Files
PINA/tests/test_pinn.py
Nicola Demo 0e3625de80 equation class, fix minor bugs, diff domain (#89)
* equation class
* difference domain
* dummy dataloader
* writer class
* refactoring and minor fix
2023-11-17 09:51:29 +01:00

247 lines
7.6 KiB
Python

import torch
import pytest
from pina import LabelTensor, Condition, CartesianDomain, PINN
from pina.problem import SpatialProblem
from pina.model import FeedForward
from pina.operators import nabla
from pina.equation.equation import Equation
from pina.equation.equation_factory import FixedValue
in_ = LabelTensor(torch.tensor([[0., 1.]]), ['x', 'y'])
out_ = LabelTensor(torch.tensor([[0.]]), ['u'])
def laplace_equation(input_, output_):
force_term = (torch.sin(input_.extract(['x'])*torch.pi) *
torch.sin(input_.extract(['y'])*torch.pi))
nabla_u = nabla(output_.extract(['u']), input_)
return nabla_u - force_term
my_laplace = Equation(laplace_equation)
class Poisson(SpatialProblem):
output_variables = ['u']
spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]})
conditions = {
'gamma1': Condition(
location=CartesianDomain({'x': [0, 1], 'y': 1}),
equation=FixedValue(0.0)),
'gamma2': Condition(
location=CartesianDomain({'x': [0, 1], 'y': 0}),
equation=FixedValue(0.0)),
'gamma3': Condition(
location=CartesianDomain({'x': 1, 'y': [0, 1]}),
equation=FixedValue(0.0)),
'gamma4': Condition(
location=CartesianDomain({'x': 0, 'y': [0, 1]}),
equation=FixedValue(0.0)),
'D': Condition(
location=CartesianDomain({'x': [0, 1], 'y': [0, 1]}),
equation=my_laplace),
'data': Condition(
input_points=in_,
output_points=out_)
}
def poisson_sol(self, pts):
return -(
torch.sin(pts.extract(['x'])*torch.pi) *
torch.sin(pts.extract(['y'])*torch.pi)
)/(2*torch.pi**2)
truth_solution = poisson_sol
class myFeature(torch.nn.Module):
"""
Feature: sin(x)
"""
def __init__(self):
super(myFeature, self).__init__()
def forward(self, x):
t = (torch.sin(x.extract(['x'])*torch.pi) *
torch.sin(x.extract(['y'])*torch.pi))
return LabelTensor(t, ['sin(x)sin(y)'])
problem = Poisson()
model = FeedForward(len(problem.input_variables),len(problem.output_variables))
model_extra_feat = FeedForward(len(problem.input_variables) + 1,len(problem.output_variables))
def test_constructor():
PINN(problem, model)
def test_constructor_extra_feats():
PINN(problem, model_extra_feat, [myFeature()])
def test_span_pts():
pinn = PINN(problem, model)
n = 10
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
pinn.span_pts(n, 'grid', locations=boundaries)
for b in boundaries:
assert pinn.input_pts[b].shape[0] == n
pinn.span_pts(n, 'random', locations=boundaries)
for b in boundaries:
assert pinn.input_pts[b].shape[0] == n
pinn.span_pts(n, 'grid', locations=['D'])
assert pinn.input_pts['D'].shape[0] == n**2
pinn.span_pts(n, 'random', locations=['D'])
assert pinn.input_pts['D'].shape[0] == n
pinn.span_pts(n, 'latin', locations=['D'])
assert pinn.input_pts['D'].shape[0] == n
pinn.span_pts(n, 'lh', locations=['D'])
assert pinn.input_pts['D'].shape[0] == n
def test_sampling_all_args():
pinn = PINN(problem, model)
n = 10
pinn.span_pts(n, 'grid', locations=['D'])
def test_sampling_all_kwargs():
pinn = PINN(problem, model)
n = 10
pinn.span_pts(n=n, mode='latin', locations=['D'])
def test_sampling_dict():
pinn = PINN(problem, model)
n = 10
pinn.span_pts(
{'variables': ['x', 'y'], 'mode': 'grid', 'n': n}, locations=['D'])
def test_sampling_mixed_args_kwargs():
pinn = PINN(problem, model)
n = 10
with pytest.raises(ValueError):
pinn.span_pts(n, mode='latin', locations=['D'])
def test_train():
pinn = PINN(problem, model)
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
n = 10
pinn.span_pts(n, 'grid', locations=boundaries)
pinn.span_pts(n, 'grid', locations=['D'])
pinn.train(5)
"""
def test_train_2():
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
n = 10
expected_keys = [[], list(range(0, 50, 3))]
param = [0, 3]
for i, truth_key in zip(param, expected_keys):
pinn = PINN(problem, model)
pinn.span_pts(n, 'grid', locations=boundaries)
pinn.span_pts(n, 'grid', locations=['D'])
pinn.train(50, save_loss=i)
assert list(pinn.history_loss.keys()) == truth_key
def test_train_extra_feats():
pinn = PINN(problem, model_extra_feat, [myFeature()])
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
n = 10
pinn.span_pts(n, 'grid', locations=boundaries)
pinn.span_pts(n, 'grid', locations=['D'])
pinn.train(5)
def test_train_2_extra_feats():
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
n = 10
expected_keys = [[], list(range(0, 50, 3))]
param = [0, 3]
for i, truth_key in zip(param, expected_keys):
pinn = PINN(problem, model_extra_feat, [myFeature()])
pinn.span_pts(n, 'grid', locations=boundaries)
pinn.span_pts(n, 'grid', locations=['D'])
pinn.train(50, save_loss=i)
assert list(pinn.history_loss.keys()) == truth_key
def test_train_with_optimizer_kwargs():
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
n = 10
expected_keys = [[], list(range(0, 50, 3))]
param = [0, 3]
for i, truth_key in zip(param, expected_keys):
pinn = PINN(problem, model, optimizer_kwargs={'lr' : 0.3})
pinn.span_pts(n, 'grid', locations=boundaries)
pinn.span_pts(n, 'grid', locations=['D'])
pinn.train(50, save_loss=i)
assert list(pinn.history_loss.keys()) == truth_key
def test_train_with_lr_scheduler():
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
n = 10
expected_keys = [[], list(range(0, 50, 3))]
param = [0, 3]
for i, truth_key in zip(param, expected_keys):
pinn = PINN(
problem,
model,
lr_scheduler_type=torch.optim.lr_scheduler.CyclicLR,
lr_scheduler_kwargs={'base_lr' : 0.1, 'max_lr' : 0.3, 'cycle_momentum': False}
)
pinn.span_pts(n, 'grid', locations=boundaries)
pinn.span_pts(n, 'grid', locations=['D'])
pinn.train(50, save_loss=i)
assert list(pinn.history_loss.keys()) == truth_key
# def test_train_batch():
# pinn = PINN(problem, model, batch_size=6)
# boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
# n = 10
# pinn.span_pts(n, 'grid', locations=boundaries)
# pinn.span_pts(n, 'grid', locations=['D'])
# pinn.train(5)
# def test_train_batch_2():
# boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
# n = 10
# expected_keys = [[], list(range(0, 50, 3))]
# param = [0, 3]
# for i, truth_key in zip(param, expected_keys):
# pinn = PINN(problem, model, batch_size=6)
# pinn.span_pts(n, 'grid', locations=boundaries)
# pinn.span_pts(n, 'grid', locations=['D'])
# pinn.train(50, save_loss=i)
# assert list(pinn.history_loss.keys()) == truth_key
if torch.cuda.is_available():
# def test_gpu_train():
# pinn = PINN(problem, model, batch_size=20, device='cuda')
# boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
# n = 100
# pinn.span_pts(n, 'grid', locations=boundaries)
# pinn.span_pts(n, 'grid', locations=['D'])
# pinn.train(5)
def test_gpu_train_nobatch():
pinn = PINN(problem, model, batch_size=None, device='cuda')
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
n = 100
pinn.span_pts(n, 'grid', locations=boundaries)
pinn.span_pts(n, 'grid', locations=['D'])
pinn.train(5)
"""