility with updated LabelTensor implementation * Implement labels.setter in LabelTensor class * Update LabelTensor --------- Co-authored-by: FilippoOlivo <filippo@filippoolivo.com>
This commit is contained in:
committed by
Nicola Demo
parent
1d3df2a127
commit
fdb8f65143
@@ -35,14 +35,34 @@ class LabelTensor(torch.Tensor):
|
||||
{1: {"name": "space"['a', 'b', 'c'])
|
||||
|
||||
"""
|
||||
self.labels = None
|
||||
self.labels = labels
|
||||
|
||||
@property
|
||||
def labels(self):
|
||||
"""Property decorator for labels
|
||||
|
||||
:return: labels of self
|
||||
:rtype: list
|
||||
"""
|
||||
return self._labels
|
||||
|
||||
@labels.setter
|
||||
def labels(self, labels):
|
||||
""""
|
||||
Set properly the parameter _labels
|
||||
|
||||
:param labels: Labels to assign to the class variable _labels.
|
||||
:type: labels: str | list(str) | dict
|
||||
"""
|
||||
if hasattr(self, 'labels') is False:
|
||||
self.init_labels()
|
||||
if isinstance(labels, dict):
|
||||
self.update_labels(labels)
|
||||
self.update_labels_from_dict(labels)
|
||||
elif isinstance(labels, list):
|
||||
self.init_labels_from_list(labels)
|
||||
self.update_labels_from_list(labels)
|
||||
elif isinstance(labels, str):
|
||||
labels = [labels]
|
||||
self.init_labels_from_list(labels)
|
||||
self.update_labels_from_list(labels)
|
||||
else:
|
||||
raise ValueError(f"labels must be list, dict or string.")
|
||||
|
||||
@@ -60,38 +80,38 @@ class LabelTensor(torch.Tensor):
|
||||
if isinstance(label_to_extract, (str, int)):
|
||||
label_to_extract = [label_to_extract]
|
||||
if isinstance(label_to_extract, (tuple, list)):
|
||||
last_dim_label = self.labels[self.tensor.ndim - 1]['dof']
|
||||
last_dim_label = self._labels[self.tensor.ndim - 1]['dof']
|
||||
if set(label_to_extract).issubset(last_dim_label) is False:
|
||||
raise ValueError('Cannot extract a dof which is not in the original LabelTensor')
|
||||
idx_to_extract = [last_dim_label.index(i) for i in label_to_extract]
|
||||
new_tensor = deepcopy(self.tensor)
|
||||
new_tensor = self.tensor
|
||||
new_tensor = new_tensor[..., idx_to_extract]
|
||||
new_labels = deepcopy(self.labels)
|
||||
new_labels = deepcopy(self._labels)
|
||||
last_dim_new_label = {self.tensor.ndim - 1: {
|
||||
'dof': label_to_extract,
|
||||
'name': self.labels[self.tensor.ndim - 1]['name']
|
||||
'name': self._labels[self.tensor.ndim - 1]['name']
|
||||
}}
|
||||
new_labels.update(last_dim_new_label)
|
||||
elif isinstance(label_to_extract, dict):
|
||||
new_labels = (deepcopy(self.labels))
|
||||
new_tensor = deepcopy(self.tensor)
|
||||
new_labels = (deepcopy(self._labels))
|
||||
new_tensor = self.tensor
|
||||
for k, v in label_to_extract.items():
|
||||
idx_dim = None
|
||||
for kl, vl in self.labels.items():
|
||||
for kl, vl in self._labels.items():
|
||||
if vl['name'] == k:
|
||||
idx_dim = kl
|
||||
break
|
||||
dim_labels = self.labels[idx_dim]['dof']
|
||||
dim_labels = self._labels[idx_dim]['dof']
|
||||
if isinstance(label_to_extract[k], (int, str)):
|
||||
label_to_extract[k] = [label_to_extract[k]]
|
||||
if set(label_to_extract[k]).issubset(dim_labels) is False:
|
||||
raise ValueError('Cannot extract a dof which is not in the original labeltensor')
|
||||
raise ValueError('Cannot extract a dof which is not in the original LabelTensor')
|
||||
idx_to_extract = [dim_labels.index(i) for i in label_to_extract[k]]
|
||||
indexer = [slice(None)] * idx_dim + [idx_to_extract] + [slice(None)] * (self.tensor.ndim - idx_dim - 1)
|
||||
new_tensor = new_tensor[indexer]
|
||||
dim_new_label = {idx_dim: {
|
||||
'dof': label_to_extract[k],
|
||||
'name': self.labels[idx_dim]['name']
|
||||
'name': self._labels[idx_dim]['name']
|
||||
}}
|
||||
new_labels.update(dim_new_label)
|
||||
else:
|
||||
@@ -104,7 +124,7 @@ class LabelTensor(torch.Tensor):
|
||||
"""
|
||||
|
||||
s = ''
|
||||
for key, value in self.labels.items():
|
||||
for key, value in self._labels.items():
|
||||
s += f"{key}: {value}\n"
|
||||
s += '\n'
|
||||
s += super().__str__()
|
||||
@@ -155,7 +175,7 @@ class LabelTensor(torch.Tensor):
|
||||
|
||||
def requires_grad_(self, mode=True):
|
||||
lt = super().requires_grad_(mode)
|
||||
lt.labels = self.labels
|
||||
lt.labels = self._labels
|
||||
return lt
|
||||
|
||||
@property
|
||||
@@ -181,10 +201,19 @@ class LabelTensor(torch.Tensor):
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
|
||||
out = LabelTensor(super().clone(*args, **kwargs), self.labels)
|
||||
out = LabelTensor(super().clone(*args, **kwargs), self._labels)
|
||||
return out
|
||||
|
||||
def update_labels(self, labels):
|
||||
|
||||
def init_labels(self):
|
||||
self._labels = {
|
||||
idx_: {
|
||||
'dof': range(self.tensor.shape[idx_]),
|
||||
'name': idx_
|
||||
} for idx_ in range(self.tensor.ndim)
|
||||
}
|
||||
|
||||
def update_labels_from_dict(self, labels):
|
||||
"""
|
||||
Update the internal label representation according to the values passed as input.
|
||||
|
||||
@@ -192,21 +221,16 @@ class LabelTensor(torch.Tensor):
|
||||
:type labels: dict
|
||||
:raises ValueError: dof list contain duplicates or number of dof does not match with tensor shape
|
||||
"""
|
||||
self.labels = {
|
||||
idx_: {
|
||||
'dof': range(self.tensor.shape[idx_]),
|
||||
'name': idx_
|
||||
} for idx_ in range(self.tensor.ndim)
|
||||
}
|
||||
|
||||
tensor_shape = self.tensor.shape
|
||||
for k, v in labels.items():
|
||||
if len(v['dof']) != len(set(v['dof'])):
|
||||
raise ValueError("dof must be unique")
|
||||
if len(v['dof']) != tensor_shape[k]:
|
||||
raise ValueError('Number of dof does not match with tensor dimension')
|
||||
self.labels.update(labels)
|
||||
self._labels.update(labels)
|
||||
|
||||
def init_labels_from_list(self, labels):
|
||||
def update_labels_from_list(self, labels):
|
||||
"""
|
||||
Given a list of dof, this method update the internal label representation
|
||||
|
||||
@@ -214,4 +238,34 @@ class LabelTensor(torch.Tensor):
|
||||
:type labels: list
|
||||
"""
|
||||
last_dim_labels = {self.tensor.ndim - 1: {'dof': labels, 'name': self.tensor.ndim - 1}}
|
||||
self.update_labels(last_dim_labels)
|
||||
self.update_labels_from_dict(last_dim_labels)
|
||||
|
||||
@staticmethod
|
||||
def summation(tensors):
|
||||
if len(tensors) == 0:
|
||||
raise ValueError('tensors list must not be empty')
|
||||
if len(tensors) == 1:
|
||||
return tensors[0]
|
||||
labels = tensors[0].labels
|
||||
for j in range(tensors[0].ndim):
|
||||
for i in range(1, len(tensors)):
|
||||
if labels[j] != tensors[i].labels[j]:
|
||||
labels.pop(j)
|
||||
break
|
||||
|
||||
data = torch.zeros(tensors[0].tensor.shape)
|
||||
for i in range(len(tensors)):
|
||||
data += tensors[i].tensor
|
||||
new_tensor = LabelTensor(data, labels)
|
||||
return new_tensor
|
||||
|
||||
def last_dim_dof(self):
|
||||
return self._labels[self.tensor.ndim - 1]['dof']
|
||||
|
||||
def append(self, tensor, mode='std'):
|
||||
print(self.labels)
|
||||
print(tensor.labels)
|
||||
if mode == 'std':
|
||||
new_label_tensor = LabelTensor.cat([self, tensor], dim=self.tensor.ndim - 1)
|
||||
|
||||
return new_label_tensor
|
||||
|
||||
@@ -1,13 +1,13 @@
|
||||
"""
|
||||
Module for operators vectorize implementation. Differential operators are used to write any differential problem.
|
||||
These operators are implemented to work on different accellerators: CPU, GPU, TPU or MPS.
|
||||
These operators are implemented to work on different accelerators: CPU, GPU, TPU or MPS.
|
||||
All operators take as input a tensor onto which computing the operator, a tensor with respect
|
||||
to which computing the operator, the name of the output variables to calculate the operator
|
||||
for (in case of multidimensional functions), and the variables name on which the operator is calculated.
|
||||
"""
|
||||
|
||||
import torch
|
||||
|
||||
from copy import deepcopy
|
||||
from pina.label_tensor import LabelTensor
|
||||
|
||||
|
||||
@@ -49,12 +49,12 @@ def grad(output_, input_, components=None, d=None):
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
|
||||
if len(output_.labels) != 1:
|
||||
if len(output_.labels[output_.tensor.ndim-1]['dof']) != 1:
|
||||
raise RuntimeError("only scalar function can be differentiated")
|
||||
if not all([di in input_.labels for di in d]):
|
||||
if not all([di in input_.labels[input_.tensor.ndim-1]['dof'] for di in d]):
|
||||
raise RuntimeError("derivative labels missing from input tensor")
|
||||
|
||||
output_fieldname = output_.labels[0]
|
||||
output_fieldname = output_.labels[output_.ndim-1]['dof'][0]
|
||||
gradients = torch.autograd.grad(
|
||||
output_,
|
||||
input_,
|
||||
@@ -65,41 +65,35 @@ def grad(output_, input_, components=None, d=None):
|
||||
retain_graph=True,
|
||||
allow_unused=True,
|
||||
)[0]
|
||||
|
||||
gradients.labels = input_.labels
|
||||
new_labels = deepcopy(input_.labels)
|
||||
gradients.labels = new_labels
|
||||
gradients = gradients.extract(d)
|
||||
gradients.labels = [f"d{output_fieldname}d{i}" for i in d]
|
||||
|
||||
new_labels[input_.tensor.ndim - 1]['dof'] = [f"d{output_fieldname}d{i}" for i in d]
|
||||
gradients.labels = new_labels
|
||||
return gradients
|
||||
|
||||
if not isinstance(input_, LabelTensor):
|
||||
raise TypeError
|
||||
|
||||
if d is None:
|
||||
d = input_.labels
|
||||
d = input_.labels[input_.tensor.ndim-1]['dof']
|
||||
|
||||
if components is None:
|
||||
components = output_.labels
|
||||
components = output_.labels[output_.tensor.ndim-1]['dof']
|
||||
|
||||
if output_.shape[1] == 1: # scalar output ################################
|
||||
if output_.shape[output_.ndim-1] == 1: # scalar output ################################
|
||||
|
||||
if components != output_.labels:
|
||||
if components != output_.labels[output_.tensor.ndim-1]['dof']:
|
||||
raise RuntimeError
|
||||
gradients = grad_scalar_output(output_, input_, d)
|
||||
|
||||
elif output_.shape[1] >= 2: # vector output ##############################
|
||||
|
||||
elif output_.shape[output_.ndim-1] >= 2: # vector output ##############################
|
||||
tensor_to_cat = []
|
||||
for i, c in enumerate(components):
|
||||
c_output = output_.extract([c])
|
||||
if i == 0:
|
||||
gradients = grad_scalar_output(c_output, input_, d)
|
||||
else:
|
||||
gradients = gradients.append(
|
||||
grad_scalar_output(c_output, input_, d)
|
||||
)
|
||||
tensor_to_cat.append(grad_scalar_output(c_output, input_, d))
|
||||
gradients = LabelTensor.cat(tensor_to_cat, dim=output_.tensor.ndim-1)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
return gradients
|
||||
|
||||
|
||||
@@ -130,27 +124,29 @@ def div(output_, input_, components=None, d=None):
|
||||
raise TypeError
|
||||
|
||||
if d is None:
|
||||
d = input_.labels
|
||||
d = input_.labels[input_.tensor.ndim-1]['dof']
|
||||
|
||||
if components is None:
|
||||
components = output_.labels
|
||||
components = output_.labels[output_.tensor.ndim-1]['dof']
|
||||
|
||||
if output_.shape[1] < 2 or len(components) < 2:
|
||||
if output_.shape[output_.ndim-1] < 2 or len(components) < 2:
|
||||
raise ValueError("div supported only for vector fields")
|
||||
|
||||
if len(components) != len(d):
|
||||
raise ValueError
|
||||
|
||||
grad_output = grad(output_, input_, components, d)
|
||||
div = torch.zeros(input_.shape[0], 1, device=output_.device)
|
||||
labels = [None] * len(components)
|
||||
last_dim_dof = [None] * len(components)
|
||||
to_sum_tensors = []
|
||||
for i, (c, d) in enumerate(zip(components, d)):
|
||||
c_fields = f"d{c}d{d}"
|
||||
div[:, 0] += grad_output.extract(c_fields).sum(axis=1)
|
||||
labels[i] = c_fields
|
||||
last_dim_dof[i] = c_fields
|
||||
to_sum_tensors.append(grad_output.extract(c_fields))
|
||||
|
||||
div = div.as_subclass(LabelTensor)
|
||||
div.labels = ["+".join(labels)]
|
||||
div = LabelTensor.summation(to_sum_tensors)
|
||||
new_labels = deepcopy(input_.labels)
|
||||
new_labels[input_.tensor.ndim-1]['dof'] = ["+".join(last_dim_dof)]
|
||||
div.labels = new_labels
|
||||
return div
|
||||
|
||||
|
||||
@@ -205,10 +201,10 @@ def laplacian(output_, input_, components=None, d=None, method="std"):
|
||||
return result
|
||||
|
||||
if d is None:
|
||||
d = input_.labels
|
||||
d = input_.labels[input_.tensor.ndim-1]['dof']
|
||||
|
||||
if components is None:
|
||||
components = output_.labels
|
||||
components = output_.labels[output_.tensor.ndim-1]['dof']
|
||||
|
||||
if method == "divgrad":
|
||||
raise NotImplementedError("divgrad not implemented as method")
|
||||
@@ -218,25 +214,43 @@ def laplacian(output_, input_, components=None, d=None, method="std"):
|
||||
|
||||
elif method == "std":
|
||||
if len(components) == 1:
|
||||
result = scalar_laplace(output_, input_, components, d)
|
||||
# result = scalar_laplace(output_, input_, components, d) # TODO check (from 0.1)
|
||||
grad_output = grad(output_, input_, components=components, d=d)
|
||||
to_append_tensors = []
|
||||
for i, label in enumerate(grad_output.labels[grad_output.ndim-1]['dof']):
|
||||
gg = grad(grad_output, input_, d=d, components=[label])
|
||||
to_append_tensors.append(gg.extract([gg.labels[gg.tensor.ndim-1]['dof'][i]]))
|
||||
labels = [f"dd{components[0]}"]
|
||||
|
||||
result = LabelTensor.summation(tensors=to_append_tensors)
|
||||
result.labels = labels
|
||||
else:
|
||||
result = torch.empty(
|
||||
size=(input_.shape[0], len(components)),
|
||||
dtype=output_.dtype,
|
||||
device=output_.device,
|
||||
)
|
||||
labels = [None] * len(components)
|
||||
for idx, c in enumerate(components):
|
||||
result[:, idx] = scalar_laplace(output_, input_, c, d).flatten()
|
||||
labels[idx] = f"dd{c}"
|
||||
# result = torch.empty( # TODO check (from 0.1)
|
||||
# size=(input_.shape[0], len(components)),
|
||||
# dtype=output_.dtype,
|
||||
# device=output_.device,
|
||||
# )
|
||||
# labels = [None] * len(components)
|
||||
# for idx, c in enumerate(components):
|
||||
# result[:, idx] = scalar_laplace(output_, input_, c, d).flatten()
|
||||
# labels[idx] = f"dd{c}"
|
||||
|
||||
result = result.as_subclass(LabelTensor)
|
||||
# result = result.as_subclass(LabelTensor)
|
||||
# result.labels = labels
|
||||
labels = [None] * len(components)
|
||||
to_append_tensors = [None] * len(components)
|
||||
for idx, (ci, di) in enumerate(zip(components, d)):
|
||||
if not isinstance(ci, list):
|
||||
ci = [ci]
|
||||
if not isinstance(di, list):
|
||||
di = [di]
|
||||
grad_output = grad(output_, input_, components=ci, d=di)
|
||||
to_append_tensors[idx] = grad(grad_output, input_, d=di)
|
||||
labels[idx] = f"dd{ci[0]}dd{di[0]}"
|
||||
result = LabelTensor.cat(tensors=to_append_tensors, dim=output_.tensor.ndim-1)
|
||||
result.labels = labels
|
||||
return result
|
||||
|
||||
|
||||
# TODO Fix advection operator
|
||||
def advection(output_, input_, velocity_field, components=None, d=None):
|
||||
"""
|
||||
Perform advection operation. The operator works for vectorial functions,
|
||||
@@ -258,10 +272,10 @@ def advection(output_, input_, velocity_field, components=None, d=None):
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
if d is None:
|
||||
d = input_.labels
|
||||
d = input_.labels[input_.tensor.ndim-1]['dof']
|
||||
|
||||
if components is None:
|
||||
components = output_.labels
|
||||
components = output_.labels[output_.tensor.ndim-1]['dof']
|
||||
|
||||
tmp = (
|
||||
grad(output_, input_, components, d)
|
||||
|
||||
@@ -17,12 +17,14 @@ labels_row = {
|
||||
"dof": range(20)
|
||||
}
|
||||
}
|
||||
labels_list = ['x', 'y', 'z']
|
||||
labels_all = labels_column | labels_row
|
||||
|
||||
@pytest.mark.parametrize("labels", [labels_column, labels_row, labels_all])
|
||||
@pytest.mark.parametrize("labels", [labels_column, labels_row, labels_all, labels_list])
|
||||
def test_constructor(labels):
|
||||
LabelTensor(data, labels)
|
||||
|
||||
|
||||
def test_wrong_constructor():
|
||||
with pytest.raises(ValueError):
|
||||
LabelTensor(data, ['a', 'b'])
|
||||
@@ -61,7 +63,6 @@ def test_extract_2D(labels_te):
|
||||
assert torch.all(torch.isclose(data[2,2].reshape(1, 1), new))
|
||||
|
||||
def test_extract_3D():
|
||||
labels = labels_all
|
||||
data = torch.rand(20, 3, 4)
|
||||
labels = {
|
||||
1: {
|
||||
@@ -80,6 +81,7 @@ def test_extract_3D():
|
||||
|
||||
tensor = LabelTensor(data, labels)
|
||||
new = tensor.extract(labels_te)
|
||||
tensor2 = LabelTensor(data, labels)
|
||||
assert new.ndim == tensor.ndim
|
||||
assert new.shape[0] == 20
|
||||
assert new.shape[1] == 2
|
||||
@@ -88,6 +90,10 @@ def test_extract_3D():
|
||||
data[:, 0::2, 1:4].reshape(20, 2, 3),
|
||||
new
|
||||
))
|
||||
assert tensor2.ndim == tensor.ndim
|
||||
assert tensor2.shape == tensor.shape
|
||||
assert tensor.labels == tensor2.labels
|
||||
assert new.shape != tensor.shape
|
||||
|
||||
def test_concatenation_3D():
|
||||
data_1 = torch.rand(20, 3, 4)
|
||||
@@ -146,3 +152,51 @@ def test_concatenation_3D():
|
||||
assert lt_cat.labels[2]['dof'] == range(5)
|
||||
assert lt_cat.labels[0]['dof'] == range(20)
|
||||
assert lt_cat.labels[1]['dof'] == range(3)
|
||||
|
||||
|
||||
def test_summation():
|
||||
lt1 = LabelTensor(torch.ones(20,3), labels_all)
|
||||
lt2 = LabelTensor(torch.ones(30,3), ['x', 'y', 'z'])
|
||||
with pytest.raises(RuntimeError):
|
||||
LabelTensor.summation([lt1, lt2])
|
||||
lt1 = LabelTensor(torch.ones(20,3), labels_all)
|
||||
lt2 = LabelTensor(torch.ones(20,3), labels_all)
|
||||
lt_sum = LabelTensor.summation([lt1, lt2])
|
||||
assert lt_sum.ndim == lt_sum.ndim
|
||||
assert lt_sum.shape[0] == 20
|
||||
assert lt_sum.shape[1] == 3
|
||||
assert lt_sum.labels == labels_all
|
||||
assert torch.eq(lt_sum.tensor, torch.ones(20,3)*2).all()
|
||||
lt1 = LabelTensor(torch.ones(20,3), labels_all)
|
||||
lt2 = LabelTensor(torch.ones(20,3), labels_all)
|
||||
lt3 = LabelTensor(torch.zeros(20, 3), labels_all)
|
||||
lt_sum = LabelTensor.summation([lt1, lt2, lt3])
|
||||
assert lt_sum.ndim == lt_sum.ndim
|
||||
assert lt_sum.shape[0] == 20
|
||||
assert lt_sum.shape[1] == 3
|
||||
assert lt_sum.labels == labels_all
|
||||
assert torch.eq(lt_sum.tensor, torch.ones(20,3)*2).all()
|
||||
|
||||
def test_append_3D():
|
||||
data_1 = torch.rand(20, 3, 4)
|
||||
labels_1 = ['x', 'y', 'z', 'w']
|
||||
lt1 = LabelTensor(data_1, labels_1)
|
||||
data_2 = torch.rand(50, 3, 4)
|
||||
labels_2 = ['x', 'y', 'z', 'w']
|
||||
lt2 = LabelTensor(data_2, labels_2)
|
||||
lt1 = lt1.append(lt2)
|
||||
assert lt1.shape == (70, 3, 4)
|
||||
assert lt1.labels[0]['dof'] == range(70)
|
||||
assert lt1.labels[1]['dof'] == range(3)
|
||||
assert lt1.labels[2]['dof'] == ['x', 'y', 'z', 'w']
|
||||
data_1 = torch.rand(20, 3, 2)
|
||||
labels_1 = ['x', 'y']
|
||||
lt1 = LabelTensor(data_1, labels_1)
|
||||
data_2 = torch.rand(20, 3, 2)
|
||||
labels_2 = ['z', 'w']
|
||||
lt2 = LabelTensor(data_2, labels_2)
|
||||
lt1 = lt1.append(lt2, mode='cross')
|
||||
assert lt1.shape == (20, 3, 4)
|
||||
assert lt1.labels[0]['dof'] == range(20)
|
||||
assert lt1.labels[1]['dof'] == range(3)
|
||||
assert lt1.labels[2]['dof'] == ['x', 'y', 'z', 'w']
|
||||
|
||||
@@ -16,28 +16,29 @@ def func_scalar(x):
|
||||
return x_**2 + y_**2 + z_**2
|
||||
|
||||
|
||||
inp = LabelTensor(torch.rand((20, 3), requires_grad=True), ['x', 'y', 'z'])
|
||||
tensor_v = LabelTensor(func_vector(inp), ['a', 'b', 'c'])
|
||||
tensor_s = LabelTensor(func_scalar(inp).reshape(-1, 1), ['a'])
|
||||
data = torch.rand((20, 3))
|
||||
inp = LabelTensor(data, ['x', 'y', 'mu']).requires_grad_(True)
|
||||
labels = ['a', 'b', 'c']
|
||||
tensor_v = LabelTensor(func_vec(inp), labels)
|
||||
tensor_s = LabelTensor(func_scalar(inp).reshape(-1, 1), labels[0])
|
||||
|
||||
|
||||
def test_grad_scalar_output():
|
||||
grad_tensor_s = grad(tensor_s, inp)
|
||||
true_val = 2*inp
|
||||
assert grad_tensor_s.shape == inp.shape
|
||||
assert grad_tensor_s.labels == [
|
||||
f'd{tensor_s.labels[0]}d{i}' for i in inp.labels
|
||||
assert grad_tensor_s.labels[grad_tensor_s.ndim-1]['dof'] == [
|
||||
f'd{tensor_s.labels[tensor_s.ndim-1]["dof"][0]}d{i}' for i in inp.labels[inp.ndim-1]['dof']
|
||||
]
|
||||
assert torch.allclose(grad_tensor_s, true_val)
|
||||
|
||||
grad_tensor_s = grad(tensor_s, inp, d=['x', 'y'])
|
||||
true_val = 2*inp.extract(['x', 'y'])
|
||||
assert grad_tensor_s.shape == (inp.shape[0], 2)
|
||||
assert grad_tensor_s.labels == [
|
||||
f'd{tensor_s.labels[0]}d{i}' for i in ['x', 'y']
|
||||
assert grad_tensor_s.shape == (20, 2)
|
||||
assert grad_tensor_s.labels[grad_tensor_s.ndim-1]['dof'] == [
|
||||
f'd{tensor_s.labels[tensor_s.ndim-1]["dof"][0]}d{i}' for i in ['x', 'y']
|
||||
]
|
||||
assert torch.allclose(grad_tensor_s, true_val)
|
||||
|
||||
|
||||
def test_grad_vector_output():
|
||||
grad_tensor_v = grad(tensor_v, inp)
|
||||
true_val = torch.cat(
|
||||
@@ -74,7 +75,6 @@ def test_grad_vector_output():
|
||||
]
|
||||
assert torch.allclose(grad_tensor_v, true_val)
|
||||
|
||||
|
||||
def test_div_vector_output():
|
||||
div_tensor_v = div(tensor_v, inp)
|
||||
true_val = 2*torch.sum(inp, dim=1).reshape(-1,1)
|
||||
@@ -88,7 +88,6 @@ def test_div_vector_output():
|
||||
assert div_tensor_v.labels == [f'dadx+dbdy']
|
||||
assert torch.allclose(div_tensor_v, true_val)
|
||||
|
||||
|
||||
def test_laplacian_scalar_output():
|
||||
laplace_tensor_s = laplacian(tensor_s, inp)
|
||||
true_val = 6*torch.ones_like(laplace_tensor_s)
|
||||
@@ -102,7 +101,6 @@ def test_laplacian_scalar_output():
|
||||
assert laplace_tensor_s.labels == [f"dd{tensor_s.labels[0]}"]
|
||||
assert torch.allclose(laplace_tensor_s, true_val)
|
||||
|
||||
|
||||
def test_laplacian_vector_output():
|
||||
laplace_tensor_v = laplacian(tensor_v, inp)
|
||||
true_val = 2*torch.ones_like(tensor_v)
|
||||
|
||||
Reference in New Issue
Block a user