Files
PINA/pina/utils.py
2024-02-09 15:11:51 +01:00

199 lines
5.7 KiB
Python

"""Utils module"""
from torch.utils.data import Dataset, DataLoader
from functools import reduce
import types
import torch
from torch.utils.data import DataLoader, default_collate, ConcatDataset
from .label_tensor import LabelTensor
import torch
def check_consistency(object, object_instance, subclass=False):
"""Helper function to check object inheritance consistency.
Given a specific ``'object'`` we check if the object is
instance of a specific ``'object_instance'``, or in case
``'subclass=True'`` we check if the object is subclass
if the ``'object_instance'``.
:param (iterable or class object) object: The object to check the inheritance
:param Object object_instance: The parent class from where the object
is expected to inherit
:param str object_name: The name of the object
:param bool subclass: Check if is a subclass and not instance
:raises ValueError: If the object does not inherit from the
specified class
"""
if not isinstance(object, (list, set, tuple)):
object = [object]
for obj in object:
try:
if not subclass:
assert isinstance(obj, object_instance)
else:
assert issubclass(obj, object_instance)
except AssertionError:
raise ValueError(f"{type(obj).__name__} must be {object_instance}.")
def number_parameters(
model, aggregate=True, only_trainable=True
): # TODO: check
"""
Return the number of parameters of a given `model`.
:param torch.nn.Module model: the torch module to inspect.
:param bool aggregate: if True the return values is an integer corresponding
to the total amount of parameters of whole model. If False, it returns a
dictionary whose keys are the names of layers and the values the
corresponding number of parameters. Default is True.
:param bool trainable: if True, only trainable parameters are count,
otherwise no. Default is True.
:return: the number of parameters of the model
:rtype: dict or int
"""
tmp = {}
for name, parameter in model.named_parameters():
if only_trainable and not parameter.requires_grad:
continue
tmp[name] = parameter.numel()
if aggregate:
tmp = sum(tmp.values())
return tmp
def merge_tensors(tensors): # name to be changed
if tensors:
return reduce(merge_two_tensors, tensors[1:], tensors[0])
raise ValueError("Expected at least one tensor")
def merge_two_tensors(tensor1, tensor2):
n1 = tensor1.shape[0]
n2 = tensor2.shape[0]
tensor1 = LabelTensor(tensor1.repeat(n2, 1), labels=tensor1.labels)
tensor2 = LabelTensor(
tensor2.repeat_interleave(n1, dim=0), labels=tensor2.labels
)
return tensor1.append(tensor2)
def torch_lhs(n, dim):
"""Latin Hypercube Sampling torch routine.
Sampling in range $[0, 1)^d$.
:param int n: number of samples
:param int dim: dimensions of latin hypercube
:return: samples
:rtype: torch.tensor
"""
if not isinstance(n, int):
raise TypeError("number of point n must be int")
if not isinstance(dim, int):
raise TypeError("dim must be int")
if dim < 1:
raise ValueError("dim must be greater than one")
samples = torch.rand(size=(n, dim))
perms = torch.tile(torch.arange(1, n + 1), (dim, 1))
for row in range(dim):
idx_perm = torch.randperm(perms.shape[-1])
perms[row, :] = perms[row, idx_perm]
perms = perms.T
samples = (perms - samples) / n
return samples
def is_function(f):
"""
Checks whether the given object `f` is a function or lambda.
:param object f: The object to be checked.
:return: `True` if `f` is a function, `False` otherwise.
:rtype: bool
"""
return type(f) == types.FunctionType or type(f) == types.LambdaType
def chebyshev_roots(n):
"""
Return the roots of *n* Chebyshev polynomials (between [-1, 1]).
:param int n: number of roots
:return: roots
:rtype: torch.tensor
"""
pi = torch.acos(torch.zeros(1)).item() * 2
k = torch.arange(n)
nodes = torch.sort(torch.cos(pi * (k + 0.5) / n))[0]
return nodes
# class PinaDataset():
# def __init__(self, pinn) -> None:
# self.pinn = pinn
# @property
# def dataloader(self):
# return self._create_dataloader()
# @property
# def dataset(self):
# return [self.SampleDataset(key, val)
# for key, val in self.input_pts.items()]
# def _create_dataloader(self):
# """Private method for creating dataloader
# :return: dataloader
# :rtype: torch.utils.data.DataLoader
# """
# if self.pinn.batch_size is None:
# return {key: [{key: val}] for key, val in self.pinn.input_pts.items()}
# def custom_collate(batch):
# # extracting pts labels
# _, pts = list(batch[0].items())[0]
# labels = pts.labels
# # calling default torch collate
# collate_res = default_collate(batch)
# # save collate result in dict
# res = {}
# for key, val in collate_res.items():
# val.labels = labels
# res[key] = val
# __init__(self, location, tensor):
# self._tensor = tensor
# self._location = location
# self._len = len(tensor)
# def __getitem__(self, index):
# tensor = self._tensor.select(0, index)
# return {self._location: tensor}
# def __len__(self):
# return self._len
class LabelTensorDataLoader(DataLoader):
def collate_fn(self, data):
pass