Files
PINA/pina/dataset.py
Dario Coscia 63fd068988 Lightining update (#104)
* multiple functions for version 0.0
* lightining update
* minor changes
* data pinn  loss added
---------

Co-authored-by: Nicola Demo <demo.nicola@gmail.com>
Co-authored-by: Dario Coscia <dariocoscia@cli-10-110-3-125.WIFIeduroamSTUD.units.it>
Co-authored-by: Dario Coscia <dariocoscia@Dario-Coscia.station>
Co-authored-by: Dario Coscia <dariocoscia@Dario-Coscia.local>
Co-authored-by: Dario Coscia <dariocoscia@192.168.1.38>
2023-11-17 09:51:29 +01:00

127 lines
3.6 KiB
Python

class PinaDataset():
def __init__(self, pinn) -> None:
self.pinn = pinn
@property
def dataloader(self):
return self._create_dataloader()
@property
def dataset(self):
return [self.SampleDataset(key, val)
for key, val in self.input_pts.items()]
def _create_dataloader(self):
"""Private method for creating dataloader
:return: dataloader
:rtype: torch.utils.data.DataLoader
"""
if self.pinn.batch_size is None:
return {key: [{key: val}] for key, val in self.pinn.input_pts.items()}
def custom_collate(batch):
# extracting pts labels
_, pts = list(batch[0].items())[0]
labels = pts.labels
# calling default torch collate
collate_res = default_collate(batch)
# save collate result in dict
res = {}
for key, val in collate_res.items():
val.labels = labels
res[key] = val
def __getitem__(self, index):
tensor = self._tensor.select(0, index)
return {self._location: tensor}
def __len__(self):
return self._len
from torch.utils.data import Dataset, DataLoader
class LabelTensorDataset(Dataset):
def __init__(self, d):
for k, v in d.items():
setattr(self, k, v)
self.labels = list(d.keys())
def __getitem__(self, index):
print(index)
result = {}
for label in self.labels:
sample_tensor = getattr(self, label)
# print('porcodio')
# print(sample_tensor.shape[1])
# print(index)
# print(sample_tensor[index])
try:
result[label] = sample_tensor[index]
except IndexError:
result[label] = torch.tensor([])
print(result)
return result
def __len__(self):
return max([len(getattr(self, label)) for label in self.labels])
class LabelTensorDataLoader(DataLoader):
def collate_fn(self, data):
print(data)
gggggggggg
# return dict(zip(self.pinn.input_pts.keys(), dataloaders))
# class SampleDataset(torch.utils.data.Dataset):
# def __init__(self, location, tensor):
# self._tensor = tensor
# self._location = location
# self._len = len(tensor)
# def __getitem__(self, index):
# tensor = self._tensor.select(0, index)
# return {self._location: tensor}
# def __len__(self):
# return self._len
from torch.utils.data import Dataset, DataLoader
class LabelTensorDataset(Dataset):
def __init__(self, d):
for k, v in d.items():
setattr(self, k, v)
self.labels = list(d.keys())
def __getitem__(self, index):
print(index)
result = {}
for label in self.labels:
sample_tensor = getattr(self, label)
# print('porcodio')
# print(sample_tensor.shape[1])
# print(index)
# print(sample_tensor[index])
try:
result[label] = sample_tensor[index]
except IndexError:
result[label] = torch.tensor([])
print(result)
return result
def __len__(self):
return max([len(getattr(self, label)) for label in self.labels])
# TODO: working also for datapoints
class DummyLoader:
def __init__(self, data) -> None:
self.data = [data]
def __iter__(self):
return iter(self.data)