Files
PINA/tests/test_graph.py
Filippo Olivo ce0c033de1 Self-loops management in KNNGraph and RadiusGraph (#522)
* Add self-loop option to RadiusGraph and KNNGraph
2025-04-23 18:53:30 +02:00

367 lines
12 KiB
Python

import pytest
import torch
from pina import LabelTensor
from pina.graph import RadiusGraph, KNNGraph, Graph
from torch_geometric.data import Data
def build_edge_attr(pos, edge_index):
return torch.cat([pos[edge_index[0]], pos[edge_index[1]]], dim=-1)
@pytest.mark.parametrize(
"x, pos",
[
(torch.rand(10, 2), torch.rand(10, 3)),
(
LabelTensor(torch.rand(10, 2), ["u", "v"]),
LabelTensor(torch.rand(10, 3), ["x", "y", "z"]),
),
],
)
def test_build_graph(x, pos):
edge_index = torch.tensor(
[[0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [1, 2, 3, 4, 5, 6, 7, 8, 9, 0]],
dtype=torch.int64,
)
graph = Graph(x=x, pos=pos, edge_index=edge_index)
assert hasattr(graph, "x")
assert hasattr(graph, "pos")
assert hasattr(graph, "edge_index")
assert torch.isclose(graph.x, x).all()
if isinstance(x, LabelTensor):
assert isinstance(graph.x, LabelTensor)
assert graph.x.labels == x.labels
else:
assert isinstance(graph.pos, torch.Tensor)
assert torch.isclose(graph.pos, pos).all()
if isinstance(pos, LabelTensor):
assert isinstance(graph.pos, LabelTensor)
assert graph.pos.labels == pos.labels
else:
assert isinstance(graph.pos, torch.Tensor)
edge_index = torch.tensor(
[[0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [1, 2, 3, 4, 5, 6, 7, 8, 9, 0]],
dtype=torch.int64,
)
graph = Graph(x=x, edge_index=edge_index)
assert hasattr(graph, "x")
assert hasattr(graph, "pos")
assert hasattr(graph, "edge_index")
assert torch.isclose(graph.x, x).all()
if isinstance(x, LabelTensor):
assert isinstance(graph.x, LabelTensor)
assert graph.x.labels == x.labels
else:
assert isinstance(graph.x, torch.Tensor)
@pytest.mark.parametrize(
"x, pos",
[
(torch.rand(10, 2), torch.rand(10, 3)),
(
LabelTensor(torch.rand(10, 2), ["u", "v"]),
LabelTensor(torch.rand(10, 3), ["x", "y", "z"]),
),
],
)
@pytest.mark.parametrize("loop", [True, False])
def test_build_radius_graph(x, pos, loop):
graph = RadiusGraph(x=x, pos=pos, radius=0.5, loop=loop)
assert hasattr(graph, "x")
assert hasattr(graph, "pos")
assert hasattr(graph, "edge_index")
assert torch.isclose(graph.x, x).all()
if isinstance(x, LabelTensor):
assert isinstance(graph.x, LabelTensor)
assert graph.x.labels == x.labels
else:
assert isinstance(graph.pos, torch.Tensor)
assert torch.isclose(graph.pos, pos).all()
if isinstance(pos, LabelTensor):
assert isinstance(graph.pos, LabelTensor)
assert graph.pos.labels == pos.labels
else:
assert isinstance(graph.pos, torch.Tensor)
if not loop:
assert (
len(
torch.nonzero(
graph.edge_index[0] == graph.edge_index[1], as_tuple=True
)[0]
)
== 0
) # Detect self loops
@pytest.mark.parametrize(
"x, pos",
[
(torch.rand(10, 2), torch.rand(10, 3)),
(
LabelTensor(torch.rand(10, 2), ["u", "v"]),
LabelTensor(torch.rand(10, 3), ["x", "y", "z"]),
),
],
)
def test_build_radius_graph_edge_attr(x, pos):
graph = RadiusGraph(x=x, pos=pos, radius=0.5, edge_attr=True)
assert hasattr(graph, "x")
assert hasattr(graph, "pos")
assert hasattr(graph, "edge_index")
assert torch.isclose(graph.x, x).all()
if isinstance(x, LabelTensor):
assert isinstance(graph.x, LabelTensor)
assert graph.x.labels == x.labels
else:
assert isinstance(graph.pos, torch.Tensor)
assert torch.isclose(graph.pos, pos).all()
if isinstance(pos, LabelTensor):
assert isinstance(graph.pos, LabelTensor)
assert graph.pos.labels == pos.labels
else:
assert isinstance(graph.pos, torch.Tensor)
assert hasattr(graph, "edge_attr")
assert isinstance(graph.edge_attr, torch.Tensor)
assert graph.edge_attr.shape[-1] == 3
assert graph.edge_attr.shape[0] == graph.edge_index.shape[1]
@pytest.mark.parametrize(
"x, pos",
[
(torch.rand(10, 2), torch.rand(10, 3)),
(
LabelTensor(torch.rand(10, 2), ["u", "v"]),
LabelTensor(torch.rand(10, 3), ["x", "y", "z"]),
),
],
)
def test_build_radius_graph_custom_edge_attr(x, pos):
graph = RadiusGraph(
x=x,
pos=pos,
radius=0.5,
edge_attr=True,
custom_edge_func=build_edge_attr,
)
assert hasattr(graph, "x")
assert hasattr(graph, "pos")
assert hasattr(graph, "edge_index")
assert torch.isclose(graph.x, x).all()
if isinstance(x, LabelTensor):
assert isinstance(graph.x, LabelTensor)
assert graph.x.labels == x.labels
else:
assert isinstance(graph.pos, torch.Tensor)
assert torch.isclose(graph.pos, pos).all()
if isinstance(pos, LabelTensor):
assert isinstance(graph.pos, LabelTensor)
assert graph.pos.labels == pos.labels
else:
assert isinstance(graph.pos, torch.Tensor)
assert hasattr(graph, "edge_attr")
assert isinstance(graph.edge_attr, torch.Tensor)
assert graph.edge_attr.shape[-1] == 6
assert graph.edge_attr.shape[0] == graph.edge_index.shape[1]
@pytest.mark.parametrize(
"x, pos",
[
(torch.rand(10, 2), torch.rand(10, 3)),
(
LabelTensor(torch.rand(10, 2), ["u", "v"]),
LabelTensor(torch.rand(10, 3), ["x", "y", "z"]),
),
],
)
@pytest.mark.parametrize("loop", [True, False])
def test_build_knn_graph(x, pos, loop):
graph = KNNGraph(x=x, pos=pos, neighbours=2, loop=loop)
assert hasattr(graph, "x")
assert hasattr(graph, "pos")
assert hasattr(graph, "edge_index")
assert torch.isclose(graph.x, x).all()
if isinstance(x, LabelTensor):
assert isinstance(graph.x, LabelTensor)
assert graph.x.labels == x.labels
else:
assert isinstance(graph.pos, torch.Tensor)
assert torch.isclose(graph.pos, pos).all()
if isinstance(pos, LabelTensor):
assert isinstance(graph.pos, LabelTensor)
assert graph.pos.labels == pos.labels
else:
assert isinstance(graph.pos, torch.Tensor)
assert graph.edge_attr is None
self_loops = len(
torch.nonzero(
graph.edge_index[0] == graph.edge_index[1], as_tuple=True
)[0]
)
if loop:
assert self_loops != 0
else:
assert self_loops == 0
@pytest.mark.parametrize(
"x, pos",
[
(torch.rand(10, 2), torch.rand(10, 3)),
(
LabelTensor(torch.rand(10, 2), ["u", "v"]),
LabelTensor(torch.rand(10, 3), ["x", "y", "z"]),
),
],
)
def test_build_knn_graph_edge_attr(x, pos):
graph = KNNGraph(x=x, pos=pos, neighbours=2, edge_attr=True)
assert hasattr(graph, "x")
assert hasattr(graph, "pos")
assert hasattr(graph, "edge_index")
assert torch.isclose(graph.x, x).all()
if isinstance(x, LabelTensor):
assert isinstance(graph.x, LabelTensor)
assert graph.x.labels == x.labels
else:
assert isinstance(graph.pos, torch.Tensor)
assert torch.isclose(graph.pos, pos).all()
if isinstance(pos, LabelTensor):
assert isinstance(graph.pos, LabelTensor)
assert graph.pos.labels == pos.labels
else:
assert isinstance(graph.pos, torch.Tensor)
assert isinstance(graph.edge_attr, torch.Tensor)
assert graph.edge_attr.shape[-1] == 3
assert graph.edge_attr.shape[0] == graph.edge_index.shape[1]
@pytest.mark.parametrize(
"x, pos",
[
(torch.rand(10, 2), torch.rand(10, 3)),
(
LabelTensor(torch.rand(10, 2), ["u", "v"]),
LabelTensor(torch.rand(10, 3), ["x", "y", "z"]),
),
],
)
def test_build_knn_graph_custom_edge_attr(x, pos):
graph = KNNGraph(
x=x,
pos=pos,
neighbours=2,
edge_attr=True,
custom_edge_func=build_edge_attr,
)
assert hasattr(graph, "x")
assert hasattr(graph, "pos")
assert hasattr(graph, "edge_index")
assert torch.isclose(graph.x, x).all()
if isinstance(x, LabelTensor):
assert isinstance(graph.x, LabelTensor)
assert graph.x.labels == x.labels
else:
assert isinstance(graph.pos, torch.Tensor)
assert torch.isclose(graph.pos, pos).all()
if isinstance(pos, LabelTensor):
assert isinstance(graph.pos, LabelTensor)
assert graph.pos.labels == pos.labels
else:
assert isinstance(graph.pos, torch.Tensor)
assert isinstance(graph.edge_attr, torch.Tensor)
assert graph.edge_attr.shape[-1] == 6
assert graph.edge_attr.shape[0] == graph.edge_index.shape[1]
@pytest.mark.parametrize(
"x, pos, y",
[
(torch.rand(10, 2), torch.rand(10, 3), torch.rand(10, 4)),
(
LabelTensor(torch.rand(10, 2), ["u", "v"]),
LabelTensor(torch.rand(10, 3), ["x", "y", "z"]),
LabelTensor(torch.rand(10, 4), ["a", "b", "c", "d"]),
),
],
)
def test_additional_params(x, pos, y):
edge_index = torch.tensor(
[[0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [1, 2, 3, 4, 5, 6, 7, 8, 9, 0]],
dtype=torch.int64,
)
graph = Graph(x=x, pos=pos, edge_index=edge_index, y=y)
assert hasattr(graph, "y")
assert torch.isclose(graph.y, y).all()
if isinstance(y, LabelTensor):
assert isinstance(graph.y, LabelTensor)
assert graph.y.labels == y.labels
else:
assert isinstance(graph.y, torch.Tensor)
assert torch.isclose(graph.y, y).all()
if isinstance(y, LabelTensor):
assert isinstance(graph.y, LabelTensor)
assert graph.y.labels == y.labels
else:
assert isinstance(graph.y, torch.Tensor)
@pytest.mark.parametrize(
"x, pos, y",
[
(torch.rand(10, 2), torch.rand(10, 3), torch.rand(10, 4)),
(
LabelTensor(torch.rand(10, 2), ["u", "v"]),
LabelTensor(torch.rand(10, 3), ["x", "y", "z"]),
LabelTensor(torch.rand(10, 4), ["a", "b", "c", "d"]),
),
],
)
def test_additional_params_radius_graph(x, pos, y):
graph = RadiusGraph(x=x, pos=pos, radius=0.5, y=y)
assert hasattr(graph, "y")
assert torch.isclose(graph.y, y).all()
if isinstance(y, LabelTensor):
assert isinstance(graph.y, LabelTensor)
assert graph.y.labels == y.labels
else:
assert isinstance(graph.y, torch.Tensor)
assert torch.isclose(graph.y, y).all()
if isinstance(y, LabelTensor):
assert isinstance(graph.y, LabelTensor)
assert graph.y.labels == y.labels
else:
assert isinstance(graph.y, torch.Tensor)
@pytest.mark.parametrize(
"x, pos, y",
[
(torch.rand(10, 2), torch.rand(10, 3), torch.rand(10, 4)),
(
LabelTensor(torch.rand(10, 2), ["u", "v"]),
LabelTensor(torch.rand(10, 3), ["x", "y", "z"]),
LabelTensor(torch.rand(10, 4), ["a", "b", "c", "d"]),
),
],
)
def test_additional_params_knn_graph(x, pos, y):
graph = KNNGraph(x=x, pos=pos, neighbours=3, y=y)
assert hasattr(graph, "y")
assert torch.isclose(graph.y, y).all()
if isinstance(y, LabelTensor):
assert isinstance(graph.y, LabelTensor)
assert graph.y.labels == y.labels
else:
assert isinstance(graph.y, torch.Tensor)
assert torch.isclose(graph.y, y).all()
if isinstance(y, LabelTensor):
assert isinstance(graph.y, LabelTensor)
assert graph.y.labels == y.labels
else:
assert isinstance(graph.y, torch.Tensor)