Compare commits
3 Commits
dario_dev
...
4d172a8821
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
4d172a8821 | ||
|
|
99e2f07cf7 | ||
|
|
f07e59b69b |
@@ -7,8 +7,8 @@ SPDX-License-Identifier: Apache-2.0
|
||||
<table>
|
||||
<tr>
|
||||
<td>
|
||||
<a href="https://github.com/mathLab/PINA/raw/master/readme/pina_logo.png">
|
||||
<img src="https://github.com/mathLab/PINA/raw/master/readme/pina_logo.png"
|
||||
<a href="readme/pina_logo.png">
|
||||
<img src="readme/pina_logo.png"
|
||||
alt="PINA logo"
|
||||
style="width: 220px; aspect-ratio: 1 / 1; object-fit: contain;">
|
||||
</a>
|
||||
|
||||
Binary file not shown.
|
Before Width: | Height: | Size: 177 KiB After Width: | Height: | Size: 411 KiB |
@@ -4,4 +4,3 @@ __all__ = ["PinaDataModule", "PinaDataset"]
|
||||
|
||||
|
||||
from .data_module import PinaDataModule
|
||||
from .dataset import PinaDataset
|
||||
|
||||
@@ -7,232 +7,9 @@ different types of Datasets defined in PINA.
|
||||
import warnings
|
||||
from lightning.pytorch import LightningDataModule
|
||||
import torch
|
||||
from torch_geometric.data import Data
|
||||
from torch.utils.data import DataLoader, SequentialSampler, RandomSampler
|
||||
from torch.utils.data.distributed import DistributedSampler
|
||||
from ..label_tensor import LabelTensor
|
||||
from .dataset import PinaDatasetFactory, PinaTensorDataset
|
||||
|
||||
|
||||
class DummyDataloader:
|
||||
|
||||
def __init__(self, dataset):
|
||||
"""
|
||||
Prepare a dataloader object that returns the entire dataset in a single
|
||||
batch. Depending on the number of GPUs, the dataset is managed
|
||||
as follows:
|
||||
|
||||
- **Distributed Environment** (multiple GPUs): Divides dataset across
|
||||
processes using the rank and world size. Fetches only portion of
|
||||
data corresponding to the current process.
|
||||
- **Non-Distributed Environment** (single GPU): Fetches the entire
|
||||
dataset.
|
||||
|
||||
:param PinaDataset dataset: The dataset object to be processed.
|
||||
|
||||
.. note::
|
||||
This dataloader is used when the batch size is ``None``.
|
||||
"""
|
||||
|
||||
if (
|
||||
torch.distributed.is_available()
|
||||
and torch.distributed.is_initialized()
|
||||
):
|
||||
rank = torch.distributed.get_rank()
|
||||
world_size = torch.distributed.get_world_size()
|
||||
if len(dataset) < world_size:
|
||||
raise RuntimeError(
|
||||
"Dimension of the dataset smaller than world size."
|
||||
" Increase the size of the partition or use a single GPU"
|
||||
)
|
||||
idx, i = [], rank
|
||||
while i < len(dataset):
|
||||
idx.append(i)
|
||||
i += world_size
|
||||
self.dataset = dataset.fetch_from_idx_list(idx)
|
||||
else:
|
||||
self.dataset = dataset.get_all_data()
|
||||
|
||||
def __iter__(self):
|
||||
return self
|
||||
|
||||
def __len__(self):
|
||||
return 1
|
||||
|
||||
def __next__(self):
|
||||
return self.dataset
|
||||
|
||||
|
||||
class Collator:
|
||||
"""
|
||||
This callable class is used to collate the data points fetched from the
|
||||
dataset. The collation is performed based on the type of dataset used and
|
||||
on the batching strategy.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, max_conditions_lengths, automatic_batching, dataset=None
|
||||
):
|
||||
"""
|
||||
Initialize the object, setting the collate function based on whether
|
||||
automatic batching is enabled or not.
|
||||
|
||||
:param dict max_conditions_lengths: ``dict`` containing the maximum
|
||||
number of data points to consider in a single batch for
|
||||
each condition.
|
||||
:param bool automatic_batching: Whether automatic PyTorch batching is
|
||||
enabled or not. For more information, see the
|
||||
:class:`~pina.data.data_module.PinaDataModule` class.
|
||||
:param PinaDataset dataset: The dataset where the data is stored.
|
||||
"""
|
||||
|
||||
self.max_conditions_lengths = max_conditions_lengths
|
||||
# Set the collate function based on the batching strategy
|
||||
# collate_pina_dataloader is used when automatic batching is disabled
|
||||
# collate_torch_dataloader is used when automatic batching is enabled
|
||||
self.callable_function = (
|
||||
self._collate_torch_dataloader
|
||||
if automatic_batching
|
||||
else (self._collate_pina_dataloader)
|
||||
)
|
||||
self.dataset = dataset
|
||||
|
||||
# Set the function which performs the actual collation
|
||||
if isinstance(self.dataset, PinaTensorDataset):
|
||||
# If the dataset is a PinaTensorDataset, use this collate function
|
||||
self._collate = self._collate_tensor_dataset
|
||||
else:
|
||||
# If the dataset is a PinaDataset, use this collate function
|
||||
self._collate = self._collate_graph_dataset
|
||||
|
||||
def _collate_pina_dataloader(self, batch):
|
||||
"""
|
||||
Function used to create a batch when automatic batching is disabled.
|
||||
|
||||
:param list[int] batch: List of integers representing the indices of
|
||||
the data points to be fetched.
|
||||
:return: Dictionary containing the data points fetched from the dataset.
|
||||
:rtype: dict
|
||||
"""
|
||||
# Call the fetch_from_idx_list method of the dataset
|
||||
return self.dataset.fetch_from_idx_list(batch)
|
||||
|
||||
def _collate_torch_dataloader(self, batch):
|
||||
"""
|
||||
Function used to collate the batch
|
||||
|
||||
:param list[dict] batch: List of retrieved data.
|
||||
:return: Dictionary containing the data points fetched from the dataset,
|
||||
collated.
|
||||
:rtype: dict
|
||||
"""
|
||||
|
||||
batch_dict = {}
|
||||
if isinstance(batch, dict):
|
||||
return batch
|
||||
conditions_names = batch[0].keys()
|
||||
# Condition names
|
||||
for condition_name in conditions_names:
|
||||
single_cond_dict = {}
|
||||
condition_args = batch[0][condition_name].keys()
|
||||
for arg in condition_args:
|
||||
data_list = [
|
||||
batch[idx][condition_name][arg]
|
||||
for idx in range(
|
||||
min(
|
||||
len(batch),
|
||||
self.max_conditions_lengths[condition_name],
|
||||
)
|
||||
)
|
||||
]
|
||||
single_cond_dict[arg] = self._collate(data_list)
|
||||
|
||||
batch_dict[condition_name] = single_cond_dict
|
||||
return batch_dict
|
||||
|
||||
@staticmethod
|
||||
def _collate_tensor_dataset(data_list):
|
||||
"""
|
||||
Function used to collate the data when the dataset is a
|
||||
:class:`~pina.data.dataset.PinaTensorDataset`.
|
||||
|
||||
:param data_list: Elements to be collated.
|
||||
:type data_list: list[torch.Tensor] | list[LabelTensor]
|
||||
:return: Batch of data.
|
||||
:rtype: dict
|
||||
|
||||
:raises RuntimeError: If the data is not a :class:`torch.Tensor` or a
|
||||
:class:`~pina.label_tensor.LabelTensor`.
|
||||
"""
|
||||
|
||||
if isinstance(data_list[0], LabelTensor):
|
||||
return LabelTensor.stack(data_list)
|
||||
if isinstance(data_list[0], torch.Tensor):
|
||||
return torch.stack(data_list)
|
||||
raise RuntimeError("Data must be Tensors or LabelTensor ")
|
||||
|
||||
def _collate_graph_dataset(self, data_list):
|
||||
"""
|
||||
Function used to collate data when the dataset is a
|
||||
:class:`~pina.data.dataset.PinaGraphDataset`.
|
||||
|
||||
:param data_list: Elememts to be collated.
|
||||
:type data_list: list[Data] | list[Graph]
|
||||
:return: Batch of data.
|
||||
:rtype: dict
|
||||
|
||||
:raises RuntimeError: If the data is not a
|
||||
:class:`~torch_geometric.data.Data` or a :class:`~pina.graph.Graph`.
|
||||
"""
|
||||
if isinstance(data_list[0], LabelTensor):
|
||||
return LabelTensor.cat(data_list)
|
||||
if isinstance(data_list[0], torch.Tensor):
|
||||
return torch.cat(data_list)
|
||||
if isinstance(data_list[0], Data):
|
||||
return self.dataset.create_batch(data_list)
|
||||
raise RuntimeError(
|
||||
"Data must be Tensors or LabelTensor or pyG "
|
||||
"torch_geometric.data.Data"
|
||||
)
|
||||
|
||||
def __call__(self, batch):
|
||||
"""
|
||||
Perform the collation of data fetched from the dataset. The behavoior
|
||||
of the function is set based on the batching strategy during class
|
||||
initialization.
|
||||
|
||||
:param batch: List of retrieved data or sampled indices.
|
||||
:type batch: list[int] | list[dict]
|
||||
:return: Dictionary containing colleted data fetched from the dataset.
|
||||
:rtype: dict
|
||||
"""
|
||||
|
||||
return self.callable_function(batch)
|
||||
|
||||
|
||||
class PinaSampler:
|
||||
"""
|
||||
This class is used to create the sampler instance based on the shuffle
|
||||
parameter and the environment in which the code is running.
|
||||
"""
|
||||
|
||||
def __new__(cls, dataset):
|
||||
"""
|
||||
Instantiate and initialize the sampler.
|
||||
|
||||
:param PinaDataset dataset: The dataset from which to sample.
|
||||
:return: The sampler instance.
|
||||
:rtype: :class:`torch.utils.data.Sampler`
|
||||
"""
|
||||
|
||||
if (
|
||||
torch.distributed.is_available()
|
||||
and torch.distributed.is_initialized()
|
||||
):
|
||||
sampler = DistributedSampler(dataset)
|
||||
else:
|
||||
sampler = SequentialSampler(dataset)
|
||||
return sampler
|
||||
from .dataset import PinaDatasetFactory
|
||||
from .dataloader import PinaDataLoader
|
||||
|
||||
|
||||
class PinaDataModule(LightningDataModule):
|
||||
@@ -250,7 +27,8 @@ class PinaDataModule(LightningDataModule):
|
||||
val_size=0.1,
|
||||
batch_size=None,
|
||||
shuffle=True,
|
||||
repeat=False,
|
||||
common_batch_size=True,
|
||||
separate_conditions=False,
|
||||
automatic_batching=None,
|
||||
num_workers=0,
|
||||
pin_memory=False,
|
||||
@@ -271,11 +49,12 @@ class PinaDataModule(LightningDataModule):
|
||||
Default is ``None``.
|
||||
:param bool shuffle: Whether to shuffle the dataset before splitting.
|
||||
Default ``True``.
|
||||
:param bool repeat: If ``True``, in case of batch size larger than the
|
||||
number of elements in a specific condition, the elements are
|
||||
repeated until the batch size is reached. If ``False``, the number
|
||||
of elements in the batch is the minimum between the batch size and
|
||||
the number of elements in the condition. Default is ``False``.
|
||||
:param bool common_batch_size: If ``True``, the same batch size is used
|
||||
for all conditions. If ``False``, each condition can have its own
|
||||
batch size, proportional to the size of the dataset in that
|
||||
condition. Default is ``True``.
|
||||
:param bool separate_conditions: If ``True``, dataloaders for each
|
||||
condition are iterated separately. Default is ``False``.
|
||||
:param automatic_batching: If ``True``, automatic PyTorch batching
|
||||
is performed, which consists of extracting one element at a time
|
||||
from the dataset and collating them into a batch. This is useful
|
||||
@@ -305,7 +84,8 @@ class PinaDataModule(LightningDataModule):
|
||||
# Store fixed attributes
|
||||
self.batch_size = batch_size
|
||||
self.shuffle = shuffle
|
||||
self.repeat = repeat
|
||||
self.common_batch_size = common_batch_size
|
||||
self.separate_conditions = separate_conditions
|
||||
self.automatic_batching = automatic_batching
|
||||
|
||||
# If batch size is None, num_workers has no effect
|
||||
@@ -376,23 +156,16 @@ class PinaDataModule(LightningDataModule):
|
||||
if stage == "fit" or stage is None:
|
||||
self.train_dataset = PinaDatasetFactory(
|
||||
self.data_splits["train"],
|
||||
max_conditions_lengths=self.find_max_conditions_lengths(
|
||||
"train"
|
||||
),
|
||||
automatic_batching=self.automatic_batching,
|
||||
)
|
||||
if "val" in self.data_splits.keys():
|
||||
self.val_dataset = PinaDatasetFactory(
|
||||
self.data_splits["val"],
|
||||
max_conditions_lengths=self.find_max_conditions_lengths(
|
||||
"val"
|
||||
),
|
||||
automatic_batching=self.automatic_batching,
|
||||
)
|
||||
elif stage == "test":
|
||||
self.test_dataset = PinaDatasetFactory(
|
||||
self.data_splits["test"],
|
||||
max_conditions_lengths=self.find_max_conditions_lengths("test"),
|
||||
automatic_batching=self.automatic_batching,
|
||||
)
|
||||
else:
|
||||
@@ -502,53 +275,15 @@ class PinaDataModule(LightningDataModule):
|
||||
),
|
||||
module="lightning.pytorch.trainer.connectors.data_connector",
|
||||
)
|
||||
# Use custom batching (good if batch size is large)
|
||||
if self.batch_size is not None:
|
||||
sampler = PinaSampler(dataset)
|
||||
if self.automatic_batching:
|
||||
collate = Collator(
|
||||
self.find_max_conditions_lengths(split),
|
||||
self.automatic_batching,
|
||||
dataset=dataset,
|
||||
)
|
||||
else:
|
||||
collate = Collator(
|
||||
None, self.automatic_batching, dataset=dataset
|
||||
)
|
||||
return DataLoader(
|
||||
return PinaDataLoader(
|
||||
dataset,
|
||||
self.batch_size,
|
||||
collate_fn=collate,
|
||||
sampler=sampler,
|
||||
batch_size=self.batch_size,
|
||||
shuffle=self.shuffle,
|
||||
num_workers=self.num_workers,
|
||||
collate_fn=None,
|
||||
common_batch_size=self.common_batch_size,
|
||||
separate_conditions=self.separate_conditions,
|
||||
)
|
||||
dataloader = DummyDataloader(dataset)
|
||||
dataloader.dataset = self._transfer_batch_to_device(
|
||||
dataloader.dataset, self.trainer.strategy.root_device, 0
|
||||
)
|
||||
self.transfer_batch_to_device = self._transfer_batch_to_device_dummy
|
||||
return dataloader
|
||||
|
||||
def find_max_conditions_lengths(self, split):
|
||||
"""
|
||||
Define the maximum length for each conditions.
|
||||
|
||||
:param dict split: The split of the dataset.
|
||||
:return: The maximum length per condition.
|
||||
:rtype: dict
|
||||
"""
|
||||
|
||||
max_conditions_lengths = {}
|
||||
for k, v in self.data_splits[split].items():
|
||||
if self.batch_size is None:
|
||||
max_conditions_lengths[k] = len(v["input"])
|
||||
elif self.repeat:
|
||||
max_conditions_lengths[k] = self.batch_size
|
||||
else:
|
||||
max_conditions_lengths[k] = min(
|
||||
len(v["input"]), self.batch_size
|
||||
)
|
||||
return max_conditions_lengths
|
||||
|
||||
def val_dataloader(self):
|
||||
"""
|
||||
|
||||
242
pina/data/dataloader.py
Normal file
242
pina/data/dataloader.py
Normal file
@@ -0,0 +1,242 @@
|
||||
from torch.utils.data import DataLoader
|
||||
from functools import partial
|
||||
from torch.utils.data.distributed import DistributedSampler
|
||||
from torch.utils.data.sampler import SequentialSampler
|
||||
import torch
|
||||
|
||||
|
||||
class DummyDataloader:
|
||||
|
||||
def __init__(self, dataset):
|
||||
"""
|
||||
Prepare a dataloader object that returns the entire dataset in a single
|
||||
batch. Depending on the number of GPUs, the dataset is managed
|
||||
as follows:
|
||||
|
||||
- **Distributed Environment** (multiple GPUs): Divides dataset across
|
||||
processes using the rank and world size. Fetches only portion of
|
||||
data corresponding to the current process.
|
||||
- **Non-Distributed Environment** (single GPU): Fetches the entire
|
||||
dataset.
|
||||
|
||||
:param PinaDataset dataset: The dataset object to be processed.
|
||||
|
||||
.. note::
|
||||
This dataloader is used when the batch size is ``None``.
|
||||
"""
|
||||
print("Using DummyDataloader")
|
||||
if (
|
||||
torch.distributed.is_available()
|
||||
and torch.distributed.is_initialized()
|
||||
):
|
||||
rank = torch.distributed.get_rank()
|
||||
world_size = torch.distributed.get_world_size()
|
||||
if len(dataset) < world_size:
|
||||
raise RuntimeError(
|
||||
"Dimension of the dataset smaller than world size."
|
||||
" Increase the size of the partition or use a single GPU"
|
||||
)
|
||||
idx, i = [], rank
|
||||
while i < len(dataset):
|
||||
idx.append(i)
|
||||
i += world_size
|
||||
else:
|
||||
idx = list(range(len(dataset)))
|
||||
|
||||
self.dataset = dataset._getitem_from_list(idx)
|
||||
|
||||
def __iter__(self):
|
||||
return self
|
||||
|
||||
def __len__(self):
|
||||
return 1
|
||||
|
||||
def __next__(self):
|
||||
return self.dataset
|
||||
|
||||
|
||||
class PinaSampler:
|
||||
"""
|
||||
This class is used to create the sampler instance based on the shuffle
|
||||
parameter and the environment in which the code is running.
|
||||
"""
|
||||
|
||||
def __new__(cls, dataset, shuffle=True):
|
||||
"""
|
||||
Instantiate and initialize the sampler.
|
||||
|
||||
:param PinaDataset dataset: The dataset from which to sample.
|
||||
:return: The sampler instance.
|
||||
:rtype: :class:`torch.utils.data.Sampler`
|
||||
"""
|
||||
|
||||
if (
|
||||
torch.distributed.is_available()
|
||||
and torch.distributed.is_initialized()
|
||||
):
|
||||
sampler = DistributedSampler(dataset, shuffle=shuffle)
|
||||
else:
|
||||
if shuffle:
|
||||
sampler = torch.utils.data.RandomSampler(dataset)
|
||||
else:
|
||||
sampler = SequentialSampler(dataset)
|
||||
return sampler
|
||||
|
||||
|
||||
def _collect_items(batch):
|
||||
"""
|
||||
Helper function to collect items from a batch of graph data samples.
|
||||
:param batch: List of graph data samples.
|
||||
"""
|
||||
to_return = {name: [] for name in batch[0].keys()}
|
||||
for sample in batch:
|
||||
for k, v in sample.items():
|
||||
to_return[k].append(v)
|
||||
return to_return
|
||||
|
||||
|
||||
def collate_fn_custom(batch, dataset):
|
||||
"""
|
||||
Override the default collate function to handle datasets without automatic batching.
|
||||
:param batch: List of indices from the dataset.
|
||||
:param dataset: The PinaDataset instance (must be provided).
|
||||
"""
|
||||
return dataset._getitem_from_list(batch)
|
||||
|
||||
|
||||
def collate_fn_default(batch, stack_fn):
|
||||
"""
|
||||
Default collate function that simply returns the batch as is.
|
||||
:param batch: List of data samples.
|
||||
"""
|
||||
print("Using default collate function")
|
||||
to_return = _collect_items(batch)
|
||||
return {k: stack_fn[k](v) for k, v in to_return.items()}
|
||||
|
||||
|
||||
class PinaDataLoader:
|
||||
"""
|
||||
Custom DataLoader for PinaDataset.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dataset_dict,
|
||||
batch_size,
|
||||
shuffle=False,
|
||||
num_workers=0,
|
||||
collate_fn=None,
|
||||
common_batch_size=True,
|
||||
separate_conditions=False,
|
||||
):
|
||||
self.dataset_dict = dataset_dict
|
||||
self.batch_size = batch_size
|
||||
self.shuffle = shuffle
|
||||
self.num_workers = num_workers
|
||||
self.collate_fn = collate_fn
|
||||
self.separate_conditions = separate_conditions
|
||||
|
||||
if batch_size is None:
|
||||
batch_size_per_dataset = {
|
||||
split: None for split in dataset_dict.keys()
|
||||
}
|
||||
else:
|
||||
if common_batch_size:
|
||||
batch_size_per_dataset = {
|
||||
split: batch_size for split in dataset_dict.keys()
|
||||
}
|
||||
else:
|
||||
batch_size_per_dataset = self._compute_batch_size()
|
||||
self.dataloaders = {
|
||||
split: self._create_dataloader(
|
||||
dataset, batch_size_per_dataset[split]
|
||||
)
|
||||
for split, dataset in dataset_dict.items()
|
||||
}
|
||||
|
||||
def _compute_batch_size(self):
|
||||
"""
|
||||
Compute an appropriate batch size for the given dataset.
|
||||
"""
|
||||
elements_per_dataset = {
|
||||
dataset_name: len(dataset)
|
||||
for dataset_name, dataset in self.dataset_dict.items()
|
||||
}
|
||||
total_elements = sum(el for el in elements_per_dataset.values())
|
||||
portion_per_dataset = {
|
||||
name: el / total_elements
|
||||
for name, el in elements_per_dataset.items()
|
||||
}
|
||||
batch_size_per_dataset = {
|
||||
name: max(1, int(portion * self.batch_size))
|
||||
for name, portion in portion_per_dataset.items()
|
||||
}
|
||||
tot_el_per_batch = sum(el for el in batch_size_per_dataset.values())
|
||||
|
||||
if self.batch_size > tot_el_per_batch:
|
||||
difference = self.batch_size - tot_el_per_batch
|
||||
while difference > 0:
|
||||
for k, v in batch_size_per_dataset.items():
|
||||
if difference == 0:
|
||||
break
|
||||
if v > 1:
|
||||
batch_size_per_dataset[k] += 1
|
||||
difference -= 1
|
||||
if self.batch_size < tot_el_per_batch:
|
||||
difference = tot_el_per_batch - self.batch_size
|
||||
while difference > 0:
|
||||
for k, v in batch_size_per_dataset.items():
|
||||
if difference == 0:
|
||||
break
|
||||
if v > 1:
|
||||
batch_size_per_dataset[k] -= 1
|
||||
difference -= 1
|
||||
return batch_size_per_dataset
|
||||
|
||||
def _create_dataloader(self, dataset, batch_size):
|
||||
print(batch_size)
|
||||
if batch_size is None:
|
||||
return DummyDataloader(dataset)
|
||||
|
||||
if not dataset.automatic_batching:
|
||||
collate_fn = partial(collate_fn_custom, dataset=dataset)
|
||||
else:
|
||||
collate_fn = partial(collate_fn_default, stack_fn=dataset.stack_fn)
|
||||
return DataLoader(
|
||||
dataset,
|
||||
batch_size=batch_size,
|
||||
num_workers=self.num_workers,
|
||||
collate_fn=collate_fn,
|
||||
sampler=PinaSampler(dataset, shuffle=self.shuffle),
|
||||
)
|
||||
|
||||
def __len__(self):
|
||||
if self.separate_conditions:
|
||||
return sum(len(dl) for dl in self.dataloaders.values())
|
||||
return max(len(dl) for dl in self.dataloaders.values())
|
||||
|
||||
def __iter__(self):
|
||||
"""
|
||||
Restituisce un iteratore che produce dizionari di batch.
|
||||
|
||||
Itera per un numero di passi pari al dataloader più lungo (come da __len__)
|
||||
e fa ricominciare i dataloader più corti quando si esauriscono.
|
||||
"""
|
||||
if self.separate_conditions:
|
||||
for split, dl in self.dataloaders.items():
|
||||
for batch in dl:
|
||||
yield {split: batch}
|
||||
return
|
||||
|
||||
iterators = {split: iter(dl) for split, dl in self.dataloaders.items()}
|
||||
for _ in range(len(self)):
|
||||
batch_dict = {}
|
||||
for split, it in iterators.items():
|
||||
try:
|
||||
batch = next(it)
|
||||
except StopIteration:
|
||||
new_it = iter(self.dataloaders[split])
|
||||
iterators[split] = new_it
|
||||
batch = next(new_it)
|
||||
batch_dict[split] = batch
|
||||
yield batch_dict
|
||||
@@ -1,326 +1,158 @@
|
||||
"""Module for the PINA dataset classes."""
|
||||
|
||||
from abc import abstractmethod, ABC
|
||||
import torch
|
||||
from torch.utils.data import Dataset
|
||||
from torch_geometric.data import Data
|
||||
from ..graph import Graph, LabelBatch
|
||||
from ..label_tensor import LabelTensor
|
||||
|
||||
|
||||
class PinaDatasetFactory:
|
||||
"""
|
||||
Factory class for the PINA dataset.
|
||||
|
||||
Depending on the data type inside the conditions, it instanciate an object
|
||||
belonging to the appropriate subclass of
|
||||
:class:`~pina.data.dataset.PinaDataset`. The possible subclasses are:
|
||||
|
||||
- :class:`~pina.data.dataset.PinaTensorDataset`, for handling \
|
||||
:class:`torch.Tensor` and :class:`~pina.label_tensor.LabelTensor` data.
|
||||
- :class:`~pina.data.dataset.PinaGraphDataset`, for handling \
|
||||
:class:`~pina.graph.Graph` and :class:`~torch_geometric.data.Data` data.
|
||||
TODO: Update docstring
|
||||
"""
|
||||
|
||||
def __new__(cls, conditions_dict, **kwargs):
|
||||
"""
|
||||
Instantiate the appropriate subclass of
|
||||
:class:`~pina.data.dataset.PinaDataset`.
|
||||
|
||||
If a graph is present in the conditions, returns a
|
||||
:class:`~pina.data.dataset.PinaGraphDataset`, otherwise returns a
|
||||
:class:`~pina.data.dataset.PinaTensorDataset`.
|
||||
|
||||
:param dict conditions_dict: Dictionary containing all the conditions
|
||||
to be included in the dataset instance.
|
||||
:return: A subclass of :class:`~pina.data.dataset.PinaDataset`.
|
||||
:rtype: PinaTensorDataset | PinaGraphDataset
|
||||
|
||||
:raises ValueError: If an empty dictionary is provided.
|
||||
TODO: Update docstring
|
||||
"""
|
||||
|
||||
# Check if conditions_dict is empty
|
||||
if len(conditions_dict) == 0:
|
||||
raise ValueError("No conditions provided")
|
||||
|
||||
dataset_dict = {}
|
||||
|
||||
# Check is a Graph is present in the conditions
|
||||
is_graph = cls._is_graph_dataset(conditions_dict)
|
||||
if is_graph:
|
||||
# If a Graph is present, return a PinaGraphDataset
|
||||
return PinaGraphDataset(conditions_dict, **kwargs)
|
||||
# If no Graph is present, return a PinaTensorDataset
|
||||
return PinaTensorDataset(conditions_dict, **kwargs)
|
||||
for name, data in conditions_dict.items():
|
||||
if not isinstance(data, dict):
|
||||
raise ValueError(
|
||||
f"Condition '{name}' data must be a dictionary"
|
||||
)
|
||||
dataset_dict[name] = PinaDataset(data, **kwargs)
|
||||
return dataset_dict
|
||||
|
||||
@staticmethod
|
||||
def _is_graph_dataset(conditions_dict):
|
||||
|
||||
class PinaDataset(Dataset):
|
||||
"""
|
||||
Check if a graph is present in the conditions (at least one time).
|
||||
|
||||
:param conditions_dict: Dictionary containing the conditions.
|
||||
:type conditions_dict: dict
|
||||
:return: True if a graph is present in the conditions, False otherwise.
|
||||
:rtype: bool
|
||||
Dataset class for the PINA dataset with :class:`torch.Tensor` and
|
||||
:class:`~pina.label_tensor.LabelTensor` data.
|
||||
"""
|
||||
|
||||
# Iterate over the conditions dictionary
|
||||
for v in conditions_dict.values():
|
||||
# Iterate over the values of the current condition
|
||||
for cond in v.values():
|
||||
# Check if the current value is a list of Data objects
|
||||
if isinstance(cond, (Data, Graph, list, tuple)):
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
class PinaDataset(Dataset, ABC):
|
||||
def __init__(self, data_dict, automatic_batching=None):
|
||||
"""
|
||||
Abstract class for the PINA dataset which extends the PyTorch
|
||||
:class:`~torch.utils.data.Dataset` class. It defines the common interface
|
||||
for :class:`~pina.data.dataset.PinaTensorDataset` and
|
||||
:class:`~pina.data.dataset.PinaGraphDataset` classes.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, conditions_dict, max_conditions_lengths, automatic_batching
|
||||
):
|
||||
"""
|
||||
Initialize the instance by storing the conditions dictionary, the
|
||||
maximum number of items per conditions to consider, and the automatic
|
||||
batching flag.
|
||||
Initialize the instance by storing the conditions dictionary.
|
||||
|
||||
:param dict conditions_dict: A dictionary mapping condition names to
|
||||
their respective data. Each key represents a condition name, and the
|
||||
corresponding value is a dictionary containing the associated data.
|
||||
:param dict max_conditions_lengths: Maximum number of data points that
|
||||
can be included in a single batch per condition.
|
||||
:param bool automatic_batching: Indicates whether PyTorch automatic
|
||||
batching is enabled in
|
||||
:class:`~pina.data.data_module.PinaDataModule`.
|
||||
"""
|
||||
|
||||
# Store the conditions dictionary
|
||||
self.conditions_dict = conditions_dict
|
||||
# Store the maximum number of conditions to consider
|
||||
self.max_conditions_lengths = max_conditions_lengths
|
||||
# Store length of each condition
|
||||
self.conditions_length = {
|
||||
k: len(v["input"]) for k, v in self.conditions_dict.items()
|
||||
}
|
||||
# Store the maximum length of the dataset
|
||||
self.length = max(self.conditions_length.values())
|
||||
# Dynamically set the getitem function based on automatic batching
|
||||
if automatic_batching:
|
||||
self._getitem_func = self._getitem_int
|
||||
self.data = data_dict
|
||||
self.automatic_batching = (
|
||||
automatic_batching if automatic_batching is not None else True
|
||||
)
|
||||
self.stack_fn = {}
|
||||
# Determine stacking functions for each data type (used in collate_fn)
|
||||
for k, v in data_dict.items():
|
||||
if isinstance(v, LabelTensor):
|
||||
self.stack_fn[k] = LabelTensor.stack
|
||||
elif isinstance(v, torch.Tensor):
|
||||
self.stack_fn[k] = torch.stack
|
||||
elif isinstance(v, list) and all(
|
||||
isinstance(item, (Data, Graph)) for item in v
|
||||
):
|
||||
self.stack_fn[k] = LabelBatch.from_data_list
|
||||
else:
|
||||
self._getitem_func = self._getitem_dummy
|
||||
|
||||
def _get_max_len(self):
|
||||
"""
|
||||
Returns the length of the longest condition in the dataset.
|
||||
|
||||
:return: Length of the longest condition in the dataset.
|
||||
:rtype: int
|
||||
"""
|
||||
|
||||
max_len = 0
|
||||
for condition in self.conditions_dict.values():
|
||||
max_len = max(max_len, len(condition["input"]))
|
||||
return max_len
|
||||
raise ValueError(
|
||||
f"Unsupported data type for stacking: {type(v)}"
|
||||
)
|
||||
|
||||
def __len__(self):
|
||||
return self.length
|
||||
return len(next(iter(self.data.values())))
|
||||
|
||||
def __getitem__(self, idx):
|
||||
return self._getitem_func(idx)
|
||||
|
||||
def _getitem_dummy(self, idx):
|
||||
"""
|
||||
Return the index itself. This is used when automatic batching is
|
||||
disabled to postpone the data retrieval to the dataloader.
|
||||
|
||||
:param int idx: Index.
|
||||
:return: Index.
|
||||
:rtype: int
|
||||
"""
|
||||
|
||||
# If automatic batching is disabled, return the data at the given index
|
||||
return idx
|
||||
|
||||
def _getitem_int(self, idx):
|
||||
"""
|
||||
Return the data at the given index in the dataset. This is used when
|
||||
automatic batching is enabled.
|
||||
Return the data at the given index in the dataset.
|
||||
|
||||
:param int idx: Index.
|
||||
:return: A dictionary containing the data at the given index.
|
||||
:rtype: dict
|
||||
"""
|
||||
|
||||
# If automatic batching is enabled, return the data at the given index
|
||||
if self.automatic_batching:
|
||||
# Return the data at the given index
|
||||
return {
|
||||
k: {k_data: v[k_data][idx % len(v["input"])] for k_data in v.keys()}
|
||||
for k, v in self.conditions_dict.items()
|
||||
field_name: data[idx] for field_name, data in self.data.items()
|
||||
}
|
||||
return idx
|
||||
|
||||
def get_all_data(self):
|
||||
"""
|
||||
Return all data in the dataset.
|
||||
|
||||
:return: A dictionary containing all the data in the dataset.
|
||||
:rtype: dict
|
||||
"""
|
||||
to_return_dict = {}
|
||||
for condition, data in self.conditions_dict.items():
|
||||
len_condition = len(
|
||||
data["input"]
|
||||
) # Length of the current condition
|
||||
to_return_dict[condition] = self._retrive_data(
|
||||
data, list(range(len_condition))
|
||||
) # Retrieve the data from the current condition
|
||||
return to_return_dict
|
||||
|
||||
def fetch_from_idx_list(self, idx):
|
||||
def _getitem_from_list(self, idx_list):
|
||||
"""
|
||||
Return data from the dataset given a list of indices.
|
||||
|
||||
:param list[int] idx: List of indices.
|
||||
:param list[int] idx_list: List of indices.
|
||||
:return: A dictionary containing the data at the given indices.
|
||||
:rtype: dict
|
||||
"""
|
||||
|
||||
to_return_dict = {}
|
||||
for condition, data in self.conditions_dict.items():
|
||||
# Get the indices for the current condition
|
||||
cond_idx = idx[: self.max_conditions_lengths[condition]]
|
||||
# Get the length of the current condition
|
||||
condition_len = self.conditions_length[condition]
|
||||
# If the length of the dataset is greater than the length of the
|
||||
# current condition, repeat the indices
|
||||
if self.length > condition_len:
|
||||
cond_idx = [idx % condition_len for idx in cond_idx]
|
||||
# Retrieve the data from the current condition
|
||||
to_return_dict[condition] = self._retrive_data(data, cond_idx)
|
||||
return to_return_dict
|
||||
|
||||
@abstractmethod
|
||||
def _retrive_data(self, data, idx_list):
|
||||
"""
|
||||
Abstract method to retrieve data from the dataset given a list of
|
||||
indices.
|
||||
"""
|
||||
|
||||
|
||||
class PinaTensorDataset(PinaDataset):
|
||||
"""
|
||||
Dataset class for the PINA dataset with :class:`torch.Tensor` and
|
||||
:class:`~pina.label_tensor.LabelTensor` data.
|
||||
"""
|
||||
|
||||
# Override _retrive_data method for torch.Tensor data
|
||||
def _retrive_data(self, data, idx_list):
|
||||
"""
|
||||
Retrieve data from the dataset given a list of indices.
|
||||
|
||||
:param dict data: Dictionary containing the data
|
||||
(only :class:`torch.Tensor` or
|
||||
:class:`~pina.label_tensor.LabelTensor`).
|
||||
:param list[int] idx_list: indices to retrieve.
|
||||
:return: Dictionary containing the data at the given indices.
|
||||
:rtype: dict
|
||||
"""
|
||||
|
||||
return {k: v[idx_list] for k, v in data.items()}
|
||||
|
||||
@property
|
||||
def input(self):
|
||||
"""
|
||||
Return the input data for the dataset.
|
||||
|
||||
:return: Dictionary containing the input points.
|
||||
:rtype: dict
|
||||
"""
|
||||
return {k: v["input"] for k, v in self.conditions_dict.items()}
|
||||
|
||||
def update_data(self, new_conditions_dict):
|
||||
"""
|
||||
Update the dataset with new data.
|
||||
This method is used to update the dataset with new data. It replaces
|
||||
the current data with the new data provided in the new_conditions_dict
|
||||
parameter.
|
||||
|
||||
:param dict new_conditions_dict: Dictionary containing the new data.
|
||||
:return: None
|
||||
"""
|
||||
for condition, data in new_conditions_dict.items():
|
||||
if condition in self.conditions_dict:
|
||||
self.conditions_dict[condition].update(data)
|
||||
else:
|
||||
self.conditions_dict[condition] = data
|
||||
|
||||
|
||||
class PinaGraphDataset(PinaDataset):
|
||||
"""
|
||||
Dataset class for the PINA dataset with :class:`~torch_geometric.data.Data`
|
||||
and :class:`~pina.graph.Graph` data.
|
||||
"""
|
||||
|
||||
def _create_graph_batch(self, data):
|
||||
"""
|
||||
Create a LabelBatch object from a list of
|
||||
:class:`~torch_geometric.data.Data` objects.
|
||||
|
||||
:param data: List of items to collate in a single batch.
|
||||
:type data: list[Data] | list[Graph]
|
||||
:return: LabelBatch object all the graph collated in a single batch
|
||||
disconnected graphs.
|
||||
:rtype: LabelBatch
|
||||
"""
|
||||
batch = LabelBatch.from_data_list(data)
|
||||
return batch
|
||||
|
||||
def create_batch(self, data):
|
||||
"""
|
||||
Create a Batch object from a list of :class:`~torch_geometric.data.Data`
|
||||
objects.
|
||||
|
||||
:param data: List of items to collate in a single batch.
|
||||
:type data: list[Data] | list[Graph]
|
||||
:return: Batch object.
|
||||
:rtype: :class:`~torch_geometric.data.Batch`
|
||||
| :class:`~pina.graph.LabelBatch`
|
||||
"""
|
||||
|
||||
if isinstance(data[0], Data):
|
||||
return self._create_graph_batch(data)
|
||||
return self._create_tensor_batch(data)
|
||||
|
||||
# Override _retrive_data method for graph handling
|
||||
def _retrive_data(self, data, idx_list):
|
||||
"""
|
||||
Retrieve data from the dataset given a list of indices.
|
||||
|
||||
:param dict data: Dictionary containing the data.
|
||||
:param list[int] idx_list: List of indices to retrieve.
|
||||
:return: Dictionary containing the data at the given indices.
|
||||
:rtype: dict
|
||||
"""
|
||||
|
||||
# Return the data from the current condition
|
||||
# If the data is a list of Data objects, create a Batch object
|
||||
# If the data is a list of torch.Tensor objects, create a torch.Tensor
|
||||
return {
|
||||
k: (
|
||||
self._create_graph_batch([v[i] for i in idx_list])
|
||||
if isinstance(v, list)
|
||||
else v[idx_list]
|
||||
to_return = {}
|
||||
for field_name, data in self.data.items():
|
||||
if self.stack_fn[field_name] == LabelBatch.from_data_list:
|
||||
to_return[field_name] = self.stack_fn[field_name](
|
||||
[data[i] for i in idx_list]
|
||||
)
|
||||
for k, v in data.items()
|
||||
}
|
||||
else:
|
||||
to_return[field_name] = data[idx_list]
|
||||
return to_return
|
||||
|
||||
@property
|
||||
def input(self):
|
||||
|
||||
class PinaGraphDataset(Dataset):
|
||||
def __init__(self, data_dict, automatic_batching=None):
|
||||
"""
|
||||
Return the input data for the dataset.
|
||||
Initialize the instance by storing the conditions dictionary.
|
||||
|
||||
:return: Dictionary containing the input points.
|
||||
:param dict conditions_dict: A dictionary mapping condition names to
|
||||
their respective data. Each key represents a condition name, and the
|
||||
corresponding value is a dictionary containing the associated data.
|
||||
"""
|
||||
|
||||
# Store the conditions dictionary
|
||||
self.data = data_dict
|
||||
self.automatic_batching = (
|
||||
automatic_batching if automatic_batching is not None else True
|
||||
)
|
||||
|
||||
def __len__(self):
|
||||
return len(next(iter(self.data.values())))
|
||||
|
||||
def __getitem__(self, idx):
|
||||
"""
|
||||
Return the data at the given index in the dataset.
|
||||
|
||||
:param int idx: Index.
|
||||
:return: A dictionary containing the data at the given index.
|
||||
:rtype: dict
|
||||
"""
|
||||
return {k: v["input"] for k, v in self.conditions_dict.items()}
|
||||
|
||||
if self.automatic_batching:
|
||||
# Return the data at the given index
|
||||
return {
|
||||
field_name: data[idx] for field_name, data in self.data.items()
|
||||
}
|
||||
return idx
|
||||
|
||||
def _getitem_from_list(self, idx_list):
|
||||
"""
|
||||
Return data from the dataset given a list of indices.
|
||||
|
||||
:param list[int] idx_list: List of indices.
|
||||
:return: A dictionary containing the data at the given indices.
|
||||
:rtype: dict
|
||||
"""
|
||||
|
||||
return {
|
||||
field_name: [data[i] for i in idx_list]
|
||||
for field_name, data in self.data.items()
|
||||
}
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
[project]
|
||||
name = "pina-mathlab"
|
||||
version = "0.2.4"
|
||||
version = "0.2.5"
|
||||
description = "Physic Informed Neural networks for Advance modeling."
|
||||
readme = "README.md"
|
||||
authors = [
|
||||
|
||||
Binary file not shown.
|
Before Width: | Height: | Size: 51 KiB After Width: | Height: | Size: 411 KiB |
BIN
tutorials/static/pina_logo.png
vendored
BIN
tutorials/static/pina_logo.png
vendored
Binary file not shown.
|
Before Width: | Height: | Size: 51 KiB After Width: | Height: | Size: 411 KiB |
Reference in New Issue
Block a user