Files
PINA/pina/trainer.py
Dario Coscia 4d1187898f Adaptive Refinment and Multiple Optimizer callbacks
* Implementing a callback to switch between optimizers during training
* Implementing the R3Refinment for collocation points
* Modify trainer -> dataloader is created or updated by calling `_create_or_update_loader`
* Adding `add_points` routine to AbstractProblem so that new points can be added without resampling from scratch
2023-11-17 09:51:29 +01:00

39 lines
1.4 KiB
Python

""" Solver module. """
import lightning.pytorch as pl
from .utils import check_consistency
from .dataset import DummyLoader
from .solvers.solver import SolverInterface
class Trainer(pl.Trainer):
def __init__(self, solver, **kwargs):
super().__init__(**kwargs)
# check inheritance consistency for solver
check_consistency(solver, SolverInterface)
self._model = solver
# create dataloader
if solver.problem.have_sampled_points is False:
raise RuntimeError(f'Input points in {solver.problem.not_sampled_points} '
'training are None. Please '
'sample points in your problem by calling '
'discretise_domain function before train '
'in the provided locations.')
# TODO: make a better dataloader for train
self._create_or_update_loader()
# this method is used here because is resampling is needed
# during training, there is no need to define to touch the
# trainer dataloader, just call the method.
def _create_or_update_loader(self):
# get accellerator
device = self._accelerator_connector._accelerator_flag
self._loader = DummyLoader(self._model.problem.input_pts, device)
def train(self, **kwargs): # TODO add kwargs and lightining capabilities
return super().fit(self._model, self._loader, **kwargs)