603 lines
266 KiB
Plaintext
Vendored
603 lines
266 KiB
Plaintext
Vendored
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"# Tutorial: Chemical Properties Prediction with Graph Neural Networks\n",
|
||
"\n",
|
||
"[](https://colab.research.google.com/github/mathLab/PINA/blob/master/tutorials/tutorial15/tutorial.ipynb)\n",
|
||
"\n",
|
||
"In this tutorial we will use **Graph Neural Networks** (GNNs) for chemical properties prediction. Chemical properties prediction involves estimating or determining the physical, chemical, or biological characteristics of molecules based on their structure. \n",
|
||
"\n",
|
||
"Molecules can naturally be represented as graphs, where atoms serve as the nodes and chemical bonds as the edges connecting them. This graph-based structure makes GNNs a great fit for predicting chemical properties.\n",
|
||
"\n",
|
||
"In the tutorial we will use the [QM9 dataset](https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.QM9.html#torch_geometric.datasets.QM9) from Pytorch Geometric. The dataset contains small molecules, each consisting of up to 29 atoms, with every atom having a corresponding 3D position. Each atom is also represented by a five-dimensional one-hot encoded vector that indicates the atom type (H, C, N, O, F).\n",
|
||
"\n",
|
||
"First of all, let's start by importing useful modules!"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"## routine needed to run the notebook on Google Colab\n",
|
||
"try:\n",
|
||
" import google.colab\n",
|
||
"\n",
|
||
" IN_COLAB = True\n",
|
||
"except:\n",
|
||
" IN_COLAB = False\n",
|
||
"if IN_COLAB:\n",
|
||
" !pip install \"pina-mathlab[tutorial]\"\n",
|
||
"\n",
|
||
"import torch\n",
|
||
"import warnings\n",
|
||
"\n",
|
||
"from pina import Trainer\n",
|
||
"from pina.solver import SupervisedSolver\n",
|
||
"from pina.problem.zoo import SupervisedProblem\n",
|
||
"\n",
|
||
"from torch_geometric.datasets import QM9\n",
|
||
"from torch_geometric.nn import GCNConv, global_mean_pool\n",
|
||
"\n",
|
||
"warnings.filterwarnings(\"ignore\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Download Data and create the Problem"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"We download the dataset and save the molecules as a list of `Data` objects (`input_`), where each element contains one molecule encoded in a graph structure. The corresponding target properties (`target_`) are listed below:\n",
|
||
"\n",
|
||
"| Target | Property | Description | Unit |\n",
|
||
"|--------|----------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------|\n",
|
||
"| 0 | $\\mu$ | Dipole moment | $D$ |\n",
|
||
"| 1 | $\\alpha$ | Isotropic polarizability | $a₀³$ |\n",
|
||
"| 2 | $\\epsilon_{\\textrm{HOMO}}$ | Highest occupied molecular orbital energy | $eV$ |\n",
|
||
"| 3 | $\\epsilon_{\\textrm{LUMO}}$ | Lowest unoccupied molecular orbital energy | $eV$ |\n",
|
||
"| 4 | $\\Delta \\epsilon$ | Gap between $\\epsilon_{\\textrm{HOMO}}$ and $\\epsilon_{\\textrm{LUMO}}$ | $eV$ |\n",
|
||
"| 5 | $\\langle R^2 \\rangle$ | Electronic spatial extent | $a₀²$ |\n",
|
||
"| 6 | $\\textrm{ZPVE}$ | Zero point vibrational energy | $eV$ |\n",
|
||
"| 7 | $U_0$ | Internal energy at 0K | $eV$ |\n",
|
||
"| 8 | $U$ | Internal energy at 298.15K | $eV$ |\n",
|
||
"| 9 | $H$ | Enthalpy at 298.15K | $eV$ |\n",
|
||
"| 10 | $G$ | Free energy at 298.15K | $eV$ |\n",
|
||
"| 11 | $c_{\\textrm{v}}$ | Heat capacity at 298.15K | $cal/(mol·K)$ |\n",
|
||
"| 12 | $U_0^{\\textrm{ATOM}}$ | Atomization energy at 0K | $eV$ |\n",
|
||
"| 13 | $U^{\\textrm{ATOM}}$ | Atomization energy at 298.15K | $eV$ |\n",
|
||
"| 14 | $H^{\\textrm{ATOM}}$ | Atomization enthalpy at 298.15K | $eV$ |\n",
|
||
"| 15 | $G^{\\textrm{ATOM}}$ | Atomization free energy at 298.15K | $eV$ |\n",
|
||
"| 16 | $A$ | Rotational constant | $GHz$ |\n",
|
||
"| 17 | $B$ | Rotational constant | $GHz$ |\n",
|
||
"| 18 | $C$ | Rotational constant | $GHz$ |\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"# download the data + shuffling\n",
|
||
"dataset = QM9(root=\"./tutorial_logs\").shuffle()\n",
|
||
"\n",
|
||
"# save the dataset\n",
|
||
"input_ = [data for data in dataset]\n",
|
||
"target_ = torch.stack([data.y for data in dataset])\n",
|
||
"\n",
|
||
"# normalize the target\n",
|
||
"mean = target_.mean(dim=0, keepdim=True)\n",
|
||
"std = target_.std(dim=0, keepdim=True)\n",
|
||
"target_ = (target_ - mean) / std"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Great! Once the data are downloaded, building the problem is straightforward by using the [`SupervisedProblem`](https://mathlab.github.io/PINA/_rst/problem/zoo/supervised_problem.html) class."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 3,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"# build the problem\n",
|
||
"problem = SupervisedProblem(input_=input_, output_=target_)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Build the Model\n",
|
||
"\n",
|
||
"To predict molecular properties, we will construct a simple Convolutional Graph Neural Network using the [`GCNConv`]() module from PyG. While this tutorial focuses on a straightforward model, more advanced architectures—such as Equivariant Networks—could potentially yield better performance. Please note that this tutorial serves only for demonstration purposes.\n",
|
||
"\n",
|
||
"**Importantly** notice that in the `forward` pass we pass a data object as input, and unpack inside the graph attributes. This is the only requirement in **PINA** to use graphs and solvers together."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 4,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"class GNN(torch.nn.Module):\n",
|
||
" def __init__(self, in_features, out_features, hidden_dim=256):\n",
|
||
" super(GNN, self).__init__()\n",
|
||
" self.conv1 = GCNConv(in_features, hidden_dim)\n",
|
||
" self.conv2 = GCNConv(hidden_dim, hidden_dim)\n",
|
||
" self.fc = torch.nn.Linear(hidden_dim, out_features)\n",
|
||
"\n",
|
||
" def forward(self, data):\n",
|
||
" # extract attributes, N.B. in PINA Data object are passed as input\n",
|
||
" x, edge_index, batch = data.x, data.edge_index, data.batch\n",
|
||
" # perform normal graph operations\n",
|
||
" x = torch.relu(self.conv1(x, edge_index))\n",
|
||
" x = torch.relu(self.conv2(x, edge_index))\n",
|
||
" x = global_mean_pool(x, batch)\n",
|
||
" return self.fc(x)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Train the Model\n",
|
||
"\n",
|
||
"Now that the problem is created and the model is built, we can train the model using the [`SupervisedSolver`](https://mathlab.github.io/PINA/_rst/solver/supervised.html), which is the solver for standard supervised learning task. We will optimize the Maximum Absolute Error and test on the same metric. In the [`Trainer`](https://mathlab.github.io/PINA/_rst/trainer.html) class we specify the optimization hyperparameters."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 5,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"GPU available: True (mps), used: False\n",
|
||
"TPU available: False, using: 0 TPU cores\n",
|
||
"HPU available: False, using: 0 HPUs\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "4c17f0dee08d41ef8cf24f8d7f34a245",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"Sanity Checking: | | 0/? [00:00<?, ?it/s]"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "02a24135327146a7bc4b6b2d3947853c",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"Training: | | 0/? [00:00<?, ?it/s]"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "5ab56b75c3bc4c3ea8e093fd07814f8c",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"Validation: | | 0/? [00:00<?, ?it/s]"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "35683edc6c324488aed577e1887fd67f",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"Validation: | | 0/? [00:00<?, ?it/s]"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "3faa2cd49a874ee3a15292e35a9e2915",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"Validation: | | 0/? [00:00<?, ?it/s]"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"`Trainer.fit` stopped: `max_epochs=3` reached.\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"# define the solver\n",
|
||
"solver = SupervisedSolver(\n",
|
||
" problem=problem,\n",
|
||
" model=GNN(in_features=11, out_features=19),\n",
|
||
" use_lt=False,\n",
|
||
" loss=torch.nn.L1Loss()\n",
|
||
")\n",
|
||
"trainer = Trainer(\n",
|
||
" solver,\n",
|
||
" max_epochs=3,\n",
|
||
" train_size=0.7,\n",
|
||
" test_size=0.2,\n",
|
||
" val_size=0.1,\n",
|
||
" batch_size=512,\n",
|
||
" accelerator=\"cpu\",\n",
|
||
" enable_model_summary=False,\n",
|
||
")\n",
|
||
"trainer.train()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Testing Chemical Predictions"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 6,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "f6a0838a82f0459989b0b5327fa44b1c",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"Testing: | | 0/? [00:00<?, ?it/s]"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────\n",
|
||
" Test metric DataLoader 0\n",
|
||
"────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────\n",
|
||
" data_loss_epoch 0.3962344825267792\n",
|
||
" test_loss_epoch 0.3962344825267792\n",
|
||
"────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"_=trainer.test()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"We observe that the model achieves an average error of approximately 0.4 MAE across all property predictions. This error is an average, but we can also inspect the error for each individual property prediction.\n",
|
||
"\n",
|
||
"To do this, we need access to the test dataset, which can be retrieved from the trainer's datamodule. Each datamodule contains both the dataloader and dataset objects. For the dataset, we can use the [`get_all_data()`](https://mathlab.github.io/PINA/_rst/data/dataset.html#pina.data.dataset.PinaDataset.get_all_data) method. This function returns the entire dataset as a dictionary, where the keys represent the Condition names, and the values are dictionaries containing input and target tensors."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 7,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Here the dataset\n",
|
||
"Dataset keys: dict_keys(['data'])\n",
|
||
"Dataset keys for data condition: dict_keys(['input', 'target'])\n",
|
||
"Dataset values type for data condition: ['DataLabelBatch', 'Tensor']\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"# get the test dataset\n",
|
||
"test_dataset = trainer.datamodule.test_dataset.get_all_data()\n",
|
||
"print(\"Here the dataset\")\n",
|
||
"print(f\"Dataset keys: {test_dataset.keys()}\")\n",
|
||
"print(f\"Dataset keys for data condition: {test_dataset['data'].keys()}\")\n",
|
||
"print(f\"Dataset values type for data condition: {[v.__class__.__name__ for v in test_dataset['data'].values()]}\")\n",
|
||
"\n",
|
||
"# extract input and target for test dataset\n",
|
||
"input_test = test_dataset[\"data\"][\"input\"]\n",
|
||
"target_test = test_dataset[\"data\"][\"target\"]"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Now we obtain the prediction my calling the forward pass for the `SupervisedSolver`."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 8,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Number of prediction properties: 19\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"# get the prediction\n",
|
||
"prediction_test = solver(input_test)\n",
|
||
"print(f'Number of prediction properties: {prediction_test.shape[-1]}')"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"As you can see we obtain a tensor with 19 prediction properties as output, which is what we are looking for. Now let's compute the error for each property:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Property | Error | Unit\n",
|
||
"----------------------------------\n",
|
||
"μ | 0.7048 | D\n",
|
||
"α | 0.4426 | a₀³\n",
|
||
"ε HOMO | 0.6538 | eV\n",
|
||
"ε LUMO | 0.6223 | eV\n",
|
||
"Δε | 0.6431 | eV\n",
|
||
"⟨R²⟩ | 0.6322 | a₀²\n",
|
||
"ZPVE | 0.2415 | eV\n",
|
||
"U₀ | 0.3379 | eV\n",
|
||
"U | 0.3387 | eV\n",
|
||
"H | 0.3358 | eV\n",
|
||
"G | 0.3362 | eV\n",
|
||
"cv | 0.5189 | cal/(mol·K)\n",
|
||
"U₀ ATOM | 0.2796 | eV\n",
|
||
"U ATOM | 0.2795 | eV\n",
|
||
"H ATOM | 0.2796 | eV\n",
|
||
"G ATOM | 0.2845 | eV\n",
|
||
"A | 0.0025 | GHz\n",
|
||
"B | 0.2137 | GHz\n",
|
||
"C | 0.2083 | GHz\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"properties = [\n",
|
||
" \"μ\",\n",
|
||
" \"α\",\n",
|
||
" \"ε HOMO\",\n",
|
||
" \"ε LUMO\",\n",
|
||
" \"Δε\",\n",
|
||
" \"⟨R²⟩\",\n",
|
||
" \"ZPVE\",\n",
|
||
" \"U₀\",\n",
|
||
" \"U\",\n",
|
||
" \"H\",\n",
|
||
" \"G\",\n",
|
||
" \"cv\",\n",
|
||
" \"U₀ ATOM\",\n",
|
||
" \"U ATOM\",\n",
|
||
" \"H ATOM\",\n",
|
||
" \"G ATOM\",\n",
|
||
" \"A\",\n",
|
||
" \"B\",\n",
|
||
" \"C\",\n",
|
||
"]\n",
|
||
"\n",
|
||
"units = [\n",
|
||
" \"D\",\n",
|
||
" \"a₀³\",\n",
|
||
" \"eV\",\n",
|
||
" \"eV\",\n",
|
||
" \"eV\",\n",
|
||
" \"a₀²\",\n",
|
||
" \"eV\",\n",
|
||
" \"eV\",\n",
|
||
" \"eV\",\n",
|
||
" \"eV\",\n",
|
||
" \"eV\",\n",
|
||
" \"cal/(mol·K)\",\n",
|
||
" \"eV\",\n",
|
||
" \"eV\",\n",
|
||
" \"eV\",\n",
|
||
" \"eV\",\n",
|
||
" \"GHz\",\n",
|
||
" \"GHz\",\n",
|
||
" \"GHz\",\n",
|
||
"]\n",
|
||
"\n",
|
||
"print(f\"{'Property':<10} | {'Error':<8} | {'Unit'}\")\n",
|
||
"print(\"-\" * 34)\n",
|
||
"\n",
|
||
"for idx in range(19):\n",
|
||
" error = torch.abs(prediction_test[:, idx] - target_test[:, idx]).mean()\n",
|
||
" print(f\"{properties[idx]:<10} | {error:.4f} | {units[idx]}\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"We can see that predicting the some properties are easier and some harder to predict. For example, the rotational constant $A$ is way easier to predict than dipole moment $\\mu$. To have a better idea we can also plot a scatter plot between predicted and observed properties:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 10,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA+UAAAMWCAYAAACXxSc9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOxdBXicZdY945NMXJu0qXtLW6QUKAstVhZf3PbHZZfFFxYvXnxxWcEXXXTx0uIUK6XuLnFPJpmM/c+533zpJJloMxnJe3iGJJPpzJeZ977vlXPPNfj9fj8UFBQUFBQUFBQUFBQUFBT6HMa+f0kFBQUFBQUFBQUFBQUFBQVCBeUKCgoKCgoKCgoKCgoKChGCCsoVFBQUFBQUFBQUFBQUFCIEFZQrKCgoKCgoKCgoKCgoKEQIKihXUFBQUFBQUFBQUFBQUIgQVFCuoKCgoKCgoKCgoKCgoBAhqKBcQUFBQUFBQUFBQUFBQSFCUEG5goKCgoKCgoKCgoKCgkKEoIJyBQUFBQUFBQUFBQUFBYUIQQXlCgoKCgoKCgoKCgoKCgoRggrKFRQUFBQU4gSbNm2CwWDAAw88EPL3t956q/y+rKysze8++OADHH744cjMzITdbsfo0aPx17/+FeXl5W0ee/bZZ8vzpKSkoKGhoc3v165dK79v71q2bNmCiy++GEOHDoXNZkNOTg6OO+44fPfddz3+2xUUwmU3BNfqUUcdFfJ3v/zyi/z7559/vo2tGY1GbN26tc2/qampQUJCgjzmL3/5S5vf0+6uueYajBkzRuwxIyMDs2bNEjtVUIh2PPnkk7K2p02bFulLiRmooFxBQUFBQaGfg8H30UcfjaKiIvztb3/D448/jkMOOUS+Tp48GatXr27zb8xmM5xOJ/73v/+1+d1//vMfCSRCgYH3brvthldffRUnnHCCOG+XX345li9fjt/97nd47LHHwvI3KihEAkw6ca23xttvv93uv6G90e4effRRzJw5U+zwhhtuQElJidgpg3UFhWgGzwCr1YqffvoJ69ati/TlxARUUK6goKCgoNCPwYDhwQcfxCmnnIKFCxfi2muvxfnnny/B8tdff43KykqcdNJJ8Hg8bYKNgw8+OGTA8corr+DII49scz+f68QTT5QK4a+//iqve9555+HGG2/EkiVLsP/+++OKK67A999/H9a/WUGhr3DEEUd0y0bcbrfYCG2F9vf000+LPTJxxoo87ZQV/ddff72P/gIFhe5h48aNsoffdNNNsFgsEqArdA4VlMcoSB0klao1dLqUgoLCTnzzzTfYZ599JBAYNmwYnnjiCbmfdNkzzjgj0penoBASzz33HKZMmQKHw4HU1FT5ng56b+O2225Deno6/vGPf8BkMrX43d577y2V86VLl+K///1vm397+umn4+OPP0ZVVVXzfT///LPQ1/m71njmmWekGn///fdjxIgRLX5H+3zhhRfkDLv99tt79W9U6D/oK7vpKmgHv/32G1atWtV8H21g/vz5IW3krbfewrJly3Dddde1of7SPmlDaWlp4u8pKEQjGIRzrV544YU49NBDQwblXOPHHnustC6RVTV06FD5uT9DBeUKCgpxDWZrScNllY+BwL777iv9e6QOfvbZZ0IFVFCINnB9nnvuuRIssyp27733inPDPtSugLRy9o23vvH+YDB4JlWWzhD7w0Ph//7v/+RrqF7W448/XoLoYCouK4Bjx47FHnvs0ebxpLrTATv55JNDvhaTZqyWM2AJ1auuoBBOuwkHDjjgAAwaNEjsQger3ElJSSEr5Xo7iG53rcFEA+2VQb6iBStEIxiEc93n5ubKXs9zhslaHTyH6Jf9+OOPuOyyy4SVdeGFF6K/wxzpC1BQUFAIJ26++Wbpa5o7d644apdccglWrlwpX0kTpLCVgkK04YsvvpAg+fPPP29Tve4KZs+eLbfOsGLFCvnK/tX2wAoGr4V20xrJyckifsWAg8GQz+fDa6+9hj/96U/tvh6Fq0h9bw+8lq+++koCDvaeKyj0ld2EA0xanXrqqUJh1xkgDFqY0AplB7QRBt5Dhgxp9zl1e6VNjhw5MoxXr6DQPbAFigkjtiHpjET6YFzzU6dObV63xcXFeOONN6Q1SkGDqpQrKCjELRh0f/vttxI0MCDXHST+TPogRaVIA1RQiDZwbbK6R6EnKpWzys2At6tg1YGJqNa3P/7xjy0eV1tb2xxcdwT+vr1qIym4X375ZTMll19D0XL11+vKaxGRrG4q9E+7CRdoD0wysVqof1U2ohCPYPBNEVCKeBJMMLH4wWSt1+uV+zjZg1X0f//736IlEorF1R+hKuUKCgpxC270TU1NcgAEY/fdd5evirquEK0g5Y/r98orr8RVV13VLJ4TSkskFEaNGiX0wNZgkiqUc68H5+2Bv2fvX3tCVnweUnLZO8tqCKt3HDPVGnxcV14r+NoUFPrKbnYV7Wn68MxhSwcZJUwEDxgwAAcddFDIx3LdhxpZGAxlIwrRCAbdDL65trOysprvpzjh+++/j3nz5uGwww6TdUtWC9swdNbH7Nmz+71OggrK4wx+vz/Sl6CgEDXQRzK1dpT06jh7nhQUohHs32ZQwb5S9p2y/5SOfG9j3Lhx8pXVivawefNmqciNHz8+5O9JwSUVlyJtGzZs6NCx4ustWrQILperXQo7r4WKvUwsKChEi93wPGlP50Cv8rU3BpBgZfypp56SgIRBCueXt2cjTG6x0j948OCQj9HttT2bVFCIBMiUKiwsxJ133tni/mOOOUaEPFlFZ1BeXV3dPIWDwowDBw5sI/zZH6Ho6zGMUNUG9mgoKChoIGWdCrx0bkIJ6Wzfvj1CV6ag0DHuuOMOTJ8+Hf/85z+lJ49V744c/p6CLBLe3n333XYr2C+++KJ8ZdtHRwEHg20+B/tn2wOfo7GxEW+++WbI37O6zmkJrLTQYVNQiBa7YY/3mjVrQv6OYon6YzqyEQYsfI72qOvBdqbbXWswQfbee+9J5V31kytEExh0M6H6hz/8ocX9TI6RUfXOO+9IYouMEWonMInGaVIUYxw+fDj6O1RQHsOoqKjA4sWLm39m5eGjjz6S71XFXEFBw4EHHigBh957V19f3zyeg8qfCgrRCAauHDPWF/2wt9xyi8xEvvjii5t7/oJFe6hgPXHixOYewVCYOXOmBESPP/54h5XJiy66SGjw11xzjVTVW//N55xzjpxfvCYFhWiyGwYV27Ztk/MkGPS9/vWvf8m6DjVxQAcrgQ8//DDmzJkjowbbAyuIrIDfc889Mpc8GPy7KKJIe+2KkKOCQl+BwTanHzDA1jV8WreWMGlLGjvtlCgvL4/AlUYvFH09hkHqH3tiOd6JmeCXX365OfCgc8SNOzs7O9KXqaAQUVx77bUSMMyYMUPUoVlhoJ2Q2kgqIXsNWbVgRV1BIVpw5plnytrlumUwnJiYKFXkX3/9VeaC9ybOOOMMEZ565JFHpHrBn+lU8bWeffZZZGZmyoxyVkDaA6m4N910U6evpT8X7Y8BzPnnny8BCMXhnn/+eRHB4nXst99+vfo3KvQP7KrdsOdVDxiCwao7xRNpD1SL5lnCPnEGFdRS4MxlVrapMt0RLr/88k6vgc9BGzn44INlPCATVXvttZckG1hh5N9y9dVXd8hIUVDoazDY1tlWTCi11+LBogiFGDkZhwJwF1xwgYzCLCsrw9dff43rrrtO1n2/hF8hJnHWWWf5hwwZ4n/qqaf8eXl5/oSEBP+JJ57oX7Jkib+goEB+V1RUFOnLVFCICrz66qv+8ePH+y0Wi3/AgAH+N998079jxw7/AQcc4DcYDP6NGzdG+hIVFNrgxRdf9O+zzz7+jIwMv91u948ePdp/zTXXdPhvuJZ5tN9///0hfz979mz5fWlpaZvfvfvuu/5DDz3Un56e7rfZbP6RI0f6r7766pCP5RnkcDh6fC383QUXXOAfPHiw2GVWVpb/mGOO8X/zzTcdPqeCQjjtpr3bSy+9JI+rrKz0X3nllf5hw4bJuk1JSfHPnDnT//HHH3fL1oLBx1xyySVt7i8pKfFfddVVYoe0x7S0NP8hhxzif//997v9nigohBtHH310hzak32g3ZWVl/qVLl/pPPfVUiVmsVqs/NzfXf+SRR/rXr1/v768w8H+RTgwodB/sweAImlDqtgoKCgoKCgoKCgoKCgqxAdVTrqCgoKCgoKCgoKCgoKAQIaigXEFBQUFBQUFBQUFBQUEhQlBBuYKCgoKCgoKCgoKCgoJChKB6yhUUFBQUFBQUFBQUFBQUIgRVKVdQUFBQUFBQUFBQUFBQiBBUUK6goKCgoKCgoKCgoKCgECGY0Y/g8/mwY8cOJCcnw2AwRPpyFDoAuypqa2uRn58Po1HljvoaylZiC8peIgdlK7EFZSuRg7KV2IKylchB2Ur/tJV+FZRzgRcUFET6MhS6ga1bt2LQoEGRvox+B2UrsQllL30PZSuxCWUr3cecOXPw9ttvY9WqVUhISMB+++2He++9F2PGjOnSv1e2EptQttL3ULbSP22lXwXlzDjpb1pKSkqkL0ehA9TU1MiGpH9mCn0LZSuxBWUvkQkyCGUrsQVlKz3HV199hUsuuQRTp06Fx+PBDTfcgMMOOwwrVqyAw+Ho9N8rW4ktKFuJHJSt9E9b6VdBuU4B4QJXizw2oGg7kYGyldiEspe+DTIIZSuxCWUr3ccnn3zS4ufnn38eOTk5WLhwIQ444IBO/72yldiEspW+h7KV/mkr/SooV1BQUFBQ6K0gQ0GhP6O6ulq+ZmRkhPy9y+WSW3A1SUFBQUEhNJRyg0Lk4fFE+goUFGLHVvz+SF9Fvw0yFGIItBN1toRViOqKK67A9OnTMXHixHbbQ1JTU5tvqkc2itHUFOkrUFBAf7cVFZQrRB4NDcCyZZG+CgWF2Ag0fvtNBeYRCjIIVv5Y8Qu+KUQpeK4EVWoVeg9s+1i2bBlee+21dh9z/fXXS6JLv7E/ViEK8cgjwPTpQGVlpK9EQSG68b//ARMmABs2hOXpVVCuEHlQGGHECKCuLtJXoqAQ3bBYgMmTlfMUoSCDUNW/GAF7+6ZMAWprI30lcYe//OUv+OCDD/DFF190qDRss9mae2JVb2yU4rHHgCuuAH75BXj11UhfjYJC9OKjj4ATTwTWrdMSWWGACsrbgc/nx9YKJ1YV1chX/qzQiyCt8J13dv6ckAAkJUXyihQUohOsir/1FuD1aj9zBqaiV0ckyCBU9S/K8cEHgNO58+esrEheTdzN4qWtvPPOO5g/fz6GDRsW6UtS2BU88QRw2WXa99dfD/zpT5G+IgWF6MSnnwJ/+INGXT/pJODBB8PyMiooD4F1JbV46sv1+PvcNXh03lr5yp95v0IvwOcDzj0XOP54YPbsSF9N3IGVPKpJczQDRauOO+44rF69OtKXpdBT3HWXlp394x8VbT0KggxV/YtisNJ3zDHArFktA3OFXmOTvPzyy3jllVfkfCkqKpJbA1vQFGILTz/NbKT2/bXXaueMUllXUGiLuXOBY4/VAnLGLf/5D2AOj066CspbgYH3c99twrId1UhLtGB4VpJ85c+8XwXmuwgGFaRKvfQSYDIBe+0V6SuK2zFPP/zwA+bOnQu32y1jnurr6yN9aQo9qWTcfLP2/bRpymnqZaggI86ohf/3f9oZwxYPsq8UehVPPfWUsENmzJiBvLy85tvrr78e6UtT6Ab7s/jjeTur4n/9K3DPPepsUVAIhW++0RK91CZhYM7EL9sIwwQ1Eq3VpvXpsmJU1DdhVE5S87y5ZLsFSTYz1pbU4bPlxRKoG41qA+sRbrtN62Einn8eOProSF9R3EGNeYoTMBurVzLIKLn88khfUVwGGQSDjGA899xzOPvssyN0VQo9cpxOOEFrizrjDODRR1WQESZmiULsgcUk+rbrS+vQ6PHCbsrAWcefhcE5yUi/7z5lKwoK7WH0aE3ziiy6N94ArFaEEyooD8L2qgbZtPJS7W0GwPNn3r+upE4eV5CRGLHrjFlQGIFBOfH448CZZ0b6ivoF1JinGFX4POss7Xv2/Kk2j7BABRlxgEWLgKOOAhobta/PPafpLigoKDSzP1lsykuxIdGWAGeTB08f9xdkOKw4p7QOI3OSI32ZCgrRidxc0k81zaswB+SEOrmCUN/kkSxiojV0riLBaoLL45XHKXQTL7yg0daJO+4gbzTSV9QvoMY8xaC4Iw+Ak0/WhN1Ix/3731UlQ0EhFKiVwf5x7lcHHqhVMsJILVRQiFX257G/fYbT770SVo9b2J+jcpNR4XQL+1MJGSsoBOG777SYRUdmJsVk0BdQlfIgOKxm2M0mySJy02qNhiYvbGaTPE6hm9CDvCuvBG68MdJX0+/GPH377bedisPdprMY+iHa0PvMJozITsKsibl9X0WgrbCCyz6mf/9bVf0UFNoDx2hSOHSPPYD331d95AoKIdifsxZ+ilmP3ASD34/xc9/B0iNPUexPBYVQWLAAOPxw7WxhME72VR8iZry9vlCUHpiWII54YXVjG1ojf+b9I3OS5HEK3cSll2p9fxwjoKp+fQI15ilGxR2ps0BboXhSmBQ+FRTiAnvuCTDhSB0NpYKvoNAMVr8ZkI+a+y6OCQTki486DUuPOLn5MYr9qaAQhJ9+2hmQz5wJHHQQ+hoxE5T3haI0xdtYGWOfDUXdahvd8Ph88pU/8/7DJuQqkbeuYvFioLJy58/7768C8j6AGvPUc3FHMmRMRoNG78tJkvv7hN63eTOwcePOn6dOBez28L6mgkIsghoZ7CPXMXYskJ0dyStSUIga8Kz6Zm0pbv9gOVY88BQufPYOGP1+fLr/sfjvOX9r4YMp9mf4oEbTxhgWLgQOO0xjKlIQmbo+iX3PHokZS+wrRWlSVc+ZPrSZylpc0yib1m4DUyUgV4IYXcTy5VqWaeBAbcYfxRIU+gRMXnHE03vvvdc85olITU1FgqJ3Rp+4Y3ExcOihWnb288+B8ePD8zoKCrEOjqojk+TXXzWnidUMBYV+GnzzXGKVO9Figs/vx4L15Zi3shhLt1djxqJ5uOjt+2Hy+/DGlMNx+4wL4FhZimnDMzAsK6mZ/UnfVrE/w1dIZGDu8Xhwww03SCFxxYoVcDgckb48hWAwyUsfjAnf6dOBDz8EIvQZxUxQ3peK0gy8h89Iat7wHFazbFqqQt5FsOLHjFNFBTBqVMQWd3+FGvPUE3HH0E4J6X1MzPUWvS/YkXJwX4ELRgpVrV0LDB3KzEmvvI6CQtzB7QZOOklr7aCdpKdH+ooUFCKugVJW55Izhayuepcbbi+Q3FiHGz94XAvIJx2GGw//M6wGI6obmvDD+nKYDAY0enyK/RlGqNG0MYIdO4BDDtFYvfvuC3z8saa0HiGY411Rmjcd3VGU5ialhC96gMJCbYFzofOz+eijiC7w/gg15qnrcPShuGNrMblkbxMuv/9S5C9brDFJ5s6FLy8f2yucKhmooBAMirlxRCArGGT7fPABMGVKpK9KQSGiI84SLEbsqGqQxDHPKnZZ8fSvsSfh3BNvwVErv8Fth1wIv98IT5MPZiNQ6WzCsu3VOG73QZERMu2nUKNpoxR5ecBFFwHz52vaJMmRtYeYDMqVonSUgpVxVv02bACGDwc+/ZQ7UKSvSkGhU3FHirol2cwtKOy9Se9rMSs21Y4kgwnHzL4C+csWosGRjNJX30FTSi4+/XJ9dCjAKyhEC5hk/MtfgFdf1YQP33pL0ydRUOhnCNZAGZntwC+bK+V7XRzK7m5Eg0XTIvll0AS56WCw7vYBzPHWujzYbVCKOleiqJC4K0VEhV0Afb677gIaG6NiekfMCL3pUIrSUQoK7h15JLB0qZZ5Yh95fn6kr0pBIeLijq3F5FIsRhz5wHUY+eu3cNsS8PhVD+OFuhQ8+21bBXj2Bj42bx0+W1EU2dnpCgqRws03sydHc55efhn4/e8jfUUKCrsE7uPcz1cV1bTZ1zv6XbAGCgNr/uzm7w3AIasX4KtnLsD44g2d5rhYLf/3txuwplgFfn1ZSHzttdc6LCJS90e/FRQU9Ok19iusWgWceaamUULwbImCgDymKuWsWl166aWiKP3ll192WVGaN4U+AMWqtm/X+vw++0yrlCsoxADCLe7YWkzO4qxD8rZN8JjNeP26h1E3ZS98t6ZU+teHZTlEsIc5ALfXh2pnEzYHHLTxeVplQ1XOFfoNPB5tigfBwPyUUyJ9RQoKvdrGpDOiDh2fi+LaRhFqI0PLaDAgwdKSLaVroDS6jVi+o0b6yd0eHw5e+yMee+8eWHxenLr4U9xy2J/afX2G+E0ePxZtqcKN7yzDHcdMxNj8/jFtJZKFxK+//rrDQiKLiFdddVWLSrkKzMMAKuBTIJQCyGTyPvooogkxE5QrRekoB4NwthOUlGi95AoKUYzWgmusTP8pTOKOwWJyrJavK/Ni3vkPYOTGFfg5aRTqAlV0i8mAjWX1sFtMyHJY4fVDAnSHzSSiPE0en1TOd1Q3SBJBBeYKcQ/S1d9+W+v1o+q6gkIMI7iNaUCKDUk+s4ivfbq8EG/8vFn2eSLJbkF2kg0JaXZhT+l7vsNqlnPg1y2V0kPOwH3m2p/w6NtzJCB/f9wB0kPeGaTvvNGLxVurcOUbv+Gvs8bg4HFqQk4kC4mqiNgHoKCuHpBPmgTMno1oQ8wE5UpROgpBHhRHn+lB+ODB2k1BIQYrFeGqQDsCYnL+JYvxmz0fDU0eJCWnYMWEvVFZ4USNyyMCPUlmI+wWMxrdXmwsrxeHK8Vuhtvrh8vjw3LUIC/FLkE+Z6czkaBE4BTiEmyD4rlCWqHFogJyhaiEhwHy1kqU1zch02HFlIFpKK5zhUzsBrcx8bGriupQVKOppjtdHjAeNxmAnBSbJGjLAs8zeVCqPD/3/POnD4PL7UNpbRNsZgP2X/0jHnnnblh9Hnww9ne48qir4TWaunz9TV4/tlU68ei8tSjISMDoXFUx7y2oQmKUYf16LSCnGDXPFo6fzczc9Qk6vSzGGzNBeaQUpcP9AcQs+Hlcc41G/aAAzwknqPdKIerRWnCN1WsqrwdXI3o7MKcdHP3D/zDz4VuQfOTF+HjW6XB7vEJRrG/yiinRTMQpMwJ2i1Hud/t9qG5wI8lmkftIby+pc8le+PUaH/Yamo69hmQoG1OIL7D96aijgPPOA554gsIPkb4ihX6OUL7NF6tL8Px3m7CpvF5ajQi2PeWn2ZHusLZJ9uptTFRMX7ytWirkdY0eScLq7i2Ts1VONxrdPmQnWSVY31DmxJjcJKwrqcNv26tE88Tr82G3pT/h0f/eBavXgw/H7I/Lj/5rtwJyHW6fDyU1jXhr4Xb87fBkdZ70ElQhMYqwYYMWkLPFdvx4YN48IDu7Vws6OZq+Yv8JyvtDRS2mMGcO8OCD2vfV1eq9UggLejPR01pwTVda5yg0Kq9T2K2rFehQ10XwPorE1bk8SLKbkWyzYOCn72PGIxpNylJVgXWldWhw+8QBa4YfYjcOn0kcNAbe/gB9nU4Tn8dsMKDW7RWRnpJaF57+cj32HFLZqweCgkJEsWAB8Ic/aDPJy8u15K+CQgQRyrehmvb3G8qFwZSeyPPDIklW7s0MtqePzBKhzuBkr8fnR4Pbg8p6twTbLrcXTrcXbo+2xv2Bm9Ptk6C8we1FSoIZvuoGjMhyoNLpwm9bq1BU3Ygkqwnn/fwerF435o7bH9cee62m29wDc3G5/fDafFi6rQpfry0Vv00VVHYdajRtFI3TPP54gELfY8ZoAXlOTq8XdE6c1DuTplRQHkUVtZgBM4A33qh9/+CDWHfUSeq9Uuh19HaiZ2ulE0u2VUnFubaRc8l3jkDjV65dViMYWBdkJHbrutISLKKAu6XCiS3lTnGo+Dq/37YYlz36Vxj9fry991F4aOZZaGjyQaur7ASPbxZbeF3i9DVXTgwwGQ1ItJpQXOuSiozVbILH6xMRoN4+EBQUIoYlS4AjjgCcTm20JpXWTd2v/CkohNMPXFlYja/WlEmQzdOjtsEj+7fZBKTYzBJU85w5bspASf7qyd4jJg5AvcsrlXX2g9c0av8uFHg+sHe8rtGL+kYvvltfJm1MvI7C6gYkWky469w7cMo3b+Llg85Als+A0tpGON3dDwT5Lyrq3VhdVCuK7NlJ9l6v/ikoRLSQ889/amM133kHGDAgLAWd+StLeuX6VVAe5opa3OGVV9gso31/003wXXGlzFZW75VCXyfFuKa6WkXn8738w2Ys3VEtwazFZER6ohUjc5Jk7BnBIJrK63y+7lzX9konPl5eJCq4pJlbzUYJ+EeuWYw//fNamDxuzJ9yEO76/Z/h9fjbBOTB8Hp98JHDHnCW2GNIwR86cwzI7WYjGjwMzI1ITbQgK8nWqweCgkJEsG4dcNhhQFUVsN9+2ixyq2aXCgrR4gduLKvDT5sqJSAPrm4Tbi9Q7vTAbARKalwS5I7LT5VzgsJslfUubCirR3GNq0sFbQp9ujwatb2o2oWhWYnIKi3ECl8Sqhs9qHUBd+11MrxVLjQGqu09Bf95TYNGm+fxs3R7lUr2KsQc1gUXTNwe0ejRJhuMRcJH81HPYkl5vSTTyFJxdJF92XqCTjD0gs6G0srYCcqLi4vx17/+FfPmzUNJSUkbWofX60U0oSsfQFcqanGHDz8EzjpLoxQy63T77dheqd6reFv/sZAUe/XHLdK3t6G0vtMquh5IU9CGATnVzI0Go1QWSDOfUpAmgTmrF+wJdFjNXb6ustpG/LCxHNVOt1AZWdXOTrZhQukm3P3cDbC7Xfhu9FRcetilcDX5pG+8I7Banppgludi32CC1SiCb0xI8LmpzmuiAFyCWa61tw+ESEPZSj8E+/wOPVQbq0lF3A8+AByOSF9V1EPZSt/5gUSV04UfN1agvrH9pC3BPd5r8GNVcS1yUxOkB5wBelFNIxqb2q+Ot/dcAZk4jFnxM+559gb8a/+T8fC+p8LtA9xNvfcZs8i+ZGuVCMwNoKCoy4v5Kzv+W2MFylbiH+uCCiajPDU4bc7l+PDCG/BV3TB8tqJI/DKyT8rqmiSVxoIGb11hXwZP0AkFFnSaPN7YCcoparBlyxbcfPPNyMvLaxO8RRu68gF0VlGLy97c99/X5saeeSbwyCOijBuP71V/X/+RBoPnJdurhKIXimZOoZz5q0owODNRNtSO2iWCA+lJA1Olf6+kthEZDpME4ryfjldaQpr0BE7MT5U+bs4Fd7Syk9bJOlZNvl9XLn2EfISMMPNqz5//6/dIaqjDzwUTcOHRf0OTydJpQC7XK/sPkwNGWEwmDExPlAqGK1CFd1iZUGAgniDvS28fCJGGspV+iJ9/1vr9Ro7URN7S0yN9RTEBZSvhRfBM8FWFtVhTUhtw6DsHYz6qpC/eWokqZ5NUx5nAbehBRZv/Yo8NizHnzdtg8zRh4vY1APf7Hoi6dQSysrx+vyQdSgwumI0GLPY4EQ9QthKf8AXiGur4vLtoB8rrXNjd3ICTrj8XGds24cjHb8V7lz+NEqdHtHkMfgPqXR4Y4Ee5AchKsnapzdYRmKBDP5PFodZgQYdthTETlH/77bf45ptvMGXKFMQCHF34ADqqqMVtby57yadO1arlAUVcR5y9V+FArK3/SEJo5gu2YNm2atitWmCakWjFiBwHMhw2yXBzE2bPNgNmfc211y4RHEgbjUYMz3agvN4lATiD2kSrWZJGS7ZXy3NwU3/k87Uh7SQ4AVVe1yhVk1qXW15f97X8ARrjM3sehyJ7KuaP3BsNZjv8XQjI9X/PiviBo7NlXA17xwem2SVRQMo9//5EGylZjmbHojcPhEhD2Uo/xHHHaQlfquLmqlnJXYWylfDCETQTnFMwquq7FpDrYDBeUe+SijZ3aquVPlP3g/JpW5biH/+9TVhX34zaG5edeCM8vt7f75lI4NnT5PWJkFydyytMyHiAspX4C8a/X1+Gz1eUiMYC/bL1JXXIa6zGkc9cjYyiTajKysPd59+NBi+Qm2zDjupGsencFG0WPAsyRTUu7Dk4DetK6ztss6WvSV+QATz9zOCkDn0y+pMjs3uH3dUnkVJBQUFMKRF25QPYbWBqs+JyXAvWbdsG5OVpgjsMxM8/P27fq3Ah1tZ/pNgbVKZ94fvNUim3W02B9QSpPDP4Jc3cbDRKtcJh0+jbnbVLBAfSdJBId6fTwfvpaDFjajIaZQ3zIyqsaWzXTniNDNTrGt1YtKUK1c4m+TeskBNpDTVwmaxosGp0x/cmzOz2e8LzYPqITNx3wmRsqqiXZBpt2B5gDQzJTAz0wdvCciBEGspW+gkaG2VqR3MQToE3hW5B2Up4kZdil2p3RV0TGpo8zYnXrsKlHwyBfZ2tR93F1K3L8Nx/b0Wi24Uvh+2Ji4+9Dh6/qSci651Cvzp/4HubxYjK+vhgYClbiR+sK6nFKz9uwRerSqQvnH4iNR7chUW485UbMKhsCwqTs3DmyXeiyJWAATY/+B9HD7IyznXAhBMLHlsrnBiV7ei0zZaBOosz9AVZ+OHjyVBkQYT+F1mXB43rHf2FPhkA+vDDD+O6667Dpk2bEAvQPwC+0fwASI1gXxC/8mfef9iE3IgKlzGg4YIizZZf+XNnPbCsBDITyq/8mfczOxTq3wq2bAH23Rc47TTA5YrZ9yrSiLX131cb61Nfrsff567Bo/PW4qHPVuOO/60U5XLSzHOS2dPmgdVkbO73Xs/+cbdH+sDZH6TTt4PBjZLiOHq7BCnwXp8fKwtr8NPGChTXNiI1wYL8VLtQxEkLZ/BNRd21xbXIdGgVd742f8cMa3mdZid00qiy/uWaUqwrrhVxHVaziSSXEy++cQtefv0mpDTW9fh94bU5m3ySHGCy7E8zRuCqw8bg6lljMHVoBlITrFIxb21jB43r/oiPaISylX4AtkCdeiowfTqwcWOkryZmoWwlvOAezMDUxoRoU/cD6mDQxepuTL7XtuV4/k0tIP966O646Pgb0Wiydjs50B2wNYq0dX7lyDZO/YgHKFuJH7/x2W834du1ZRJcF6QnCIuwflshnn/1Jowp24KipAycetrdWJ+ci/omHzZXNGBLRYM8jn4k9R3Intxe1ShV9k9XFIveQ7DfGAr0x1icYYtjldONTWX18pVFR94/Ijs5dirlp5xyCpxOJ0aMGIHExERYLC1pzhUVFYg26B+ATvsmxZWVOX4ADDIjOeKrq3T0XRKsKynRxHdYKV+6FKirA2xadS6W3qtoQCyu/75kbyRY7LLBMcHEQFuvBjP45mM47zvRpmkTUPyMgTaD6lB9YcHtEnydT5YWYWu5E1sqnbKJU3GdiSlSC2W8mMUEgx+oa/SII/LjxkoRgqMKLQNfVubZx/3rZh/eS9kulXPOCHcFOVg2twv/eut2TCpah/KEFGQ6q1FjT+pRT9+QjERRv9UPByazaJu8Dc9ytGtjOfb4qAIoW+kHM2PJtnrvPe082bwZGDYs0lcVk1C2El5wD+aUCyZpewKeTvqu3JPdeWzpZjjcjfhmyBRccPxNcJnDP42AZw//Zp69ZpMRuUnxwXBUthL78AWKjNurnMKgTHNYxcbKaly4+rvXMK50E4qTMnD6aXOwOT1f2ClMhrEoQ/+OYFVbxhdKkdAPr8+A6gYPvltXhvF5KZ222TKWGT4j9NSfmpqa2AnKmaWKRXT0AcQCHb3HImykFR5+OLBmDTB4sCa+k5kZc+9VtCBW13840Jq9Uel0Y2VhFYqqG2QdM6j+ek0pDhidLXR1Jo0qAwE06UdjByRjQn6qtrn6/e22S/B5Xlig2UlBRgK2VjUI1ZyUdd7HdcmKs91klGoAFWdZOWfGlBv24IxEWMxmeV3S51cV1eL79aVocJMItRNmrwePv38v9tm6DLXWBPzfybdjY8bAHr03VosRQzMTpffdEeJw6IsDIdJQthLHoAFedRXwwgtaO9TrrwMzZkT6qmIWylbCC4fVLNXirRX1EXn9l3c/AiWOdHw9bHe4LKELIr0NnqZslcpJtklQPjnXipcQ+1C2En1i0t19/PZAkZEaQ/ye/huDbcY49844WxiKT+x7Mja08r+aE2N+6v34kWgxwGA0iFYimTBJViMqnG7xHXOTOrczvVASLvRJUH4WhcFiFOH+AMI5P93RExE2pxM4+mhg0SIgJweYO5cNOb3+XvWKGnyMIJbXf28jmL3BgPy3rVXSr8dRZVyL3EAZhP+8qQJ7D8vE1KHp0kvN+7hez91/uATKTEy119tzyPgczF2u2Qnp6Eu318jIE44bo7osv1pMBqGia73ZfgnKK+rZYy5DBSTAb3J7JYjn84aiHhr8Ptz38SM4dN1PaDRbcd6Js7F8wMgevzfJNjMqG9yYNiyzXQ2GaNqPwgFlK3GMO+7QpnYQzz4LHHtspK8opqFsJbxguxJV051UausB6M4EtZV3CROK12NbSg6qE7TCymej90VfgWdfZpIVo3OTYYBBvu+tPtlIQ9lK7yPYhy+rdeG3LVXYUFYv2kAkRHFCDH2x/UZktfDt+e++XVeK938rxI6qBlAaiHFKflpiyMfr0IuMWQ6bMBgNDQ3w+IxSDW8w23DVUVe3vL4g2wu2Q5fHD6PBK69BdmKD2yf+J4s+v22vEr8zkugzSWw6xe+++y5WrlwpP0+YMAHHHHMMTMyYK3QJ3aWjd1uErakJOOkk4JtvgNRU4NNPgdGjo1cNPoag1n/LjZWUdVbIGZAzkCYSG9nL7RZ6uVN6yOuw15B0obSzgj25IA0F6awkGzpsl+D3vJ+j0xZvqxZFdZ9Iumk7M//v8fqlIs6Ann3qzLpS0Z1UdfaSb6tqEAofN/CQ8Psx+/N/4PjlX8BtNOFPx12Pnwom9vh9MRshfzNfv79rMChbiUM8+igwe/bO7//v/yJ9RXEBZSvhCzTY4sRbT/XBuhuQTypcg5dfvxlbU3Nxxql3oiohBeGGfsrwuCFtvbzeLT23B43NwenTBsdNWxShbKX3IK2By4qwdFu12EtpbaP4UvTjOd++tM6F37ZV4as1JZgZWEv07fnvnvhiHb5YVSpBMEMSrkGyMiymyjaPD4YjUGSkf5hvcOGvD12Gn4dOxux9z9QqKV2EjK71U1DNLz4XmSHZSVYZRVvezQkLMRuUr1u3DkcccQS2b9+OMWPGyH1z5swRRcQPP/xQ+jxiBZGs8PaEjj5xUAp+3lwh4wOGZTmQnWwXY9Crii0CgCVLgPnzgYQE4MMPgTCMj9hlNfgYRDyt/12FI7Cxcp2W1DTCYjbI2Bk6BBkOi2RZ9ZncrF5TiINKma3XamsqN2nohTUNWLBemxteVu8S6mG10y2UJamAkyJuMogN09UornVJvzr7x0nXo03Uu71ocvvk9+xFag85dRU4atU3EuxffeSV+GLE1F16X8wmZm0NOHT8gLhb/92BspU4VVp/+mnt+9tuAy69NNJXFBdQthLeYsGOygY5p/oiLN2tcK0E5CmuetRZE9BkastsDAf4t1mMBmmbMpuNaHB5ZGRUpsMqjMu6ulrEA5St9K6dPPz5WgnIaxrcqHO5hX1IPYLCahcyEi3ITU1AeqJFKugUZaOPxUTPf37cLCxIKp+zbZBBMYkoHp8XBphQ6/Lgi9Ulwnw873fDWvhCepHxt5VbcO0jV2Ls1lUYULYDT+x2BEqSM7u35k0GeX1W3MmeJH2d7Ytc9/0iKL/ssstk0f/www/IyNDoMOXl5TjzzDPldzSKWECkK7yObtDRZWzAD1vww8YKlNY1wtXkxZpiTamZIlp7DE5vK8K2115adZwUdirjRpB+H0+Il/XfG58/FTB5+3EDZ782acGo0Sj0oXSHRUadcV/kyuCGT0r5nkO0tTo0w4GfNpZLNpOb5x4F6cIImbeyGE9+sQ5rimsloOe26/ezZxxItFkkuBZF9SavXIPR6Bc6OpMBWysbRcGTc79ZFaHSul4c7yjVxkPgpDPuwx7bV+H98bveF0uV+dxUO8bk9d+AnFC2Eoew24GvvgL+8x/g8svbThGpdGJjmda3SzHDQQE2jELHULbSe0UWTuf4cGmhJHJZLPDU+7Glol4ChnBjQtE6bWqHqx4/DRqPc066Fc52Ci+9DSapGYwk2sySGGdrGGnHnHTC9yW1z7i04YWyld4pPvJ+jiP7ZVOFTKghhAZuhEyi8Xh8UhTh6DH4tckFbo8Pq4uq8d3aUpTVa22IfHxto1YptwT+LdsUTWQMNrrxw4ZyKTLedOT45rOAXyekGHHAA5dj7KblqLYn4cxT7uxWQK6DI9SYEEhLYIXeIEF5akICpgxMQ6TRJyb31VdftTAGIjMzE/fccw+mhyH4C8eC3FBWF/EKr54pWrq9CrnJPlQ1eCRySE+wCMW3WeTK7cGj89Zh8dYqUZTOT+XYgMC8TbdXgiL2bjRfL5Un9c/mgAO6/d607hdp7/fdod/Hy2EQi+u/p+jos9cTWou2VmL59mrpnfaSQm4yBTZoN2oa3chNsWPasAwJrjlX/KIDh2OvIRmSPb3t/RXYVF4vjgPp5kMzHZgyOA3v/bYDxTUN8voGffyM3y8OlcvThLREizgcXGMyb9bHqjQDd62NI8FqlHFppbVNzbNaiVAVktSG2uZ+Pwq69VTULRjsa2IPlox5s/VNhSRa0V9sJRpZWr3+/MHnSnY2cMUVLX4dnDiuamiSKQipiRbsMzwzJH1RoSWUrewa9DOJX5fvqGketVlY1YjNlU5UOdsfj9RbYA/5f16/CamuevwycBzOObHvAnKCLDJWKbdVOpGdpPXq0pekn8t9IF78MGUrvVN8ZPGAATMZFTwZeD54myi4u9NhYsvfxnKnJHvoi3HUGOnsjD3E52qmkGv+Gq1M97t8Pu0corjuJ8sKMWNMNoZkOiRp662pRd4ZJ2L8pmUSkJ9+yp1YkTu8R3+j+IheP6oatHZJ/o2MP4rrXBHX7OkTk7PZbKitbUuDqaurg9UaebpAZwuS2fsKZ1OXBdbC5fjwcWPzkvH+4u0i4c+FJZkmkxEpCRYJyA8Zl4vPlhVJ1ZCBCCuK2vWakJBulv7abRUN+GxZsfxt9kf/jsxnHofhk09hnDJ5l5gCnf2+O/T7eDkMYm399xQdffYEE1qsQlfWNwltKMVuxubKBuk/YiWba5WbdZLNJLSndaX12HNIRnNAPufjVRK4cz3rwm5c479srpAxadzsg9nm+hnBzV/mnUtQrvUupXLdW4xyP+1x8dZqcU46oynOWvM97v/wYVxy3HX4ZtgevfK+6ZZPG+Xe0p7AW39Bf7CVaGRpdeX5Ozq7Wv8ub/VSGA+fheLZd8Jz9rltzjmdAqknjhkQ0AJrnG7MXVEsAlun7l0gQVLr19IR6nqI/iIgGklbeeKJJ3D//fejqKgIkydPxmOPPYa9994bsYLgNjoKbPJsYHKWzj/XFQOJcGNcyQa8/NpNSGusw6/5Y3D2Sbeh3ta3AQFNQ59K0ujxyRlErZWdAsDhT0z0BdS50hLt7eWhxtWW1rqwYEOZ+Ft7D0tHcXUjGjxagN3MJGnlPNE/4xnCKnith+NlW/5e12ngl9Z+l1cCex+Kaly45s3FSLFbUFNRjYdfvhnjtyxFjTURfzz59l0S1ZX3IFAxpz85fUSW7AEdzSnvK/RJ6HPUUUfhwgsvxL///e/mjfvHH3/ExRdfLEIL0YL2+p3Zk72l3IndB6d1f953Lzo+/PfvLNouGyj7T1lhFJVojw9V9U0StBTXNmLp9moJdJg0CL5efp+cYJHg6L3F25Hyygv4v2fvkt99+8zrGHDb8HYdvM56wdkvMn9VSYdMgu6pwUfeOPrb+u8pOlobnClJIQ3+bkCKTSrdXIP8nC1mIzaVO2U8RU6yXWhENY0eLNleLRRWUtZpD89/t0nW9uB02oJRXjPZboTPx3FlLtnUJWtr0G4El71+EDR6/HC6SJnSqHqsBNBmBqRYsbGsQahTnWH6pt/w6Pv3web14PA13/dKUM6/hDbMfixmjcfmpcRtANFVxLutREKHo7NEcFeen+go6Rb8u8zN63Dt3Rciub4G5f96AY9n7I2JBek4fDdNL4HX88nSUIljwJ5iEh0JVmM2ltZhSFaivBa1UPYamo5xeSnNzLXW10NGDDcDVj/6g4BopGzl9ddfx1VXXYWnn34a06ZNk3FTs2bNwurVq5HDiS19iJ4UOYLb6EZmO7ClUhvHyXNAFNNZQe4D2rrTYkeDxYZN6fk46+TbUdfHATnBo4+BE09QVg79PgoAuzBpkCYAHC895epc6TwOOXQCp9aUBI2rbcKqwlopSLq9XmworcfyHdXCaKRv5e9kXfG5SRHvQJonJAyi56M9f3FtkzAYD1y/CNO2aGNnaStL8npHgJqV/ySrSdomGTM5OplT3hfokyt49NFHZSTBvvvuC4tFC8Y8Ho8YwyP6iJQIo6N+Z25OnFO8o7pRgoXWgXm7876DsKuOD6vwVDtcU1QrCs2co8zAgiIF3FMphkX6+ucrilDX5JbnYpDTGqT+0tgOX/kdzvzvHLnvu+PPxX+mn4CM7zaFdPA66wWnc/X895tkQY/ObZ9JcOHvhndZDT5eDoNYWf89RWdrY/G2KhH74JiJJi8zpqSea9uOw2bBoPQElNU1yVpu8kJECClIeOY+Q2QdsoecgTwddz0g1xEcS+uBefNd/pY/0xZMJiNcbh9qGxvld3TCuhKQT9mxGv94+04JyD8avR9uPvRPPX6/DAFhHdqtUKh8Wl9flsOKctLnpee9/wbm8WwrfTEGs7uJYPYAvvHzNmwur8fI7CQ5W5gA47hC2gxnNP9nwSaUOz3STsKza1imQ6iI3MdXFtXI69Ch4e/s2wtxzr2XSEC+JH8Mrjz5ZvjL6rGhsgGrimtx2cEjUeV0i/AobT09UatSsZeXNsHzidoP/F1dkwkWkwlbKpz4cWOF0BlHD0iWs4/JOP01eZbuqHJKhZ3gGEW+H/EuIBopW3nooYdwwQUX4JxzzpGfGZyzJ/fZZ5/Fddddh2hnjzCI57+lz/H1mjKh1nJts2pG1iF7YPsCm9PzcfLp90g7VK3NgUjCauYQNAMKa1wYmp0UdxNA1LnSeRyypqRW2IPcXxkjaONqvSKGy0JGvcmDjeV1XU5YMSbpCfytfubLUUj3r0degU1p+Vg0cCx6AwyP6I9S8JfJhqMm5UcFU7FPgvK0tDS89957WLt2LVatWiX3jRs3DiNH7hr9oDfRUb8zq3p0gEjjoBgBqeKhKryJFhO2VjhDiiOwMsC+Hd5H6gb3u2DH6tUft8i8PBqDThthX4XQRkpqcfweA7UKuN8vlUZeI0UUdLDayGvbWOaEScJ0rV/IZt75tzhdHmwud2LP1T9jzlv3wOj3Yd7+x+CDky5ButUs18dDjqrWwbREUoR/3VIp6titIdV3u1l6svYdntkhk6CwplEOTDpJ7c2YjrfDIFbWf0/RmU4Ane51xXUaRd1klJ41Ot60F4I2wJ8nDkyVgJVr4Zzpw6SPiKCoG3/PddIapKIHB96Mr9sbX1PdwLFnBqnM0SZoK105XEaXbsLzb86Gw92Ir4fujiuOvgY+Y89HqJgC1XFSdtlTz8CcgdAeQ9PlfeyMbRPviGdb6YsxmN1JBM8ck4PPVxbjy9UlQlndVuFEndsriSu2hEjTk9GInzZVytnGfX57ZQPSHVaMz0vBiCyHiGOR5TFjdDay6ypx7E3nI7umHGuyBuPck25FvdeClCYPrCaTiANd/9ZS6RtfHRBlZDAuVbqACCSDcQZLEhx5fSLAxZ85HUGSBfVNcobxcQeOzpb9g78vqnZJcovmT/YN2Tncb3KSrFhfVo83f9mGaw4bIwrT8YJI2EpTUxMWLlyI66+/vvk+JksPOeQQLFiwALHAHuGaWrSVyeJGuOTQ0JhK/JZOejgxqnQz8mrL8PXwPeXnbWkDEAnQCixmrYeX/hYTxRQ4JYX/yEl5cZfAUudK2wQvQT+IxZLcZBvWltRKgWR0TrJUyOmL0SfXzx3WRMimaFH8CCOsHjccTU5UJqbKz29PPLhXn5++l9WosWKYmDtoTE677Vh92QbVp7X6UaNGyS0a0VG/M50RqgnSGdB6jSxtKrw8GN7/bQc2lNW3ydry9x8tK5J/S6eGwQSDFaqgc9GT1rtgQwWyk62YPChNqhQrdlRKNYCOCSvRm8vrxJGnOdBhaQ39Ph4uI7KSUFTbKE6MNWBUNDAusnEbluGpt++CxefBV1Nm4m+HXAzP6lJJNPA5Smt3YHJBKvYfld2cif51S4UE3akJFmyrbGy+bh2kBfM621u0wUyCsQNSOpwxHW+HQays/56iM50A2g53ca5FBg0ZiVZJNlkdmvCaJtpmErFCZiz1WeQ6WCGXGeJNXqGsE3rLBls4uOR0elRHBwVV3klvZXKA7R9dCcgLqorw0hu3NPf8XfyHG9Bk7p4Qm36A6ZZhMmnOD0WtuA84bAx2LCLwVl7vioqepmhAPNpKX43BpEPBBOvLC7bI10lMeBkMLRwwJng/X1EcqEx7pGpAgR4GJsLmkKkIBrhcHlmvXq8WqPO3HFXIszA1wSyvzXt/XrQBj//rauSX75A5yxeeeTecyanw+5ho86HJ6JcAnBMVxueniD02uP3SSsWEMumDDKobmjR75llpcBm0qQQpgYSEAVJlb/JShwJYUViD6SMypSJDiiXbYUhdLyupQ1F1o/ytBJ+D18t94+SpBcixI67Ql7ZSVlYm855zc7W2BR38WQ92guFyueSmo6ZGY1ZEij1Cn+aDJYXiW8kZYjTIY1gcZ5I0nBhZtgWvvHYjUlx1OPuk27FgyCREAnxHbBatjYto8vhljBXFUcfkJGPcgPDPR48U+vO5EpzgZYzBZC6LgBxPRl+EiVn6Rpsq6mU/ZYVcty36X9Si6ou2Dj0gf+rdu1FQVYzTT7sLZY509DZo7cwJMxFFX7LG5Y6KKVthC8rZc3THHXfA4XDI953RoSINRwf9zlyYzJSU1LhkYTMLH1zh5cbOTV4PzoOztqT3aaOdXOJcaGMn/CitbRS1z8mDUoUywrFlpPLyoCFVj4JszRVAnx9ri+vlNTk6KrjSqIP36X/HoRNyUe5sEhEdCuakJJjl+uh8XfrdK0h0u/Dz2L1x/XHXwGswSR8RXyMtwSSPe+WnLVLF0HvEMx02Ccj5d+rXPaUgrTkw579l4MTDMhRa9oq3nTEdj4I8sbb+ewpHJzoB3OhTE6yyyTMoH5HjQK2L9tAkAWldoxdpDguKahqRmWSTxAyhM04yk6wyN5UCPHwurrDKerdMGGgSymvn10iyCMV86I7wOhl8dAXn/fwucusqsDJ7qIjw9EQVl7kyOnwiJGQxooBMGb1/1myExWyS0XDs0wq2kf6E/mIrnSFUdr57Ohw7HYol26uwbFs17FauL7d4IKSc08kgPZcVEVanWQFnMNIUUMXVwT2dN31L5xrm43mWMLjm+EA6dPxHrKDs//MnGL5jPUoc6Tj7tDtR7EgTzQevV+tZrWvSxH74dJxvS8ZXM0uY43AaNLo8X5NgPYZnWlqAFSbX4PVLQkBL5FGUyCNPmJ+unbd8L9yBijt/FtaM/FsfrDBIEM/q6omTdiowxxpizVY4C/o2zqaPAvaIHsxXOV2SoOF5wDOFxQ4+C/2ycGFE2Va8+toNyHZWYVnuCKzIGYZwg3+TtvpDTPvw+8WPc1jN4KlKu6F/yaR4NFB4+6Ot9FWCt9FtkqQsJ9Ek2S2w2M1yJtAnY4JzNVuS/IGCSuCM2VRWh5oe0tG7C4vXjSfeuwcHr/8ZDWYbhlbuCEtQrvtnA1LtIjhMVuau6rf0BsLmAS5atAhut7v5+2iHPm6svX5nUsspZkbqHgUP9ArvxPxUCaBJzW6dtSUt9dPlxZKxTzAbhXLH3zIwZ0DLbP7Xa0plg6xt8GBtcQ2WbvOh1kWqLWm2Rk14xMf+DI/8ex4cdHKyknceSLw+bcafQQQ69huRJQtNHzdTUtMoAlp07q4/7RZc9f2reGrm/6GBiux0yoQ26BOnh05QXaNHxLUYNI3O1RbgtkqbVDipjM0sGw/F9ETNUPjaQ7Mc8hoDOOagg15xHQzA+bPuhPJrPAXmsbb+e9tu+LkzGbWutA4T85OFBqu3LHAtrC6qlXXBihlZI5MGpTUH5E99uV7WFxNAFJ2pbeR4Fq/QDmUmpsEgNsMMf5te8lZgbd1qMUrljeuTDn1XXa87Dr4ATqsdz+15DGrsGt2ruwjkygR8D0rqmuQ941xYgtdFp5ABzrRhmXHjEHUH/cVWeiq+09G5tKOqEYMzEyTR9c3aUny0pFCcBxECNWkOOM8rBiR2q1Eq10wA6RUPCvi0VsDVpxYEgz/yjLCbfZLUYuzsD9gXr+jFvY6GsbERX4zYC+tT81rodNY2tQwLqOPQRnGX1fhAsozPyekIfAX9cXQgKQDn9mlVHZ6NLq9PaId1Lo5TZBDuh81kgMvtl7+f1Xc+B/cOPivp9rS/+StLEKuItK1kZWXBZDKhuFjr39fBnwcMaEvFJs09OCBipbygoKDP2SPBwbzdYm5mg2jsdS2REy4ML9+mBeT1VRKMn3nKHc1jNcMFrfVk5/nDfYC3ZtYWqfoeH+r8bhgNRkm40debNXGA8sHiFA6rGTaTUYJu7qc6NZ3fV9S7ZR9t8nil+BjIWYlvRr2RvgrIzV4PHnv/Phy67kc0mq0474Sb8cugCWF7PavZJH8r4y3GNrui3xL1QfkXX3wR8vtoBd/kUP3O7MMmJZ0fyoyxOdh3WKYE4Ho1g5v5I5+vDZm1ZdaJC74mMHpJerwtRgmERTihyStGwBFRpIqwQ5bZGtoDq2oMsgUG9oYbxRlpbPKIoiEPHfbm0XKqnW65DmY59U2VC+fs6UOx/+gsrNxQjPmbaoQWzPmBD826UK5LHxNlggFNPq8kA5hZZv8eq/X7DM9o/ptY4aQzx0o6r4sO0o4qu/wNrHCeFFBf72qveKQpIuFGrK3/3rQbVuTW6EE3Z0BaNGFCrnvSTxmI8uc9h6Zjr6EZQpfTFZX1LCWDhdXFdZKM4q5pbB6VoYUQdDDouIu2gtmAqgaPBAqaK98SpM82dLEPyuZpgstkkQqb12jCfQeevevvEYBEixF5qTYJolj1z0q2yh5A26WTOChNU5uPF4eoO+gvttIeujLZIpQOB39m4ou2cu/HK7G+xCn2QueCjkZVvRs+uOXsodPtcfmbe+h0dMfXYgBT3ehuVsY1+byiS+I1WIRz/vQ+J3bpefxd+D2TdUwSM6Ft9/vlvWFSgO0v/D0Tx3wMabeVDZozyb2mMRCHcc/h0eX3ByKRoCrqhtJKxCoibSscH7Xnnnti3rx5OO644+Q+MiL481/+8peQo6h46004uskeaR3M05eiD0NHnGcRWYHBydPexLCK7RKQ59RXCuPqjFPuRFVC+OnhklgLCsh5rNitZtk79CKOzCh3+5HuMOL3Ewbg9H0Gx4XvFS22Em2gj8UpFvTt6ePrATn9NNoB/ScyYmkfIhxd1SgjKqv1TbUPAvJH/nc/Dl+zQHywC46/Cd8PnRLW1+QgXiZ0qZEyINneY/2W3r2mPsC5554bckZgfX29/C5awA2J9ARWvxk8kGbHBUxJfm5i7/y6Hc98vUEWMHuj+cHolMDEELTTjWVazzT/LR/Hzb+mwSOCcZvKnGIQpOsxICd13en2ahRwP7P7Pqnq8Wf2PrGyNiDFLnTE3QalSRWA/Xis0vP7w8bn4opDRkkwzorJ7R8sx10frcRHXyzDsecfh5nvPo+FW6pEKIeiV7UujcbIDZp/D50fVhdyk+2ygbMqz+um06dRvTRHiUE4K+802J82VYgBHz5xgIgGBb93m8rq5Suroq0pH7oTSqeTfb68Zn7lz7yfv48nxMr67w27oVLyd+vKtFaONDv2H5UlATh/5hzUP+wxEJcePApXHTYG1x0+DoeNH9C8welZyvQEM37bWi196Axm9dYJetnsO6W+IRkrI3McmqCTWZt7rlfM+VDqOfHma2cWZnt9TP/+722Y88ljMPp6JzPMa0q2mzAgNUGSA3qFb3tlI9YU16Gm0YuJA1Nwzv7xpw7dE8S7rXTWH8sgg2udX/kz7yer5Kx9W+6ttDPuzQxEed/6knppAaHN8Cv3aiZxmcDl3s49nMETz5VdQfMoHL8fd336BP7939thdzX2Wq+hbsMNLq3/nednWW2D9IrT1jMctubAXK/mMNHN70nD53kqlGRpGyHDzSvK0kx86xRdBvDxgEjZCivf//znP/HCCy9g5cqV+NOf/iSvqaux9xU7i2eK7pu0ZI80yHx72gLboJqavFiwvhSv/7xVqoRU6he9BAYinHaxM2/Tq8itLcOrr17f3AJ1+ql3NYtWhQM6ayW4Up5oNQprMiHgnzJhx/N4aGYispJsyEiy4srDRuOmo8bH9fnT386VUGDCn2MluT/SNtiGxLOCxTYmPGUCTmCM2aRByeKrlNdrTINwgwnev3/wII5c/R1cJjMu+sONvTJ2tjM0+fzCBjhrv6Fo9PrajeUInh3cM8Kt+2Pwt97VwgDSnQoLC9vMsKRoCClPHE3QFyB1KjU1FdXV1UhJaT9byY2aI1vYW81+7+FZDhnfxMysXvnVA01u+n+fu0aCSlbTdTEd/rtv15ZJ5VvPVuqzk4Pf8BSbCfuMyJQ5zaw08/llY5XAQhMhYd8fg3bex0D8zuMmyqHECj7BEVKsgrPSSMr6F6tLxBnJ8jfhoX9cjdFbVqEoORPHX/wU0gflaqINlawdarQNBv904rIcNhGiqm/0CJ02KcGCZKtZNnImDGi0dIyYTGBlkv+Wzs6YAcnYvSC9eXRbR73ifG9JT2YAHkwRIbgUWf1hIH/67tlIT0/r9LOKBUTL+g+HrQSDdLh7P12FRVsqkZ+WIHaSYtd6QoM/24sPHNGmIqzbkd/vk5YLJsKYxTQFFNvpZHNd8rksZoNUSmgTZG7wECFttVwYI1owrlfzunMoPP7evfj9mu9Rb7HjmLP+jvWZu0azJFiZHJ6ThFEy3q1C9hDdDvIC7xH3kXN3MSjvyecVjYhnWwnuGSdrhBbAPfzVn7YgPzVBmBP6+UFxMv7MyjeD7isPHd3c7kOH6t1FO7BiR7Xs0/yZiVY+1hykYUC7YSKs1+H34/ovn8NFP70Nr8GIs066Dd8O2x3hBNnsgzMd2nsS2AfIJmNFhzbF94HvD/eFbVUNzX8/HSnOoeUd2nQQoLisEk+e+ztlK7uAxx9/HPfffz+KioowZcoUGTnFmeV9tU+1Zpc0s0ck0emWoJxMQBYhWN2qIvsq6EDQGVU8hhigd2U0ZnfBxO79Hz2MicXrcdppc1ARxoBca4s0wEIf089g3NTcM89pPbQbevosDFFhnrbB9kQGJLOPntBu5U+dK5FDON57+lm3/W+52IWmg8U4gJOcjBJnaG1KXhG2Lq9zC3u2L8DJHW+//Ffk1paLoO78kdos+XCDekWMpw4dP6BFLBeKgcNzVj+LQ9lLb31eYVUV4kXSGRe6TG0t7PadsqdU8Pzoo4/aGEm0YPHWatnEqIbeUW+BnrX9YWO5BCWk0lHNkBVs6XMLPF+AddsGdJp4aFCQjS8jPeSBx8p759NEOXgtrIyw55uvRweFt+BD6tlvN+KXzZUSmAxLMuL6x2+WgLwyIQU3XvwA6hJT0FjViEFpdqQlmKU3nJkfBtoMcLiBcyZ0vUvruyX9sa7BLY4gr40VeV+ARsggfkCKFV6f1g+7dHuVUCzP2m+IUMfYL0/wb+Bsdz0I66pIy46qnvXwRhNief33BLQBVsl58LOyxYOfVS22PrDC1RH9h4EKRZx4SJDSbTRwhJp2SIiIoVc3H/b/GSRBRJuh/fDGNRssStUdGPw+qY4zIGeWlrSp3gjISasfmGYX2+XfTEYMJy1wL2DSbu9hGVKt6KtepWhGvNtKcLsO1zmF1riWGZxzryysapDPXtP2YGUbsl6GZCYKjZv2wd/Tbug8lNQ0oKimQZJXdLKdTdqeTWE1QRjHO/35hzclICeun/WXsAfkBCvxnJnOYIsJbIpHUiCRb5TWH6xVyylASjYZ2WhMeJFZw3MuJ8WGJJsJ60o5jz2yM6HjwVZIVQ9FV+9rdlbwFBdhIja6ZZKMzLKvacTibVViG62ZGEEag2FTXefozGuOuALJLmdYe8j5N1H3l34XgwzS0vcemiEaQKl2K6oam9pMYOAINFZJqeUSzzom0WAr0QR+1iygLdlWJX47E1JJ7DUXDQ+KgfqQajeLmC4r6by7LxTXS5PSccrpczCqbCu+CowLDCdoMwXpduw+OENYz13RFQuljRUOmMM9G5B/GG+jR49u83ve39vKnLuK9uZy63043NB4uK8trm0WJ2N/KMUQWLHLSbLJJ86qRVf2em6gZbUu7KCKu4FK1WYJ5rV+IE3QitUAzhCkUuLuQ9K1Q4W0q8AM9K0cf/PDZjmcuIwy7UZc9ezNmLT2V9RbE3DR6bdjU+pAZNk0Y9ta1Si96Xrwwg2aAdT2SmdzQM5roSon/Trx8/yQigTFqrhW6QRVNXgl6KJy4W75dhH1uur1xfI43keDZ9Zpn+GZOH2a1q/UVZEWpzv6Mpf9Yf13hI5mNzLoILOEzBA6BnQQGEzTMaAIFZ1lOkuhBHgIZmkZrLAaLkr+PEgDlQyDSQvCdY+KQYuXQlZurzjgXKdVPa0I+v24cf6/cfLSz6Xqd+kxf9ulPiZeIisQZMbwpwSrBfUioOJDaqJVo68HEmF8j/qyVymaEW+20l5Vj9Vd2gjXBOnVIq7j9UnFnIJ/nDbAteJ0eQN95LVIS7DKjG9HwOaWF1ZjwcZyqWQILb2Vcno4ccaij3Dt1y/K93fOPBdvTD4srK9HV1G3bOq1MZnBs8XtrZNziM4Tx7WJQGmTB1+vLcW4vBSxMSrE0wb1ZBgDcgbqB42LXfX1eLeV7iB4igvPmHd/3S5+zOjcJEnQMCBvDArIhd4tOgNtFcl7C4OqivDHRR/h3gPPkqCct3CLuslYUPppQsWnhgs5Zn5JhB+/x0B8vKxI1r7oVdhMMDRBAgx92kk8J4KVrbQEP+uxecn4YMkOsRsmpGg7TjfZiBoDkXsqYxCeT+GMx1kMmVi0HkvztBF1O1Jy5BaW1woIO4qgo1+LM6YMTpfEte6Ptqcr1pE2VswF5RRXoNNw0EEH4a233kJGRkYLwZAhQ4YgPz8f0YL25nIzO8/Muz7Tjx8KP5bPVxVhR2UjPl9RJHQQflZbKxtEeKerMYKMrWB1nIGGLByNZkQni0ZBcIPl8/ka3NhW4RRhOWZ0aFyrCmsl67V0R7VsyA0NTbj6w79j6uJvAmIJN+OXrJGcSSO0P27cDI5IndVndTLDzAo5HUG9wqdt9IERNQGPjzP9DPAJY4ABBSnyNGhWezaW12PZjhqheDCo4rgn3lgxnbuiWF6LPe+OLoq0JFpifzRUrK3/jtCRMB8rvPwdq7+cN041V65Ffo6cR85gZH1pPcbkJrU79ktbYtrhScaGx6itPQbk2m80OiofSbE3q8kv/XIMaJgM6yn+suB1nP/Le/L9335/GT4bvW+Pn4vXyAONNEKxRdGI0GY7awqfGo2fdpiTYm8eOdKeWnB/QjzZSutE1idLi2ReeH6qHauKKM7WJE407YhCorLPsy3DCFG+NQXWPplXpNw6mxpx94cr8cFvO5CXnoBfN3GihiYI2pc4ZsVXuOOzp+T7x/Y9Bf/a+/iwv2brY5QTF3w+zU44l5znCt8Ii5nUfSPq/B6sKqqVli6tMc+ATBndaZAqB52qHHtfv3O9i3i1lZ4gmD3ChE1+msbA21HtbBbNbbGWwvjRD6ouxmuv3oBBNSXwGo27LBLK88Ru0QomTESFciklaR0QQaVvSv9pYHqCFJBYBdcn8QQzCngG67YQz33k0WIrTzzxRHOrx+TJk/HYY49h7733jkgBhX4c22Q5mzvBbIbTrwn+sYAiTF0YUMXiI/UWwnh9GjvxcZywbB4uPeZafDJmehhfDYGJIpreCH00sn7po5nNxhb+aCgGTl/bS1gjnwMPPFC+bty4EYMHD25DV47WakbwXG5Wjym0k2Q3SVXYZzJIFZwb/iNz18rBrwUFpNEFglhZ3IEKcyfgwmfATYNh1opCcFolmk/JGiDFa3ZSd/naFLUiVfid37YjL8Uu1RUGxnT6xy5eiMN++QwegxFXHH8dFgyZpAmZ+LWRNrw2XiP/NqGu2Eh50noVeS28btIldfAT0/+9VNCNWrDFa2TPFg8Lgx8yE1d6fhmYWE3SC8xg3+z3wWQxiho3F/pFBwzvEkWEPcmxjkiv/946DDpTh6bQHzcwai/QaeYoM2tg3AZvrFSxnWODydDu2C8GsJkOixwGzX1Mfoodaio8tA8tQWmE26CNEaPooD5b1tSDCsiQyh24/LtX5fvbD7oA/93tEOwKGGNzn6BjZLFomz33CVJn+b4wacEkGIPwEdmO5vXQnlpwf0KkbSVc+G59GT5aViSV281lThnhxWw9E5dcBxTw1OaI+0U53ACqiGtnQjDTyun24efNlTAE2pP6Oqx0uJy49fNnROfhxd2PxIO/OxORgL4q+N64A1VQvl88l5gEpvYJ96kT9xiIP+wxSBONc3tbOKaktMYy4tVWdiX44FlU4dTOJ31PpZ/TV3YysLoErwYC8g3p+Xh+j6N36fkYPLD1gr4SK98sEnEPCIach6TfB37mb0Xg0WhsUQUPZhS0p/UTr4i0rbz++usijPj000+L5sLDDz+MWbNmYfXq1WGjzbc7XnN8rhTI6IsxUbnGV9vSRrin+ihG7evWVI6eBOR3ffokTl3ymbATzb0kqtsRZDSuySg3/s0sQNIeKFDd2h+NtL30iRc4f/58JCUl4aSTTmpx/5tvvgmn04mzzjoL0aKAy34zZhlJL62sd0kVgw6V2U3qnEsOeH6gVFAmpKoXUPDUKbfdPQkorMCAgvuFbKyBjBWJ5MGCVfx+Y2m9OB8MeHl9FIobnpUoTh438Z9G7YlbDvsTnNYEzB+9DyzctIMMz8xRT2J4HG3jR4LdIhu5JBMCkL0+KMAR4ayAI8hNTTJOBoMs9CavF41eAxo8Xm28GmnFRopzGWCiKJybrAH+HT4s2V4l4+S6RhGJ7WpGpNd/bx0Gmm2UdDi7cd7KYjS4PZJIGZmTJIkjPp7BuEZFhwQe/F0o+g9fY8WOGmyvahQRQbSYQa7NHNbsC7JeWD1gvzmDfzpiVJnl77rbGrg5PR8XHn8TJhSvx7NTj8WugLbAdS89wT5W8TWBRH5P0RQKK1IkhD3CfB9ILezrXqVYQKTOinBUM+gcUcStot6F3BS7VCM81Zr2gcGg9TkyucT/SGvnRAzuufRRWi9lSfJGcEustyXijyffjpOWfo7bDrlQO6wiAJ4rZrMBvkCAolN3aXc8s8jyYg/xV2vKcMnMUVIJiVdEu18VbgQHHxVOl0wgqG1wY3x+SmD0V99cR15NqaisF1QXY2N6Hk477W6UJGf2+Pm4ZAuo8WMyiv/EQCn4zNSouJo/qE8XYVKabYjUW9h3RGabqp7OKOiviJStPPTQQ7jggguaJxPQH/vwww/x7LPP4rrrruv11+uogLKmuFbaCemLkbml65DoItTewD4a1p3d78ftc5/G6Ys/kYD8yqOuwgfjDgjby5kCxVE5Vxm3BFoh3T6vsJspUh0q2I6kvfTJiTVnzhxkZWW1uZ/Bwd13341IQxcfo2P0y+YqUX8mVZ0CMaREMTDgQuaNFCGphAcqc1Tt1KgRPateMJAmjVX6HQL36QFxqOfkWJeVRbUyTonGxqBoyfZqJBi1azQYDXht6tF4a8JB8ngaXMvn0XoQWZFnwGQxGEQQhUFzc+U+kH3VRVH06xE6ldkkAhCsprMqYTJoMz8liSCLfud8db2aril++oVRwMxT69FzHY1PiwdEYv0HHwbjx4+XwyAxMVEOg+5gRxeE+RhUcvlwPTKpwv5xzsPkBk87YoWYQeipe7edg8pD5M4PV+DReWtlHVKoR+8BZRWRM7z5nAxyuT5mHzUOYwekCj1V61tnJUxr7+gqgsedfTFiKh7f79RuvSctnsugzSDPTrbKaDYm2GgjwzITZAb7n2aMwEUHjhDFzqlDM0SginbHXia2etB++6pXKRYQCVvRE1izZ8/Gr7/+KkE5E1glJSW7nOjl2ifrytCCbaQ5CI1NnA3r134XlMsNdY5EKh4PtpXlA0bi1kMvht8QuUCXCWGX29ecoNAthmca95uaBq1CuqakFv9bsgPxjGj3q8KJ1mNVJ+SlyuxlKu9z+gf9qb7AgJoyvPbq9RhcXYxNaXk47dQ5KE5u+5l0B9wvDhidhX2GZyA7yYYiCpryoAtqd9TPO21qjhX7jciUKT5XHTZappvEmw8Vi7bS1NSEhQsX4pBDdjLwjEaj/LxgwYI+H69J7SkWPygqSgFp2oh+9jS3rYbzrPH7MXveP0RzgaH/X4+4Au+PnxGuVwNtxSeFQvpoWuGRvfJ8T0ZmJyEvNUFY0DKGOorQJ5XyLVu2YNiwYW3uZz8Hfxdp6MrPpJoy4KSgGgNl+sjbKxvgbNIo6XYzhZtM8FHEjf3WrZavHsR2FXx+Cj9xfAUrz2VObSag0BO9bUUWdEeEPbXy1e2H1+TFlC//h5N/+h+uPftulPntcp3USaMTyCBed6H4fCwweCjCZgASYEK509VCDKXF38MMGoW1SB+mGJfNJDOXKTDkcrslAKeoF6ubdC61PmJNCE4Hq5yNFIyQ6uFOim6kKSJ9ib5e//phcP311+/yYUDBvc6E+fgZs0eawTmr5wwypw5NF8YJWSb8jKkGO33EzkOR64HUXorDrdqhKaQOyUoUJWqOd5KJAGl2SR5xE91raBr+ctBIjMxOlioYKcF1je5ub6j7bFkifbHnnXALtqTnYVfAHuAhmQ7sNSRdgoUdVY2yxvcbmYnCqkZJMry/eEczfeyYKfmiAdEfe/ui+awIRzVDT/RSb8Ht8UuFgjRU7pF6dYJ7s9/jkyQNmUIdIRJuw/Dybfjn23eIgvSvA8chGtCaLRD8s/4tjxBWQ95atA27DUqNW9uKdr8qXGgdfOjJ4vH5qVIAYIvIws1VgXan8IFjNF948xYMqSrC5rQBUiEvSul+QN7ab2QBg0UXrtvcVLskHhhAcc+wBdoU+XfyXCQNmfuHzKAekiG3ePShYtFWOG6NCu+5ubkt7ufPq1atavN4l8slNx3dbbPpaLIR0RSYVMNCINvreP5wch5bAIV1Ec52D78fN8//F85Z+D8JyK894nK8M1ErHIYLpsC4QyrLC3vXpMUoew9Nx9i8FGF0RqPAbp+kvJmNWrJkSZv7Fy9ejMzMntN8egvsx2ZFnAJMDCgksJT7WakzNdPmSM/lCCN+sETrBdzegpbsZjv381+xLzt4HmDwyI72ng+Bx8xc9QNufOsBjNuyEkcv/LiZTq/3gvMbf4AW3/r5pYLt9WnUjhCvEdy7yJEbE/OTke6wSSVTqPZ+vwTkrFwwGOH7JnT7IN4YK/B8DdIId8tPld+tKqoRYRaCxsCRBPwar4dJX6//jg4D0nNDgYcBD4HgG0HBPQaVVItmywOTV/yqf8YMJmgjh4zPEdth5ZcVYAapXD3c8CiqMbkgrfm11hTXYM5HKzH7veX4YUO50NB5YDC4Z2KGSsrsLefIMzItGOifvFcBRudqoyt4dDBZQEHF7vSQ71a4Fv986w6MKt8qY526C01sjjNgjaKbQKHFifkpYrtc99NHZgkbYF1JvQg+pjusEpSxkkPHigIrh07Ikar5pQePkq+qqhFZW+lJNaM9WwmGPmWCa58jAZm8YpKK65nbHPdE0tnpOHDPjiQ1PRTya0rw0us3Y0TFdvzty+e1DG+swK/1D7o9Phk1GG2VkP7iV4ULevBBNhVtSj+T2C60++B0DEpLQHldk/gvZD+GA8JANJowZ8Y5WJcxSALywpTsHj1X69XJv4vCwqz4ryysET+LCdy0gG/Kv8thNYvzTnYaxXS5zyi2VWzbCqv5nHOt3woKujeWdedko7a1Vpkc5fFKQE6Wq9+nibs1evzNTFq9FSIcYCo6wa0lHK4//C+7rN/TGWxmjUVC32topkNGPg/NTERmkgXZKVrSgmcyi0bRJrDbJ5Xy0047DZdddhmSk5NxwAFa/8BXX32Fyy+/HKee2nPqaG9BD461GoYWaDALyw2PwYJQyVnt5eYYGAkWLIbWGdp7JJ+i1qWFxN3ZSvVZ5vtuXoxH37tHxNS4yB/Y7SjY2L/tpcqgVlFv77W5sVMoKxj6+cVqur/V6zFwKK5p0kRzbGZZ6CaTQYLrxkZN6I7P2eQmfZBBOlXkOW6BNHmD0LA4Mu3OD1fK5sAMFquHJ+5ZgNED4jsoifb1rx8IoUaD5AeC5G/Xl2kigD6tRSGd88ezHcIuYbW3tcorM5B66wf9+bd/3Y7FW6uRkmDGfxduk3nkTEZRUJ3rjTRfBvIDUuyiHpvg1HQG2H/NLGdWsq3ZIeONh4uzGyfIiLKteOHN2UhuasD3gydh9qEXd/s90ls5uLbZG16QloDT9xki0wwcVrOILj7z9YYO++8/X1EigbhynqLDVrpbzejIVoLhCJoywdYNtnTQJjRxQirdalRBq8UkGiXcI1mxiIbwMbO+SgLygbWlWJ8xCH/6ww0R6yHvDnTqJc9Gh92McQOSo7IS0p/OlXAyG9laxYBUkv4mo5xTpKSOzHGgyumC0+WW4JnVwF0Y0NEGViMFPTk5xo8Fo6di1rA9JEDfVWhq65ouCYMJtk9WO5kA1/RKcpM1ETueLzLZAxy965XK6OkhWsMUImsrpMubTCYUFxe3uJ8/DxgwoM3jyWxkG5UOJnu7E5g7OphsxCk11MFia0R5vUvYiH0wfrwZbHm6cdaf8c6EGfi5YGLYz4Ekq0V0rnimCoPXogXgFpNJErbRLLDbJ1dzxx13YNOmTTj44INhNmsvyVFB//d//xcVvU/sjWYFvNwAoc9y02ePLINOVjGEZgjtd5xJzgCitxd0d5wxOh2Td6zGv966AzavB5+O2gd/O/xSeP1G+Dza6dOTsc2txD2bEwU82Pg3k6LMA48iXDwQqajOSjkTFt6AeJHPT2oVe3y1w4TUKgbkdIw2lNZL4CW0fYsJKwtr8ePGClx60CgRXAimsccT+nr9d/cw6OhA2FhehxIKHDZpLQ8piRYRpuLnT7EQVsBbq7ySlk6BK/rxrBQzicODYsGGcsn8yzUmWeH2umQDdXEsR6C3giOOaHPUHyCTY0VhrUwbYC8U8evmSqwqrBFnJaC12CVl3JfeuBkZDTVYPGAULjj+JrjMHJPUdTBhxc2dSQmxhWSb7AsMyMn0IJig6qz/Pp6DhP5wVnTVeeIeFjxlgoH51KFWSVxxhCXX74DUBAxMs+O3rVXwNmpJXx4Ege6kiCDZVS/JK1bItydn44+n3I6KxFTEAoLfNk6CoCbF5gqnfAZEvLVHxYKthAOsInOvZRGAbCSL3SyVQApZcRweR1KSmspSByuCKXaLBCHcr3cVufWVePDDh3DPUZeiMGugBPt+o0nOsV3xCZlkprgbrzEt0drMYmQgwZ/JsGHAznMk32Jvbg1jUmLfEVmSFFeILlvhyLU999wT8+bNw3HHHdf8mvz5L3/5S5vH22w2ufV09FmihaLPDiwvrGkz2YgigGyj0oLyJhGRDjv8fhy98mt8PGY6PBz1bDCGPSAnWOhhnEG7Z/GUukb014JH0UazwG6fBOVcnBTToWGQLpKQkIDddttN+jmiAQ6rWYJyjhZbuKlSNkRtprBBKEMWl1eCCm6Cm8qc3aYa6hRFVy9xFEeVbsbzb94Kh7sR3w2ZhMuOubY5U9uTYLw9aOrXWkDBHljSQRZtdmNLhRMNVLsNPE7vdXJYNZozAxcKWk0amCoZOqpqa+xHrbdcRq8ZfMhwcA58A256dykm5KfIc+j9t/sNiS5DiaX1393DoKMDYd6KEkm6HDg6CxtKnaJ27vWRsm6Uz5SbHQPvYCzZWi2/mzwoTdYON0B+7mV1jdIHzioAJwjInEgZsadVB+jWVNZrdHjOIOb9Go3di0c/XyPVcoreVNRpAXlXrCmrvhIvvX4T8mvLsDazAGefdKsoSXcXNF069Nrf7RfRlFHZyS2yrDvpY+333/f3eeTRZis9SWB15jzpjtKo3CQRHGOwQMYJP38yTPLTEpFkcyM72Sb7I+2ArRucSc491uAntRB9DpvbJYneicXrUZaYijNPvRM7UsIzticcCD6POPbny9WlEry8/vNWzE0slnOFkz9ytIJjzCPa/apwgLa1eGuVJPvJyGMwy7OD1WOh4Pq1kU70I+x2k1SbyU6h7bk5c3AXwLPkP6/dgJFlW3HnO/fjhDPuE35lojng2/XQvUu2mZqZh/xbdh+cJolv9sb/vLEC4/OSUVrnlr+R487YHsa/iSxOxl0sjGwo03rQFaLLVpi8pbL7XnvtJdM8OAWnvr6+Wb+kt0ef0bciC7X1ZCP6TSyEkGFC52xXk0hdwZXfvoLLv38VH6/+Dn8+7ro+EQg1BG7eQMFEpvkYgC2VDZLcIsORCbuWk56iK1Hbp3X70aNHyy3aoFc1ftpULj1IgzMStTneBoME5+xt5efGwDxY9bWrezD/DSnlvQK/H3//8CGkN9bit7zRuPAP3a/6dRd8LxjUcc4uTwEGJcF/Df80Gj6NPp9q3DWNkpljFpuLXx9nJbRCNnsEZsdWNXjkuSqdHhTXNuLAUTlyPysbGwtLEW/oy/XfW4fBxrJ65GWlCx2K1T7pTfLSGdLIolTND678thYb4TgojqopqmlEUU2DJGyogJmW4BNbo3PBIJw0IybDpG9bqLzakUHBwySrWdZPcXWjrEVS4rt6oNwy758YXrkD21Jy8MeT70BlD6p+VO5ksosJBDpQTEgVVTVi0sA0cZBYteEe4uiAPhbNdKn+bCs9SWB15ih9sqwIS7dXyzqQ8WcUGqpwSpKJn/++wzNxyLhcrc/c5cbbC7fhvwu3w+/2SoDOgMNgoNONPsWff/gvpm1dhhprIs46+XZszBiIWAMZLZyCsKOaE0X8UjmakJfSfK5wFOeJkzIQT4hWvyoc0Bl3EwemSODB5Eu92xs4k9gvq412Sk3UxHpZMWNLHW1an0TTE+Q4q/DKazdKQF6YnIWrj7oK3gCXsCGoTbC7Yr/aGDOb7AUMulnJY4VPq3L6pVAkzMhBqbJ+WRRyB85fJogHpLFq7hUl+nicXBPrtnLKKaegtLQUt9xyi+j5TJkyBZ988kmbdqneGn1WGPCR2EpH30wXlJ00KBUzx2bjkXlrtaIYJ4CEMSq/7LtXJSAnfhk0vs8mdiRYjFLcIyNNWo/9wOD0RJkORcE3ak9QA6u1wG4w48ARYdFpcziDAmalHA5HC6pfe+q3kQTffGbQlxdWozpAcZCeVZcX5fUeETGjGNy2qp1ekgipdUGUrddhMOAvx1wrwcZVR13Vo6pfl18qcCONioeERzJsfjlIWicZ+NOOygZRr+eNG8K8VSXISbLtFJkIUmbnoUID4XOxalrXSDaCV7JbpN4s3xxakCxWEOn131uHgStIOIRrgJ+PDo71It08uPIbXC1mQE5qLoNRJreY5fcYNYErVgHITuFIQf7MgMXVnPn3CQWRNscAhRsstQk4CYGJn+5slrMPuQiJTQ2486Dzu62Mq78K2zGYg+B11rr8Qomi80fn8PEv1jWzOw4dn9uCshxMH9PpUhSG08UOHXE8cSCWbKW3EljrS2vx7x+Lpa1HFzrkKmKgXZCRgGN3H4hxA1LafOblY5rw0dIi2f9oD0yxmqRW1rc95k/uexKGVW7HS7sfgeW5I/rsdYOng3QH+ngonZXM59ESGhDaMpNoZNzoY4F0XYf5K3s+6q6/20qkoZ8vQzO0itfa4jrUON2aWKJBY1hJwt/pluSv3kI3blCK7MerCqtRUqdNuekqshqq8bIE5Ftk3Nn5Z9+LLUm5MATYWsE22h17TbGbkGwzS6KayQW2W1CnRWeXsbq5z/BMGYfGCifXN1u57FajBBZMOlDYjuwbrmuKGpK11t/Pk2izFSZ3e5Lg7e70geA9LjPJhrOmD9U0oKxm5CbZ8P6SHUJxrw748uHCnxe8gau+/Y98f9eMc/HvqVqyO5wwBPQYWBxiMnbKoFRJzNIemKzKT02QYmGooDsU40BnVUUiyRW2oHzRokVwu93N37eHUNL9HeGJJ57A/fffL4EG58k+9thj4kjtKvjmn7b3YMlEcqg8+0ZF1EoGkgNVjW7ppdahz+2WmbPteBN60N4ry59GFHivNmUMxLkn3dobz9rxSwb+BlYJjZyNFvib6TiGAt+e0tomyUjxUvnW1bncUk3kv9CV7PXnpvHYAk4T3U9mu+U1DAbkpsQ2xzBc67+vDwNbNyu//F5Ta/dIhZyPIU2IWUtNzMoo1W+ZW+/2IjfZJj0/dKIIVgy4kVKBlv2g/FlEsUjv9fpE10GjunfNVlgZP//E2bvUvqExXbR79LXPpcq9gdfK90evwh00Nke+tqaP6Rls9nM9/PnaqNj8owWRtpXeSmC9+cs2LN5aLwnd5ASLBAOSyGlwS/Dww/pyHDK2LV2ONHYKGibbG7Gp3BlITnHNt5yAERbozpnBIIwrtkKFG62ridrc9u4dlHwOJu7470x+baSPjPAM/EnJiVakJZhlr2BSmMlEXddhQ2klYhWRtpVIw2E1i3/225ZKETmjfQmN22JEMplXgSk23GvpbzBxTEFRspkmDExFSoJVqOBdXWoZTi0gH126GcXJmbj43PuxIZkBOdtONB+ns+OoNVJsJiTZLDCamOQ2y9hPCggzwOI6pb+k02tPnzZY/s0bP2/D8h01YitGgxED0+0SwJO9Rii9kv5jKx2NPtP3OP6ePhP1buatLMYNby+V4LPC6ZapFOEqJF70439x7dcvyvf3HngW/jntePQFjIEWYcYRUiCsbsSg9EScsc9gDM50yGNC2UV7jAPdn4sE+yRsQfkXX3wR8vtdAXtCmPHiHNlp06ZJRWPWrFlYvXq1jDzYVXCO8rSh6fh4WaFUddOsZjisRnGkKRIQagRaRz3cvbXwE5oaZV7sv6b+AV+O2At9Cb21UY/DO6N/8W+W8VYmo1TDmcWlyAozdqy4M5Mtz+MjtURTbGelnAGKropIsEoaywjH+o8EhmU5sD4wfzxU5be1UEZwKwhVPrXxeQaxJ36mrAYyONdGAWosFLeHVF1NSI6jxqhNYA04VD6fUTZJsiq4rjqzK6PPi79/8BB+HDwRr0z5/S7//a2Xu75CDUaDCKpkJNnkPdIz1KuLanHWfkMwd3lJi3nkbOsornXJexYtm3+0IBpspTcSWD9vqoDJQG0SW7Ot8LO3JhllHfy4oVzEEXUnQYcjoGlCJ5uV9FXFtahyNqGy3iW95eEMyq/+5mVYvW4Z7dRXCuv+VnRze2BSB4NpJjRYAaWp60lhGSEXaAMgRChUxm9qrBWCDll2shUjcpKwtbxBBFn5GfB91JO9BJNk3GtiFdFgK5HE6qIameHNZD+rzLSvGh9bn/xiYwxEeKboa0zmL/v90h5XvtqFhsAZYues7y5MO7hp/r8wtnQTipMycPaZc7A1ZYCwBcn/tZsN4sd0R0CO631kbpLYvLS2GIH0BKusbVb2XWX18je1ptcet3u+6FNwOgnPUVbJg89jpVfSf2ylO9o1DMjnfLxKEj0ZiRapkJfXNoXlus79+T1cz/GZAO7/3R/x1D4n7fJzGgNfub83BexML3YyXBCGjA+wmDV2SUW9GznJduw9NAOzJg7o0KfqCuMgEuyTmGpuJMXkggsuaKYVMjj/8MMP8eyzz+K6667rldeobnRL4MBKHp0DBgrMyEZKENfqceOZd+7C/psXY0zpZhxw0b/QYI3uKjL9pAQKFhk0Bys3xYotFY2odXmREqgAMcDS+icNsBqN4sjyoNHBIF4h8jh4fA4ql1SErPyGEsrQW0GW7aiSZFY6rLL5acwJUtLpSLHCpaliUhiQYjmsEDAwYWWrpLZRqEZUluUmy82W6yggTt0+/H7c+dlTOHblV/j96u/w9bA9sC1113q3WsMX6Fti8sDp9uG3rZUYkkEqlLG5WnH05Hz8acaI5h4lOlH/W7xDsrfRtPkr9C5Io83N3vn56uDP7HHl7OQNZfVtgvJgpXauD1LdV+yoxjfrXGFtjTr/p7dx6YLX5fsvRuyFHwZPQl9BD6zJJmCQ46fYndmAEVkOqRwW1jY2CxIxeEqkloRBm8pAZ4wtNRT1cjdoQQironsOyZA9hGwtLfbyySip4GQv9y72nCvEHjweH174frN8z4CcfobVqCV8SfFmxdps9MvoMLYhMhBplIWgjUWq9/iazxAGJ2RaMJjvCLcdfCHSGmpx10HnYWt6PhIYBHAspsWETIdFxn42uN2d2il3BBZ4eDlkXOYkm0X8keuYyVlOM2Ev7JG75WFcXtsWF9F0SbRKwkHplfRvOLqoXWM3GfHctxslMUlGogSwYRy7uSp7CBrMNjw97QQ8sd8pvfKcJiZtAwU6Hwt7PopKMwDXGFHys9mAVLsFNqtJbIeMZxZYO/OlusI4iAT7JGwWfPzxXactvP32250+pqmpCQsXLpRxNDroCB9yyCFYsGABegMc5cQRXZqKJwVCWKnr457xNlW/B3DApkVwWmy48Piboj4g10FhBW4CZpNJKuTJdlY+OZddE3ezBuaKyuiCBIs4pbph8PfM9MUyenv9RwojspNxzvSU5p4bvfLbOpPfGqTnMfFCnQFDwAGnVsPw7CRsqaiXjU6fHWsxajoFdFLo5EiVUFTetWCezphOT+2oFerar1/A6Ys/kVE4Vxz9114PyAmu0MRAJZ+BBGn3TFAMTE9skaHmgaBv5KROsv882jb/aEG82Ipf6NNtHQF/4CxhxZbjnJikCpXIImNi0dYq6S/dVFbfq7OVW+OkJZ/hpi+ele/vO+D/wh6QM7lN34pFavbODky1C313R1WjaEhkJVkkKKFGBd9FjocalJYgyTgGLsfvOVB6wX/aUCHikNS6kJYoBvZGg4xqZBJwaGaisLOY2ONmkZua0Jzs1dk9I7NbJkViCfFiKx2hPdGlX7dWYlN5PXJTGGAYm+d1cw+VWyDcIHU9PVGjgeu2xiIbSXoMzhmI8zzh+RIKZq9HRjgR1QnJza2CJgbUAf0T7tkUreUzkPHFanlHBXNzQDi40cdpIo2YUpDWHFDx6+hcLTnLc4AikK0DitYjFrvCWuvviFdbCbUWuAb0MXm0nb2HZuKXLZUiOKrTuRmQ1zW1Zfz2Fr4fOgWHnvcEtqWFnlrSExiNBmEjUkWdrSqazRokWGcrIc2Es8d5dswckyPtHl1lHEbrtJywBeWpqTtVjrlg3nnnHbmPYjoEA+yqqqouG05ZWRm8Xm+bPj/+vGrVqpD/xuVyyS14nmx74Ob91sJtstHbTEYkJliFPkuxN53y1Kfw+3H3p0/gyNXfwWUyi8r6ooFjEStwuj1I8pilj6tQAjCf9AlTad3v9zVXxhmEUW2UFXO+33oVlo5VLKO3138koc8fD3aUqO7JanZrwTK9R4cHBPtky2obJXlWWe+WakBZrUsCbt2kzIE+0HKnW2aQTylIldFp3Hy1FgfN+dD7azvqZaJ6NHHDrEvw0dj9e/U9CKZM6WAw0BDoje+oWhGtm3+0IF5shWMgmaTJTdHmCetrgkE2WR8MTOeuKEJJjUuCcDIjgtkUVJT+bm2pTCpoDOOw8t+v+hb3fPK4fP/M3sfjyV6gGXYExsRpiTbZ01nR5FQOVrwpVsVghUKOI7OT5IyQkT0wINNhhcNmweSCdEn+0a7YEnLQuFxtYkeDWwySbzP3HO43tCG+z3mpNmkTIHjmMPHbEDQG56Bxsau+Hi+20h46El1i0oWOOW2F5wPHPyX7zBKE69VmTvHgGnBYzVLNtgceq424Jc3VKGdQe214KY11eOn1m/HWxIPw4p5Ht/gd1xpZUnwePifff74OW7QYmHdks5qGSkA13WwUxgzXor5PdJacDU7cdZW11t8Rr7bSei1wTTK5SfFcrkOyETMTazF/dbHYEKvI3Cy553aj06JLOGnJXCzKH4N1WZr2AQPy7k4g6Ag2s7bGKXDI60+wGMTuaUuJFibHEjBmQAoOHpeD/bpQHQ+GI0qn5YTt1Z577rnm7//2t7/h5JNPFro5Z8ISDLD//Oc/IyUlJVyXgDlz5uC2227r0mN5iC/fXi0bL+dFahR2rbrR5/D7cf2Xz+HUJZ/BazDisqOvxbfDdkckoRtaV+cb8m1jptpmNIhi9l5DM3DslHzJLvO5GMg4rGY0uD1t+m+Z8d13cAIeROwiGtZ/byK48kvH6ZmvN7RxnA6dkCOfJWm6dIY52oxJLjpTXNNMfNF51sdE0dY0RX6OsvFJVezHTRVSzeAhKvREkybyVt/U/qo79bdPmnuZ7p5xDl6bcniv//2y9rk3GHmtfvjNFPihKrtBnL+OqhWOKN38owXxYitTh6Tjm831st6ZcOQ64ZpgIMq1Myw7CQPTEqXCsbKoRiZTMIBgIMpAgU6VtGn0qlvTEvtvXIRH/vcATH4fXpt0WJ/0kvv9pE1qs6QHZSRg76Hpkozle8Ok7UUHDpPpG3zf2PdIRg3F7hxByT4m/7jX5NsSxOZSg5K2fK8ppLe10imV1OwkOw4bnyvvIJMkZB0Es3ty7JFqRtt1xIuthEJnokt7DklvZh7xbCCbUWuJMiHdwRFoFtQ0urFbfgoS7RYs2lwhrYc8Q2SqAUvlfo19Fcq89IB8ctFaDKwpwbsTZqLGntT8e7ImeX4xsOeoUAoJZiXbAiKkLftdQ60w3uewmZCeZJO/URcg7Gpylslxao90l7XWXxHPtqKvhVd+3IIvVpVoKus2s8y7p+0sK6yRvY9LnWcKl2ewUHVv4LTfPsGcTx9HaWIajjjnUZQmacnO3noVE/1Dk0Gq5LQJFoLOP2C4jHejxhdZArT5nk6wiVb2SZ94gez5/vbbb5uNgeD3FG3bb7/9RE29M2RlZcm/KS4ubnE/fx4wIDRdglT34FEIrJQXFBSEfOy60jrpJ2ePG0WlRFmTw/wicH7PWrMAF/2k0WmuO/wv+HTMfog0RNlWxouQNtL528Lfc6P4el0p8tMScfLUwRifH3pG9Mjs5DZ0tbq6WsQLemP9x4LjRCGakppGoa3TOXZ7vaioc8lcbzpDWlvITsEbnhF0Zji6nutLVM7dLV2ahk6GaY4r2SCMEuLJfU7EP6adEJa/W0hTBo1qKEkllxsuL6Sil2QzSca6vWpFtG7+0YhYtpWTpg5Cja8Ya4prRXG90qn1tLIyxnnDdCbohNMuvlpTJk44Z2gzGKXIE2eWk2LIoDMcSHdW4+l374bV58GHY6YLoyTcAbk2vcAvIj35yVaplm+paJBggpWNMQOS8cXKspCV0eBqoaODxBYVqMflaX377Cfkv9dtKRQNuiPGXCwhlm2lJ6JLS7ZVyj5MPy3Vrom8cW0JE8mtiQNyfdFvozPPY4cBCYN3ktslORZQZScDMvhkSXbV48U3bpGAvCIhBWeceleLgJzQCjZGDEi2o8blQVWDB3VNXknKimaKVPaokQDUB0my82cKujF5xLYuniahCj5dSc6GYq2psZr9w1Zat3UMzXCIzsDgzERZA1w7XGNM9nDN8RyRYFzm2hs6bf/rDk5e/JkE5MS7E2ag1KElzHoDhiBGIluV+HdQ/PeCA4bjlKlaRb43EK3skz4Jyj0ej1DMx4wZ0+J+3ufr4gR7q9WKPffcE/PmzcNxx2lz7/hv+XN7qrk2m01uXQk0PlxSKAIz3CxlBBifPxJVcgCfj5qG13c7FGuyBuPNSYchGqBXN7s6okd6PYyQqgUd0fmrSjAkMzFkNje4ChuP6I31HwuO07fryrBeZmRa5TPn40Vox+8X9gkrCgzQNbaF1gNIGiArzj1lbq/MHoYHDvijVDbuO+Cs3v2DA9lafc1zTeck26Rvq7jGG6De2lDT6O2wWhGtm380IpZthfoLVxySgk+WFonSOts0SLvj5z0hP0WCRyZhNpQ6ZS0Z/H4Z+8dgIdFqBOo14RpSXcMBjge8YdZfcOyKL3HlUX+Fz9gzwTOuUorrsPrY2aXqiTj2hV9+6ChMyEttdiq5/l9Y0LVxNJ0ltjjTefKgNBwwKruFHalzJTbQmegSmVfU+8lOsknSl8ypBKtBWojYq82EFgPeP88YKUHJr1sqUNfoFrYKhaF49mhHERX7A/6JSdO9cbiceOb1WzClcA0q7ck449Q7sTp7aJtrlMcGRKemj8jElgontlVSoE3Tx2GAzqIOr97i5QQaA6wmkwQV/DwYQGmCjy6p7gcLEHYnORvv/lI4EOu2EqqtgwxUtkFwXwxOVDII5xni9/nENpgQ6s0z5cSln+OeTx6T75/b82jcNfO8XkvuGni2WAwYnJ6ARrcfw3McYidkLnNMcms9ll1FNLJP+iQop1r6eeedh/Xr1zfPFP/xxx9xzz33NCupdwXMap111lnSE8Ln4Ui0+vr6bj1He5W/zeX1gQxmIPhE5OA1mvC331/WZyNqugq/LuDl9cLZ5GsRnOtXyvvIEuNYAgYeew/PkJ7x/qww3VvrP5odJ4KjhjQhHM3hKGxokMysjC8K9OEFOyE6i5ABeY+PDIMBT+57covZ5D1+qhAzyu0WKuZqc9XZ48oAgo7X7gXpOHJyngj2OLpQrYjGzT8aEeu2ws/xsAnAxvJ6rCqplbXP4HN9qRMGg1Ec+wpnkzjn1Q1u1NVQPwESjLrc4VPG1fH++APx/rgDdslWSAPW7EJrRdGhP6PEGkHJW9oLxdUYkOvBBJ2rp75c3+VxNCqxFX+20h3dDdoI7WXq0AwRC120pVJ+pqYHP3L2mQ5ITsDYvGRMGZiGB+Y2ydpi4CytiF4/zCYZZiZaBuKnwIB8oxuPvTkbYwtXo8qeJBXylTnD27y+aJoEAp6SOpeMZRueTapwgjACqW79y+YKSVRRGZ6BNxPSDL6ZdOMUAAYVw7IT8fUafaqCVjHvz2u4rxDLtrK+tBb/XVLRJnm5orBG1jd97WS75lMxIUV2CNcpJ9kwYURWCf9tRy2AXcVxy7/AfR89IhMzXtjjSJlOEOosYUFOxhF247n5byxmbVoGxRhZ3KGtbq1oEBt79cctWL69Rs6B3vSXoo190idB+QMPPCAU8wcffBCFhYVyX15eHq655hpcffXVXX6eU045BaWlpbjllltQVFSEKVOm4JNPPmkj/tbdyh8XNjdGbtoGjzeMHX3tY+b6n3HYmgW4adYlEpRHW0CuI9FmwqDEBFnApPkz2NJ7zb2BCgqVc+misTeQAXl/V5jurfUfTY6TfgBo1CgZaiR9oAw0eSiQLsWNVShU4nxoCS+CX9gKodOUuHl3x97GF2/Apd+/hr8ecQXqbYG1tIv2Iu0qpCcatHFt7IPlU7ICYjGbMGNUFn4/KQ8VTrdQ1vcoSIeZ2acY3vyjEbFuK0zysvrLPnHufewhNRqMKK1tFLsgW4iOuBVazzkDC23Wang6yXNqy4VmSKp6cXJWt22l9TVpfX5aDoyBBkU7Cf0ckMcH/gGXNW2bdOFpwzJbVAB7Mo5GJbbiy1aC4ehEd4O94lxWtCkKBXIMJQNZqvWX17ukes5Z5M98tV4qh6wg7j44XdbOd+vKZaKHz+/dedZwqofPj30WfYmxG5ejNiEJc654FJtMAygW0vy6+sqkjZLtwfXOYGdzYIIIr4WJtxljsqVSvnhrlfSxpyRa0aQLPBoNohhPVhVHfE4uSGvWk+D19+c13FeIZVuZt6IEFfW+NslLimNyqsvq4hoYDcnCwGLCl+1RZP1yPeqMJqqTk5HY2QjAjjBj/c948MO/S0D+8pTfY/YhF7d7ltCEuuMdUbSN8ZfdrOkH8SppR4wx6DcOTk9Efpo9JIuqNxBN7JM+CcrZ43PttdfKTe/n6qm4Aqnq7dHVuwtuqnSinC6OEvCJ00ABDzpLfYmpW5fhqXfnwO5pEtrU83sdg2gEzY+BGClkg9ITUGyiqrZLjIZUrUSTEXlpNlHMZhVjRLajeRPpzwrTvbn+IwlHwHHaUeVEUbVLDgAGGBxPQ8eEyp+sWPB7Bq+cI8xgvSmoAqg7+frNzLn18DdnVDsTEhxasR0vvHELsp1VKElKx+xD/9Tjv0c/TkRwzsQxG1ogziCKvYNUhs9LS8Do3GScuV/vHALRtPlHI2LZVrQkLx2oJkwamAq3xy+juTIcJqmC8X4qRHONVzGQ8HLkpl+iVyaCWNVgcNFbx09aQw1efv1mjC7fggc+fBh/PPXONo9JkPyv5rjRdvU+V9o0rdYYGAFYkOGQlpTftlaKfbACyIr2tqoG1Lnc8Hk0Gxe6esCOeS6QIsxe+sN3G9Ai+dTTiQQqsRUfttIanbUnsBUkLcHa3GvKvz3Bakals06qaWRvpCZYkOmwtaggDiPTAgZ8sbokIKIY2PdFid2ANycditT6aiwZvQcSxu2Gi/NSsLKwBpvKnTJWjZMQuNaYjHI2ucFBG9oZ4YfPYJCggbnZhZsr8YfdB0qw/cPGClQ3NEkgz6p5coImRsVX1oPv4MkLjn68hvsKsWwrjEnystLbJC+5HzN5ybVODRMmdjmq1W6hAJpPY5K4KWzIIokmchgKWjGiRS4qJBYOGo/f8kZLW+3Nh/2p0+Ru8NOJ2QYm7XhDsasCxZC6JmqwmOTM0QulKQlmjMpNRkqCVZIR8c66NfdlT8eXX34p9JHTTz9d7tuxY4cYRlJSS0GNvgI3RI5W4WbNsRZcuBQKqajnLNm+uYYJRevw7//eLgH55yOm4uXdj0C0QqMae4VKwkOQfV4pCXSemgI9WqQpMytsl4CcPZQ6+rvCdDSu/+6CjgMd97kriiWIpbNhMZllTA0F3aqcHgzNsmKPwelYvqNGghAqfuqOkPTamSACaTokARYQyWF80pHZDagpw8uv3yQB+fKc4Xjwd3/s8d/SXAExMymgCc4xHpE+Q4sRCWatF3CPIek4ea8CVcHoQ8SqrewIqv7SCRyR45BeV9oBzxc6GlRZ5/7JiqBMGBAxKq8E51auRSaGyCoJ4T+x6kFj4lrt7Hhin+zzb94qAXlRUgau//2lLX7P/ZpVCVb/6l1eZCdbcOi4XNS4vJKkPnv/oc1qvcOzHBiUnijXeN+nq7GisFqqNHQKKejIXt9qZ5NUYSQwD9gxkwz7j8zEdb8f18Z+HLswkUAltmLfVlqjs/aEQWmJGJGVJGM49fVCJgWVmRk8U1SRzDyO16Od6RXErKQsFGQkSLsFp+2ZTYDD7ZJFanakSFL5X/ucKFT0Jw8fi8GZDmwoq5OWRk7kcXuofqIpV+tin+xjp3Chn83pBq8kAxjIs1hxwxHjsL26QQIpYmhmovSz69NmgoNvtYb7FrFqK9Sw4T7dGgzSWTCgHRR7NJ0Csi+ElUhNA7IQ/fSxfLKOpXodYrSs+F1dSATX2hw485Q70Wixws9G9e7AoLW1kl3FAijPCDKuWMCjbdKGtbPDgASrJrbNpJsWSyRJUlv/m+OdddsnEdLmzZtx+OGHY8uWLTI3/NBDD0VycjLuvfde+ZljCiIBh9UsGSIuejoY/MBJM2KQwXEC+joNV918ePk2vPDmbKQ0OfFjwURccux18JiiK2htXbnk4VRY3SDGxcOG2Wb2rAzNSkJOik1om6wSiXJ9AP1dYTpa1393oY00Y7XAJ9UyPfHKz5e7Ljd8Zmc5Kmb6iAxsr9JErGhjEnszU2owwmbyS2DB++1WkyRz6l3uDlX9qRzNgHxQTSnWZwzE/518ext13K6CLhFHL9VSmdenjakx2AyytlPsJiTKqA0zpg7NxDWHjek2TV2hf9qK092y+sukJDUH1pfUo7CmQQJXqsly32RVQ6rjZiM8Hp/ssZxzzLXJ4NwfEFHj91R35vecv815tB6fZijt0d1tnib84507m4Wr6EhtS23Z4sXno5BOo0ej15qMJqwtdWJoVqLYN6997ICWlSQGEydPHYTnvvOguNbVHBzTjn/bWi3OFunFvGbu86fsXYADRuWErGaoiQT921ZCobP2BOLZbzdi8bYqKaAU1TRI8pQBeTAzT68gFlY1inNPuLyaQJSjqRHPvHErTPDjr2fdjSqTVUZ3cu0aAtoF+nW8uGAzft1cKc9Jd4bBjq5oTcPTGSGpCWY5OyhmO2NsDn43KhtDMh0hVbP5VVXF+x6xbCu2DpKXXJMsJHBNkqnIs4Vr1GIzw+vzwOjTmFfcU8nc4LLjOaPDENR6GgpsqR1cVYh/7a3Ncm+w2rt9/Xx+7vG8Nv31dJ0e2h5jLur1kJUyIMWGk/cahI+XF2F4ZpIUgVozBOKdddsnEeDll18u4myLFy9GZmZm8/1/+MMfcMEFFyBS0B2DlYW1UgEm7YPZmYHpCXCxmtEZn2MXkF9TIjMxs5zVWJo7AuedcAtcls6V4vsa0v8b7PwF+gQdVqM4drUNHjGsUTkOnDptMF74fjPWldYrIZ4YWP/dAds83vh5G37YwDni2qiK+qYGORD0Ga3UG2Ay64OlRRiTmyQUWH7ejNmlQsFsL3v5pMdJ69umuAdbHzwdBORJLqckr0ZWbMOO5Cz88ZQ7UO5I6/K1B88X1+eju7w+ydByfdLOSZEymyjmZkZ1o0cy0yfsOVAF5H2MWLaVREvb6q8ormdD+l7Z10dToSI7E1Gct0zBTFFiDxq7J/3lbKlgH6vFJGuV61KqHoExGKzWcdQaq+wter59Xjz6/n2YvnkJ6qwJOOvk27A+a7AwW3ytKvDc2yn6PiQjEQ67RfreyRJjoO1oh9HUXuB04p4FmFSQiuxkW5fouEq4rX/bSnvoqD2BZxD1CUprXcI44RhBJlQHZyRi4sDUZmYenXiO2iutc8moW1YQWS3MhBsPv3kbpm1ZijprIvLKtsMzZLRU1hnQsLqtB9O8jiN2G4C5y4tkXdLsCqs4H11LlnFV8mjg1wSLWa6DSuzzVhZj+ois5nUbSjVbH/mn2Fd9h1i2lWFZDqyvbgyZvGQrIVchK83JNpPs6aSC85zY7m2A28OJN15NA0TcL04r8MtZoo1N414MeFvFt3yVg9f9iMffu1dGaG5KHyhToXoCssRO33uwtHgs31Et90n/uMUgv+Nhx6QYW2LTE61CVV+4uUriilCCwvHOuu2Tv+qbb77B999/L2PNgjF06FBs374dkQI3TjoTpN9pWRqD0LLpwGck2WAQ0QQfvB4/ejMnY/R5hbI+sJZVv0E46+TbUacLVkUhWqusazM2NYoMzx4eejQszhtXQjyxs/57MqGAtpGTkiCfPZ0jUl8ZMHBUGINrOtQ8LH7bVq31BAUoSwzQCR4KpCexd5a9gElWE/yBsR0UfwvV9vTghw9hUtE6lCekSEC+IyWne38ADyTStgJzOplIaApU9SwJWhBF8R6hE/vRfDjQ2VLoW8SyreSHqP5qI9CoU6IJIrpNfgk4+T0DC12Mh8EGv2fgTJugcjPPJzpZXLP1jR6p+jEBxuo6abpaf16jUBMRcLCu/PxFzFr7A1wmCy484WYsyRstz0/BQjpqDPgb3BRohIx34nPRfvnVkmjBlsoG5Hp8yEtpvyLSW33dSrit/9pKRwjVnqCfQWwFoWhgtdONnzdXCNtETwoHg/ZEai/7Tpdtr4K5sQGPvHk7pm1eAqctAbf++QE0DJ+IfLNRguV6V9vrYMWdLVperx+pdhOqrGZRcuf5odkek2esTGrJMtoRzz+dVht8zZ2N/FMIL2LZVg4en4PKJRUhk5csHjB4ZYHBHhykujVGFqvjhN2q6YBw5fpcbqEu8lyRMybAXQ8uvh20/mc8+c4cCcg5reOLEXv16Nrp9TGmOmhcDo6anIc7PlyJ9ARtwgar4hR108WC6RduLndKoN6fWVR94nVyDqDX25YgsW3bNqGQRBKjByTjsoNH4dF5ayXI4ALijVRs3irrm7CN2ahejMo5H/aeGefg5nn/lCCjIjEV0QyhnASUqUnxooNJx44bApXWmcljhZSHkRLiia313x3xKvaRltU1CVOCzrM2+zVQ1TMbA+PQjEizW7C1skGSNxajluSiLfEx3KTZ4tAgDg3FpazYIYG8FjjrKs7BeHj/0zGqbAsuO+ZarM8s6Fa7hT7ekFVy/Xl5HXSuKETH6qXPT3EUI3KT7ZgyOE3WNRMQ8UqPimbEsq2Eqv5y3VEVmnGz1UzSrPZVelWNHP/iF1XcRIMRKTbOW9YCZlbShYZo0s4jW2CcE/VPHFZWCUyy19qKakUJOinAQnll2rGYsXEhHj7gTPw0dBKMUhHR2Cr0vRiseL1MQDHoBzwMatjD4QHqGj0SvPP12LvbUb9eb/V1q/Oif9pKKGq3o53PXp+SEzw+j+1FhTWJIqTIvvL1pfWSSNUTYXTcqW1y4e+GY+Ga7TA9cCn22vgbGmwJuOfSv2PryElgXZ2PZYDPdU/thODXpD2wzamktkkYKUws+3weCXS0ark2J53nIf0hskToI/FvCXXNHY38UwgvYtlWRkixKyVk8pLBKwNZtgnyrGCSimuQiaMEixHlTR7xgbjmWAThnu8PtGEI/NpUHPpeGksLOGDDQjz5zl0SkH8wZn9cedTV2kSoHoBn1oAUu0yr4ZkyMFXTJdKZZNSk0sHWSJvZhGSbpV+zqPokKD/ssMNkpvg//vEP+ZkbVF1dHWbPno0jjoi8sNnB43JlzuRDn6+W/j8GnczmUHGW9KfSuia4PZpyZ2/hq+F74tuhU3q82PsChoBYz4Bkm1B6/QyyzFp1ZVxeitD8WW1kxnhT2c4gRgnxxNb676p4FTd2Oj6kuTIoaHD7ZLNklZn0IyrkysZvMEjlvKRWo0bpmylHWjAjSuo7gxKunUEZidhc4WymBMoYpVaGxrmxh57/VKe2wt+yssFqBJkcPGgYjPDpSNslhZev4XR55TUY4PDaCV7vboNSkZpgbT4cHHFKj4pmxLKthKr+kkJL+iBHutCGVhbVauwrvzZfOcmmVciZwOI6ZfBNsSmKU60qqpWKNSt+DNwZAPA+ec4mr4xTokAVgxq2X5FxgpwBOPPiJ1HFBS8OGu3JJ5V3BuS0YU7QYDJMBKjYhuLySOsWhbIoTEVdiL5MSKnzon/aSlep3fr4PFbWgsdwsoecezgZJAxUWBhg1TDYcTd7mrD3FefDsHYhnFY7rj/vHmweOgEWqbD7RLWaZ8+04ZkiZhh8XfzKKSI8D9gqwufmAcJ2EiZ/tdZyg7ShsErOoJ425rCaezTyTyF8iHVbaS95yZ85z3ttcZ2cB5o+iEHOERFXo/gyR6G5tUKazA6XcZZ+qZzzd4yLmTjaWObE7qt+wj/evhM2rwcfj94PVxz91xZ+V2c96K1Bmzljn8HSBtgdHRGj0dBvWVR9NqecIgvjx49HY2OjKB+uXbsWWVlZePXVVxFpvLRgE576ch2Ka1zNKoQMRvJT65CZbEea3SyKtLsyqsbs9eC2z5/GP6f+AZsyBsp90RyQ62MSmEGmumitywuDySgOJg8RBuW6UTW4PCqIieH131XxKn7eI3OSxBHSx6ExG8vgXFNa1yrlnONNU0ls0taFzeyVObOk6zKby0CYfbXThmdIcN88Iq1ZWdGPa75+UShTvwya0GVb8QY2dz43pyowBJfBToGAnw4T0Ujl62axK5/0wjPwkf7ffkCPimbEsq2EcqDoULz64xZJSLE6wDOG1T068QyKuTDZN86kMINzVtumj8hEUY1LquxMfKYm7qRcst+OSS09EKFIztm/fYhicxI+3W2GOFpGmxkmt1co77RNVu2YPGPfIYN52iCDFtJ+Sbkfm5cMm8kk1Uc9UeVQe3nUoy9tZdOmTbjjjjswf/58FBUVIT8/H2eeeSZuvPHGNpTgrmB9aS3+u6SiS9RuBiFkV9EnE3Vpr0+CDSaIydIrrmmQfu6N5fWigN7CcV+9GoaFv8CXkIhnrn4EK9NHwdvIhJMmTsrWqsn5yTh92uDmvvVgyvleQzKwcHOFJJx5VnHMGpPS+rg/ninsSedoTybMDh2fK+fGmpLaHo38UwgP4uFcCZW8ZKDNxCpXM9uemLwle7HW45FzJSfJKqKcXItkaEmA7vHJ+iX7gwG89HX7DRjRUI5n3mJA7sbcUfvgsmOuEeFp+k6MATxerzb5I+A8dRaY89/tPSwdJ+1RIIkrrvXJBakiANyVCvjIfsqi6pOTt6CgQAQWXn/9dfnKDNV5552HM844AwkJCREPyO/5eJUsbAahlOknWGnbWN6A2iYv8lPssrDZW9QTGPw+PPDR33Hciq9wwMZFOOiCp+E2tVVSjAYwC0ZRLmbU6DSmsu+W/YZmA2ob2Kei9U7qAbkKYmJ7/XdXvIobJxWll22vDlTUvBL8ctPmxsmvMvc4MMZj3IAU0WsoqeE8Y6/M/eYhMDE/VSqC2yudbfqZrvz2FVzyw5s4e+H/cOBF/0SZI73L10s7Tks0C52X1yFz1KUyyTYr0ukNEuTQmaLjxWXMIJ7Vx6wkqwRD8U6PimbEsq2EcqC4Jy7fXiPBBu1HH5PG4Jcih0x2Mhhm9Y+0vgn5WrKTEy4SA0FAMHT7W1NcI4HI6Lnv4U/vPSYzk3N2n4CKUZOkisgKPFtIftxQoc1nDvTecsSMw+ZBeX0TspOs8nq6QJbay2MLfWkrq1atEgrwM888g5EjR2LZsmUikFVfXy8BT3cxbwVbonxdonazrZBOPYOBdIcVFjvHcPolOObaHpntkBnmp00bLJW4Fo77mDHA/PkwVlXh6HF7wLKsCEu2VUuQzeTUxPwU0RViABCaJs/AIlOCddKEtZ5y6jAYhW3Cs0Oqrmw7CYxPIxy7MPJPofcRL+dKMLhe5y4vEcZhXiq1QrxSIac+DzuSuMfXuzUbo/YPf89EEu2moUmb+MGfsx1WbCp3osmajmcPPxf7bFmGe065Caleg6zvkromaXdiW5PP74WPrYDMJwfE4toLzgvSbDhnv+F45usNLdgwPOfyUjRR4M4q4MZ+yKIK+47gdrsxduxYfPDBB2IAvEULmpq8eOqLdRJYEHTc2XZCcSreeHd5XZNUyqmu2eTsQVbT78ftc5+WgNxtNOHmQ/8UkYBcPyzIaqHTxmxZcI6BxsVCokZtMYqjmJ3MDLhBstOagikpl+xVMUmw0196POJ1/fdUvIqfN+cPM4zeUuEU9eYxeSn4eVOFOCx07tmPRzosabi8VTodMtP4nOnDsGJHjcwx5+OY7OEyZB8U+6HO/vk9XP69lrmeM/PcbgXkhAhZNfmQ5rBKC8q2qgZ5HSYOeGCRTsXsLBMGpH0RpETS6WNCYfKgtLinR0UrYt1WutpnTgdkdVGtrDtdbZ3rdUxustgPH5eZZJPEER2pZG7aQaD9jc9LwQErF+Di5++U+xYccTrWDR6DPDMFc0xypnGPnzk2G5ML0rByR21glKUmYMXX0b+qvTz20Ne2wiojbzqGDx+O1atX46mnnupRUE6l87ys9E6p3QywF2+tknXq9ZG2rikyU7zQ6rBK4LG8sAbHTs7HAaOytXXrckmFHJMmaU86ebJ8GUka8wQ/ahpI46WopyZWOndFsbRZMTgIRTmnTUwdmiGV+YVbKjFpYIpUJDmKjfPH2WvOZBfp9bxPv+7+LFYVTYjHc4XQmVijcpMkSUWbYbKJIza5JtmSR4bJKGqPWEySWOLZwtngLIxoYzlZyPCIvg61El7a7wS89bsTUVLvlhioppFFFzImfVK0lOkfnKZDgUOzppquV1NYz5Rvyf5iQjk1Ee/+tl1eJ5gNw7VPW/rDHgO7PK2jPyHsQbnFYhG6SDTixR83obBmp+ymHqMGT0LjGtxQ5pRqcU9w9Tcv44+LPgJzqBRM+LKHKoadob2ZtQga3cGAmvRiUr9IW+F8ds6i5aHDf825taRW8m8mhZKOod7DxQoj++ul+uj1SQ95f+nxiNf13xV0NLooyWZBusMm45T0hE19oGLA0YJ0SnRnhE5VdpJdDgiOsOHGzOeTrjzhrftx/NLPccv8f8rj7//dH/Hy7t3v9aLpsl+XBwjHOyVajJIp5sEwLi9Z6LwMdEjt0p0vHmRMGJy29+Cdjp1CnyPWbaWrfebcd2kDew5N1/oCKxskOCDzhNRx7qmHjMuVYKE9pz7lh+9w0ZM3wMAs8llnIfeeRzBxRWm7/XetBbVov3z+/tavFy+IBluprq5GRkZGj/4tbYCJ0c6o3VyznF4wcWCKnBesYjOg4HlC5hN9EZ/PIIkn2bebmoCTTwbmzQM+/hj43e+an5dBCUe28jmGZCbK6wdT5g8ck90u5Vyff04rzE9PlIAnuL+dRYxgbR018i96EA22Eg5wnenrlf781KHpLdaks8mNr9a4ZI2xdSk/1S7FhxSbWdYrCxR5y3/FxV+8hKtOvAmlZrv8+4RkmySLqUPicnsCY9ao16ONjNZYIV7kp9lQWusWoUX+3kRRUpMJeWl2TClIxS+bq6TNapasc2MbNszSbdW4+MARygZaoU+4M5dccgnuvfde/Otf/4LZHB10HTopb/y8tUvibQxSSTXsrlmf/9PbuHTB6/L9TbP+jA/GHdBrgbYYgdEgNHuC65qVQGZwOZqKlUe910QPyBk8DUy1y2OpKJqbkoBHTtsdQzI0sSDp3ap14aOlhSJwwuwa+20NTZCDhDM8z9pviIyK6k89HvG4/ntjdNG+IzJlHuyqwlpxeAhSkujw8N9oyZ72RTxe+XELvlxdApfHj0PXfI97P35UHv+PqX/AE/ue3O3rZKaWnBc6auzdZQKKPfAn7DlIApCVhbVSQdR7ErdXNcrv9YQBkwhqLUcWsW4r7aGj/rj2FKjpx4Ry6q2LFuLKv18Fs7sJOPZY4F//wkizGcNzUtrtvwtFA+Ta72/9evGESNrKunXr8Nhjj3VaJXe5XHLTUVNTI19tXaR264EHqezUYaAQL/VMmPwlo4/tUAxAspJtOwPy998HbDYgKBDrihr6L5sqxIdq77qY2NUr9nqQ3uK6W2nrqJF/0YN4PFccQS0SuoBncJKozuWW9VrlbMKWcqecJWRy0C9i3DC1aBXu+vd1SHQ14OzPX8C9h10YUHCHCMNJVdwAmeDBr6zGm71+EX6ubPBgVG4Khmf5hWHIuINg8E86Pa+F9kKwbTElYWdRUwkddow+WZ0///wz5s2bh88++wy77bYbHI6doyeIt99+G32NTaV1QqHqCri0WGHrDo5Y9S1u+uJZ+f7eA8/CK1N+36V/x2BbermlNxdy+JA60voxNCzp3fV65XHs03BYzdJzRbD6wmx0YIStqFJzNAEDdhoMs2QHjs6SgLyFwzYAMgNXHSTxvf57M6iYOSZH7l9ZWIMPlxbCFehd6owWy7XFx04uXI1H378PJr8Pr+92KO6eea42n6Mb4JbP5062mbHX0HRpseCYs9oGDz5ZVoQNrGC4PBiUltCiJ5HKuqRSMcGgqISRRzzYSntorz+uvftDOfU51WW4/MErYGt0AjNnAq+9BgSczO723/XHfr14Qm/YynXXXSfBSkdYuXKl0H91cK4zqewnnXSS9JV3hDlz5uC2225rcz8F2tZXN3ZK7ea5ogce1D5IH2ptEXzQO6tu8MDBBtdTTwXee08LyPn10EN3XnMX1NBLa1zITrZja6Uz5HXxdYdmOuSrtER1gZLeX8Wqog3xeK7oLRI/bCgXX4sB904RRIsU5sjoYKsg2z6Y1KVPxHU7dP0y3P7S9RKQb9htbzxxyDla66owZr0ShMscc37V9Ejl35KdwmlUFC7VNHkMIpLL1wwG7ZNgc6L+fTCU0GGEg/K0tDSccMIJiCa89svWFjT1jiD7Zzc13r4bMhmL8sbgx4IJeGraie0+LsthkawV93eOo6G6bkmNS8SxOE+Wi7eirkmq3hRw4EHEA0BG6ARUpdnfQUEuClhNGpQmBlntbMIvmyuFEqmPSSBtF26twk66F4VRQh0O6iCJ//UfjqCCN45o6iyhw6oFq+QU3OGSWpc3El+M3Fts7IbD/9IckHfH7GjKVqMBvxuVieHZ2uuQvk661vIdtVLdYBsHe+A5M52VEOpEUNiN9nDI+By1vqMA8WIruzqbud292DIW9vXnAN98owUe9pZCcAr9B71hK1dffTXOPvvsDh/D/nEdO3bswMyZM7Hffvs1j5fqCNdffz2uuuqqFpVyim4dPD4HlUsqOqV2h+rN1ivU9IP47yfnJmLQn88D3nkHoBL8u+8Cs2a1S/UNBS1I8ElCl48NdV3UIDlpr0GYv6qkW5R0lfyKPOLxXOG64uSMd37bLsUFTr1JDUzYYBGC9jI0K1FGpdGnYmBOnZLBG1bgqZduQLLLiWUjp+DN6x6BcWs9DA3sLTdIUM4RgKSoe4MKhSTl8j6toOGCu6pRinvsYR8fJBhKaAkzbWSg/n0whPFlMgq9fVVRjYox+ioop1rn/fffjzVr1qCpqQkHHXQQbr311oirHdIp+mF9aZcfL+MpDd0Yzsd+q4RknHra3XCZre1W/Xjv5EEpGJmbij2HpGuzv9MSsKGsDp8sLcLS7dUykqogPVGMgL0cDKxZXWTyyQ+OuqHSrhkJNhNG5TiQkqD1fFAxccrgdBw0Ngcrd9Q0PxeD90mDUjFr4oAOq97qIInf9R/OwKIrCZ1tlU7J7tKuLGYzmkxmXHrM32D0+Xo8JpBPTxsKDsh/26r1NMl4P7MJGQ6LiBYWVTdKkos9hYPSE6RSzpYMhcghnm2lJ7OZO9yLSRluaAAS1f7cH9GbtpKdnS23roAVcgbke+65J5577rnmPtGOYLPZ5NYaI7LJAknpNIHbWW92lt2IMx6/EYb3AwE5A/MgQTodji6qodMH6yyxzPYsxSSMDcS7D8bWQdoEFdQ5BpbFOAbWHJXJikZhZQP2GpIuxQdq54wrXIuHJCCvx9Jhu+HG8+7GID9F34CMJKu0b9B3Y5Vdk9EKyKzLKFkG5JpAdC3bRwwGWEwm0eMhK3f3wenNgTmnf7DYwWvg98HQk2n8HceFury+Lp2D/QVh9UTvuusuMYBDDjlEjODRRx9FaWkpnn1Wo3VHCj9sLJdxZ12FtG13oaq+x/aVGF+ysVmgymVpexjpYEBCRc9bjtlNgu7goIWL8s8zWwY2nEfIMSFLtlUJTYVKiaRSUZyEQflvW6okOxZKgE2nF6uqd98iWtd/uAOLUAmd4CCeAh+JWzfj1GXz8cg+p4jqusFigtdP+f+Wr9VetTz4fp4dPIQ4Kkrf9Nl7SEeLDhjZIsyLsScxK8kmjhQD8SmD0yQw31yuifMoRA7xaivBaD0DuaPZzC1QVQXcfTdw++1aZZyLWQXk/RaRsBUG5DNmzMCQIUOkj5yvp2PAgAE9es6uMvI67M0emYbkFz1U8wLeegs4IrQ4aHfU0Pn6HV2XYhLGDuL5XGlWX89JkjVNViBjAE6+cbq06RsM0kfmpmgicM4mXPzQA0hprMOa4RNx0/n3osRnQZbbJ7ZBDM9KxDfryqX9sNrplriD1W4KPXPSgPa9X2Pnclwyda1cmqK6rbAG04ZlSqWdP5PWTqwrrW+RTGNAzsII22nZbttacPGc9s7BfoKwBuUvvvginnzySVx00UXy8+eff44jjzxSxBa6kmUNF75YVSK92F2FThPXhaRCYWzJRjz35q1IddWjxubA++MPbPf5rGYDJg9Mw51/mCjiaaEQUpgnO7ndg2C/EVndEvlRCD+idf2HI7AgE2NNcS2OnJwns8mD11/rIB47CvH3Z69FQWWRbPwPTz9N5mq2Dr51kcJQ0B/L33OsGgVKOPKpIEPr+aMYEFV6m2d0BMau0RnjQUCVa45J4wGi5sVGHvFoK8HoitBU8GzmZtTXA0ceCXz/PbBtG/DKK5H7IxT6ra3MnTtXxN14GzRoUIvfMajtKbrqm3QYCL/5JvDrr8C++3b4Ot1RQ+/supRPFRuI1LmyadMm3HHHHZg/fz6KioqQn5+PM888EzfeeCOsZHT0AoJbMlioY/BLJXTqRzGoJqW9tM4vhTxqVLGK/fHsx7D/sw/hs7/eg9EeE7Lq3bjowOGiScXJBMW1TdL+SnE4UuGd1V6xb3pLFH5jj7jBaBQR6BwZ22mUVlsR161uFF0hFjz0oiARnEwTKrsfEpDvPjit6+dgP0JYPdEtW7bgiKDMJbNV/BDYl9R6Y+9LbC53SqDdVTQHBwEmR+t/OqRyB1584xYJyH8ZOA5zR05r8xymQPBACu0pew3GkZPzu50N6uggUIdE9CFa139vBxakNDEju7nCKf1BnKHMtU0niAgO4jNcLpzw2JXIqyzC5rQBeHXKLOlLavKENsjOzDTRasTgzEQw1v95U6XMx+TRQc0Fi4lBuV9UrPlEPKgIBvAUfSPlioeZmhcbecSbrbRGV4Sm2qjRUk2afZAMyNPSqMoVmYtXQH+3Ffadd9Z7Hm40+zgsqFDg8PTTtV+QHt9BQK5DqaH3P0TqXFm1apVQ55955hmMHDkSy5YtE1HE+vr6TicWdBWOQEtGvcstZwcDciaX9POFv3NYTWisb5DCCJm5lYNH4H+3PiGBdl1JnbT87TUko3kiDm1j0VaKubmkSs72Pvp91OLxev0SwzDAz03WkloEX5PtgIxtTp5agIn5OxknRHAyje2EpKyzMNLlc7CfIaxBucfjgb2VEA1nBrrdbkQSXMQhBAHbhU6V5Ver2QiTwS9jnKhWmFNbhpdfvxk59ZVYmT0U5504Gy6rXUaoSRAv1Ck7BqU7JIN1+t6DpardX7NA/QnRuv57M7DQe7dZcWC2lWMwGGSTirS9yilTAthDzk3a7HTihFsvQt7WdShNzsCZp9yJIkcGjBQ6bBWEM35OspqE2t7o9cHv09pIgqvn/Mrn33NIhvziqzWl+GljJSYXpLaYmZ4Z6HNiAM7qOZ+Ttsu/Z1B6opoXGwWIN1tpja4JTQWp0TLwOPNM4NNPNar6Rx8Bkyb17UUrRCXi3VY6BO3inHOAl14CFi4EHnqoW/9cUc/7FyJlK5xOwFuwWOLq1avx1FNP9VpQrrdk/LSpHJX1LiTZObFJW8cSdLs82K+pBDc+eQ3uPu5KFKYfhpwUe7vskGDbYMX7l02VMqGmtK4RZXVNsJh8yEqyIjOJc8x32guLHE0eNxxWiwTkrYPp4IIhizbsISdlPRQSlCp7eINyLgxmV4OFPhobG3HxxRe3GEnQ1+MIuFgZOPg8lEprHxaqDpq0MUt04lkRZGaVSs4OmxE5rlo8+uYtKKguxqb0fFxwxl1AaiqyLSZRKOTjGQSMyEnBHoPTVTa2nyFa139vBRbBvdvc4GlLFBOxmk0YlZqA79eXyXxMUpNKSqtx17M3IG/NYtQ7UnD1efeh0D5AGCtsCdG3eOayOLbPRruzm1Hr8sIKAwZm2lHh1IRMeB4w6A6QqURfITXBKn1Tq4rqUNPgaTMznWAGlocXxd6oVLr30EwlLBIliDdbaQ1HF4Wm+Dgxiosv1mi57JWleFUXKoEK/QPxbivtwef2oOH/zobjtf/AbzLBv+9+cl50F4pV2H8QTbZSXV2NjIyMXns+vSVjeWG1iLzlWjhj3CBxB/vKR1Zux91PXonkyjJcNP8lPLT/DKlod8QOCZ6kc8i43OZCDKvbrJ6z0t0aLHzwNjInqVPGoaM752A/RVj/8rPOOqvNfeyriDQ4U8/OUpzfJ8FzqKI5lQe5cAdnOrBiR430oFfUuyUoYbCQYwXm/ONGjCjdgqqMHPzyj9fwe1umiEY1eLxIMJswNMuBvYZmNKuqq2xs/0K0rv+ewtFqQw3u3WbmlOMyzEaj9A2xKs3sak2jRqm6+dV7sceahWiw2nH1OXOwIrMAiR4f6lxeSXjpYMBN22NV3ErxtwaP/MwepgEpJrg9PtFkMBqMkgQgZYuvxaA8Ly1BesRPnjpYDongmenMwI4dkIQNZQYMz0lSjJUoQ7zZyq4ITeHmm4F//YsektZDfthhEb12hehCvNtKKKwrqob7nPMw7pO3ZELHy5fOQV3mFMwqqVVJVYWotxVqMTz22GMdVsldLpfcgscHdgauffoyFHiud3klqDUZjZjUUIpbAwF50dDReOWGR3HRjBEyTtDRRXaIHqDzscu314hANn08tiLS59Mq5F5RdmeP+Al7Duz0Obt1DvZThDUo59iMaATprH4zhaEawZCcdFZmXLUxY9p4JVa27zxuN/GLnv12k1BxR2QbUV7vQm2DG8UuL76ZeACGVBej+t0PcOLvpnZr/qxC/CNa139P0XpDbfL6mnu3hS7V6BF6FEdg/LK5SuxKG6sB/LjHTExZvgDXnHYr5qUMhadOy7jq8TgfR/YKf3Z7aYN+SX4V17hk46ZIG8vpTKhx1AZvzAgHgweS3WKWa2xvZjrVQRVjJfoQb7ayS0JTv/898MQT2uizE0+M9KUrRBni2VZC+VAbSmpQdeY52GveO/AZTfjougeweZ9DUajUmhX62Fauu+463HvvvR0+ZuXKlRg7dmyLyQWksp900knSV94e5syZg9tuu63b18TiwhG75eHnTRViLwNKt+Ocuy5FcmUpyoaOwoPXPIFhIwuae8d35ewinC6PjERr8jSJFlBeih2XHjwKo3NTuvVcXRFc7I8w+HdFOjPGwMxTamoq/vzsN7AlOrQRYuVOWWQSmBsMSLCYkJVsw63HTMDvRmW3VY/mjHC/XxbTweNyMT3NAGN2VqT/tLj9rEj5SUnp3NgV+ub9D1ZfZ2C+eFuV0MdZmU6wmmUsGX9esKFcEl0ldS4RG2GGtm57MbabEoWey0o4b8F6DRYTJMvLLYkB9LDMRKwvq5eAfPQAzenaIQ4bx7AZhYpFjYcjJ+UhxW6RTZ5Z1osPHNG8qfeXRJmyl9h474PPEgoNcp2T9tcmUVReDmRmhv/i+yGUrUTnex9q1ObwLAf2eeAm7PXJG/AZjfj4bw9gzcwjW8w7br3nK/QelK20BMeplXNv7gDsH9cV1ikox1GC++yzD55//vkOFd9DVcoLCgq6fK7QLzNu3IC/zrkYqWVFKCkYgQf+9hQs+QN6JXGl2ye/sgWQ5jYiJwkn7lHQ7J9197k6PQf7oa30S+L+sCwH1lf78LuRWZhS4JEAg5maBIsRVQ0eTBuWgekjdgbazQIIFfWwPfYwms45H/mD+3c2R6F/IljBlhtr695tZjrL6lwyIuPI79/H8t2no8ieg+2VDag3J2qjBY1GeD0csqFVyJkWZM2bX6nnabeZkJpoRXGtC9nJNgm+y+tcIpSYlmhFg7tRaPEsnuel2eV56JyFyrKq/kGFaEK7QlPvvgMMGwbsvrv2QBWQK/QjtDdq8+fNFahKH4UpJjM+u+ae5oCcUGrNCn2N7OxsuXUFrJDPnDkTe+65p1TsOxvBxr734N73nvhl9S89IAF5Uf5QPHnjMxg6ekivBbq9KZKoBBfbR78Myg8en4PKJRXNQ+25mev0CX4/a+KANouDPxbceRPwyCPAZx8C334bGHSmoNC/0FqlM7h3m3R29hkd/tXbuPJ/j6Hqm9dw7z2vYUcVpHecdkSmCWno/F6q7F4//KSiGwywWExItJklcE9JMOL0aYNl1NmaolrpYWddnWPPCM7ITEuworrBo8baKMQM2iSKPv4YOOUUTWX955+B0aMjeXkKClExapO6JXTU/zdxBgon7YURe4xrFgTVodSaFaIRDMhZIR8yZIj0kbPCrmPAgAFheU36Pr7X/oWav2ag9rw/4YKCQS0C3d5gDfZmkUMVTEKjXwblI7KZVUrp3rzKO+7QAnLikksoEd3n162gEC0IVuls3bu9z4JP8Mf/PSaPW3XoH2BMT4ejtAQenx9WkwFun1/aREh5p1hIAvySFGMP+dQhGUhKsEhg7/H6cdDYXOw7IhNv/rINy3dUizBjeqIFkwamYcrgNGk1cagsq0KsgsldziL3eIAjjwRGjoz0FSkoRHbUpt+PvV99GssPOx41jgxpk1qFNOQ0eqQNKhhKrVkhGjF37lwRd+Ot9Tz0Xu8YJp0+PV2EQY1WC1Ie/Ttak6dDtYZQe0dNn4k+9NudrFv0iUcfBWbP3vl9nCudKsQuNm3ahDvuuAPz589HUVER8vPzRW30xhtvbO5zCqct4cMPMOhpzVa+P+J0vHT4OUhi8G00SpXD7eNscROyk2yimk7bo1o7K+MJFjMykmwSnOu9gnS65q4oQVmtS0at0ScbmunAYRMGdLuPSUEhqvDbb8BRRwENDVpA/sILmuK6gkI/QotRm34/Zjx1F3Z/9yWM+/w9vPTUezIbeXO5U3pPgZ1BuVJrVohWcAwbb2HHjh3AjBnAAQcA//hHyPODLMMnvlgnItX5qQkYlulAg9srgr1KKDH60G+D8i7TJ158Ebj8cu17KiNeemmfXJuCQk+watUq+Hw+PPPMMxg5ciSWLVsmip/19fUdjuPoFVta+jNw4VmA1yuJq5z7H8fEFaWSpSVdnWKKFqMBuck2oaizKEJHq7bRLQF3VjKTBv7m/vAxA5LxwoKdfYYD0xOlz3BrZYPcrw4ThZjFmjXaqLPqauB3vwPeeEObSa6g0M/g0Edtutw46vkHJCAnfjn5fPhsNgxM86CkxiVJX7vFpNSaFRSIwkJg5kxg7VrA7QbKyoCcnBYPWVNcgzs+WCkV8gSrUcbUZiRaMSLHIa0i9LU+W16M4VlJyoaiBP06KO8U//sfcO652vdXXKHNj1VQiGJw9AZvwUqgq1evxlNPPRXWoBy//gocfTTQ2Kh9ffZZjLRYMDwnpbn3/LWft0jWVkTaeAAYqLhugNlshMNmkgq63h9+yPgczF1eErLPkHRGdZgoxCy2bwcOPZRSvpqwG88Z9pMrKPRDyKjNLAfGPHgb9vj4P3Lf3CvuwPLDT5RqeIPbh4PG5iDdYcWG0vqutRsqKMQziouBgw7SkruDBwNffNEmIGcx5Ikv1ktAnpZogcNmljGyJbWNqHW5ZVKOEkqMPqigvCNQDZcLfdYs4MEHRYhKQSHWwBENGRkZHT4m1DiObiEvDxgyBMjKalH1a917/soPW/DDxgpRUyfSE62YNSETM8Zmi/o6wTE4RIs+wyAo1V2FmEZaGjBmDGC3A598AqSmRvqKFBQiBuZUT3/nCaQHAvIP/jwbKw8/EQ2N7uZq+GnTBksCVqk1K/R7lJRoAfmqVUBBgRaQDx0aUjyRfhaFcRmQc+Qzk1lWh1GKHetL6yUwd3mUUGI0QQXlHWHiROCnnyiXqHr9FGISFBp57LHHOq2Sz5kzB7exPaOnYFD+1VeA2awFGyHAisZNR43H1konNpbVNwfg7CdkVTxYhIRzxzlaLb+dXkGluqsQs3A4tOp4RUWb6oaCQr/D3/+O9Cc0Ed0vL78V8/c9Fq6y+pDVcJWAVejXIEX9kEOAFSuAgQOB+fNJh+xQPJGUdQrk2syG5qJGkt0sgXlprUsJJUYZVKTZGlzsX3+982cqJzLQUFCIIK677jrZTDu6sZ+89VgOUtlPOukk6SvvCNdff71U1PXb1q1bu5axffvtnT+zGp/SWvezJVjZGJLpwIwxOXJr8vrwwvebRXSEFCtWQ/h1Y3kdtlY4saPKGfJ5lOquQkyBYm4UctPpIJxHy0SWgkJ/x6mnasyRxx/HAQ/dgisPHY1LDx4lXy8+cISipysoBLcJrlypnR2skLczrUMXT8xJtgsbsa7R3UL1nVNvPF7qMjRgZE6SEkqMIiiPNhibNmniOxwxwNmxVDVUUIgCXH311Z2qebJ/XMeOHTswc+ZM7LfffvgHVTk7gc1mk1t7aDPjEi4Y2dZBBennnqPcaK/Op500MFWoi8u21wRoijvzh0p1VyGmQBGek08GPvhAE+W5885IX5GCQvQgPx9YtAhISJAqkaqGKyi0A8Yn77wDjBql3dqBIyCeSJV1Bt11Lo/4WayQMyCvd3ngbPIhM8mmhBKjDCoo11FUpNFCKMIzYQKw226RviIFhWZkZ2fLrStghZwB+Z577onnnnuuRUDbE7SecZnsbcLl91+G/GW/afTb6dN7Zz5tEHjNE/NTsGhLFZZsr5aZmkp1VyHmxgf6fFrCigE52zqYyFJQUGiJhISuJ4RVL7lCfwbHaHZFPDE7SRiILHiwd5x+HKcYkJ3IqTdjclNwyYyRiokSZVBBOVFZqTlL69dr4m6ffQZkZkb6qhQUug0G5DNmzMCQIUOkj7yUCs8BDKA2QjexvrQW/11S0TyWLMlgwtG3Xon8Zb+gITEZpa+9g8EdZGy7PJ82BPLSEqQfaliWA1VOt1LdVYit8YGkC152GfDKK1oL1FtvaePPFBQUepQQZvWPwcasiWr/V1BoD0xa0UY4h5yTahIsRkluuX0+GSubYDFjZLZDSWVFIVRQXl8PHHkksGSJJug2d65Gp1JQiEHMnTtXxN14G0Q9hCAE9xR1FfNWcCyZT7KtRp8Pv7/nWoxa+A3cNjsev/rvcCAHF/v8PapcOPT5tE0eoay3BqviWUk2nDN9mCiHqkqJQkyND7zlFuCJJ7SpHS++CBxxxK4/p4JCPwrIn/tuU3NCmMlbnhWs/jHYOGf6UBWYKyi0A9oGbeSVH7fgi1UlQmWnCvuonGTkp9lRVOsS+1J2FF3o30E5R0AdfzywYAGQnq5VyEeMiPRVKSj0GOw776z3vDugSnpeVjpHiuOgx27DmK8+gtdswf9mP46GifugcBfGkgVTrDh7PJjCHtw3XpCeqIJwhagZH9glPPTQzt7xJ58ETjtt159TQaGfoCO9EZ4VrP59trxYhEHV2aCgEBq0j4xEKwZnJoq/RaZhsl3ztehjKTuKPvRv8gI3es6MTUwEPvpI9ZErKLQCe48SAwrnjcmp8BsM+ORv92HzXr+THm/+vqdjyXSKFfvDeTjUNrrh8fnkK39WfeMKkRgfeNFFF3X4OJfLhZqamha3NuAUAp4vd98NXHxx+C5aQSEO0ZHeCH/m/esCCWEFBYXQoH1sKKuX4kd2sh0pCZZme1J2FJ3o30E5xXzY7/fjj8A++0T6ahQUog7MrJIyyADju/OuxstPvos1Bx7Ra2PJdIrVxPxU6RvfVFYvX1khV7QqhWgcHzhnzhykpqY23woKCto+6PzzNUXp667r7T9PQSHusVNvJPTZsqsJYQWF/gBlR7GH/k1fJ0wmYOLESF+FgkJUgiJr66sbm+nlZSPG9vpYMgbew2ckKYVdhZgYH3j99dfjqquuav6ZlfKQgfnkyd29dAUFhS7qjexqQlhBId7hUHYUc1CfhIKCQrs4eHwOKpdUCJ2cVKdwjSXjc6j5tAqxMD7QZrPJTUFBITzoqt7IriaEFRTiGcqOYg8qKFdQUGgXI7JJL09pHkujxpIpxAt6e3yggoJCeEY6hTMhrKAQr1B2FHvoV0G5PhIqpDCPQlRB/4x6MsZLoXdtJSclBWfskY0dVUlwuj1ItJiRL/Ryv7KlKIGyl8iND1TnSmxB2Urk0B1bybEDJ07KkLGcG8sq0eTxwmo2yXzlg8ZlIMeuzp9wQ9lK5NBb54qyo9iylX4VlNfW1srXkP1/ClH7mVFMSaFvoWwlNqHspe/HBypbiU0oW+l7KFuJTShb6XsoW+mftmLw96MUmM/nE1Gf5OTkNmM2ohG6gNDWrVuRwhE7cYpQfyeXJRd3fn5+l/o8FXrfVlavXo3x48fH1fqLR5vS/6YVK1ZgzJgxyl6i4FyJh3UWr3+DOltizweLh7UYi3+HspXotJVYW0exfN01Xbzm3rKVflUp5xvVmqYYC+BCiJUF3Jt/p8rMRtZWBg4cGLfrLx7/Jn5eynGKrnMlHtZZPP4N6myJTR8sHtZirP0dylai11ZiaR3F+nWndOGae8NWlAenoKCgoKCgoKCgoKCgoBAhqKBcQUFBQUFBQUFBQUFBQSFCUEF5FIOzcGfPnh33M3H7y98Za4jHz0X9TQp9gXj4TNTfoBAtiJfPMV7+DoXIIlbXUSxet62Pr7lfCb0pKCgoKCgoKCgoKCgoKEQTVKVcQUFBQUFBQUFBQUFBQSFCUEG5goKCgoKCgoKCgoKCgkKEoIJyBQUFBQUFBQUFBQUFBYUIQQXlCgoKCgoKCgoKCgoKCgoRggrKI4wnnngCQ4cOhd1ux7Rp0/DTTz91+Pg333wTY8eOlcfvtttu+OijjxDNmDNnDqZOnYrk5GTk5OTguOOOw+rVqzv8N88//zwMBkOLG/9ehfBi06ZNOO+88zBs2DAkJCRgxIgRojrZ1NTU4b+bMWNGm8/r4osvRqQQTzal7Kd/2lSk0V0biib0xGYUoguxfBbF0/mjEB2IFXuItbU/Jwr9KxWURxCvv/46rrrqKjGuX3/9FZMnT8asWbNQUlIS8vHff/89TjvtNDHORYsWyQLibdmyZYhWfPXVV7jkkkvwww8/YO7cuXC73TjssMNQX1/f4b9LSUlBYWFh823z5s19ds39FatWrYLP58MzzzyD5cuX4+9//zuefvpp3HDDDZ3+2wsuuKDF53XfffchEog3m1L2039tKlLorg1FG3pqMwrRg1g9i+Lt/FGIDsSCPcTi2v8qGv0rjkRTiAz23ntv/yWXXNL8s9fr9efn5/vnzJkT8vEnn3yy/8gjj2xx37Rp0/wXXXSRP1ZQUlLCEXz+r776qt3HPPfcc/7U1NQ+vS6F0Ljvvvv8w4YN6/AxBx54oP/yyy/3RwPi3aaU/fQPm4olG4p2dMVmFKIfsXAWxfv5oxA9iDZ7iIe1XxIF/pWqlEcIpJ0sXLgQhxxySPN9RqNRfl6wYEHIf8P7gx9PMBPV3uOjEdXV1fI1IyOjw8fV1dVhyJAhKCgowLHHHivZQYXIfF6dfVbEf/7zH2RlZWHixIm4/vrr4XQ60dfoDzal7Kf/2FQk0BMbinZ01WYUohvRfhb1h/NHIXoQTfYQL2u/Ogr8K3OvPZNCt1BWVgav14vc3NwW9/NnUlVCoaioKOTjeX8sgPSbK664AtOnT5cNoj2MGTMGzz77LCZNmiRG8sADD2C//faThT9o0KA+veb+jHXr1uGxxx6T978jnH766bJB5efnY8mSJfjb3/4mfTlvv/02+hLxblPKfvqPTUUKPbGhaEZXbUYhuhELZ1G8nz8K0YNos4d4WPu+KPGvVFCu0Gdg7wb7Rb799tsOH7fvvvvKTQcX/Lhx46Sf5o477uiDK40vXHfddbj33ns7fMzK/2fvPMCbKts+/s9Om+7dAqWUvZGlgCKIgooDB24FX/fer1tBVPR1vi9uPwXcuBBFRZCloKCyN5RVKN27SbPPd91PmtKRpGlJm3X/rivQnJyenKTP/5znfu61a5couOEkLy8PZ599NqZOnSpykjxx88031/9MxTrS09MxYcIE7N+/XxQkYXwD6yd8NMV0rGaYjoHvRQxzHNZD4HBHgMyv2Cj3ExROolAoUFhY2Gg7PU9LS3P5O7S9NfsHEnfeeScWL16M3377rdWrSSqVCieddJJYHWRazwMPPIDp06d73Cc7O7v+52PHjmH8+PHiYvPee++1+v2o6iZBf6+OvPCHsqZYP+GtqUDWUKByIpph2odQvheF8v2HaR9CRQ/BPvbvDKD5FeeU+wm1Wo1hw4Zh+fLljcIn6HnDVZiG0PaG+xNUMdDd/oGAJEliwC9cuBArVqwQLR1aC4XFbNu2TazyMa0nOTlZrLR6etB4dK7CUhsNGptz584VeUGtZfPmzeL/jv57haKmWD+BSUdrKpA1FGj4QjNM+xDK96JQvP8w7Uuo6CFYx74UiPOrdishx7TIF198IWk0GmnevHnSzp07pZtvvlmKi4uTCgoKxOvXXnut9Mgjj9Tvv3btWkmpVEovv/yytGvXLunpp5+WVCqVtG3bNilQue2220SlwlWrVkn5+fn1D4PBUL9P0885c+ZM6ZdffpH2798vbdiwQbriiiskrVYr7dixw0+fIjw4evSo1KNHD2nChAni54Z/r4b79O7dW1q/fr14npOTIz3zzDPSP//8Ix08eFBatGiRlJ2dLY0dO9YvnyHUNMX6CX1NBRotaSjQ8UYzTGATrPeiULv/MIFBMOghGMf+bQE4v2Kj3M/MmTNHyszMlNRqtWgpsG7dukbtDKZNm9Zo/y+//FLq1auX2L9///7Sjz/+KAUytO7j6kFtBdx9znvvvbf+O0lNTZXOPfdcaePGjX76BOED/U3c/b2c0MWdnq9cuVI8z83NFRf5hIQEcUGmG8dDDz0kVVZW+u1zhJKmWD+hr6lAxJOGAh1vNMMENsF8Lwql+w8TGASLHoJt7CMA51eyuhNjGIZhGIZhGIZhGKaDCdzkNoZhGIZhGIZhGIYJcdgoZxiGYRiGYRiGYRg/wUY5wzAMwzAMwzAMw/gJNsoZhmEYhmEYhmEYxk+wUc4wDMMwDMMwDMMwfoKNcoZhGIZhGIZhGIbxE2yUMwzDMAzDMAzDMIyfYKOcYRiGYRiGYRiGYfwEG+UdjEwm8/iYMWOGX8/tu+++89v7M0xDWCsM4x2sFYbxDtYKw3gP66VjUXbw+4U9+fn59T8vWLAATz31FPbs2VO/LSoqqlXHM5vNUKvVPj1HhgkEWCsM4x2sFYbxDtYKw3gP66VjYU95B5OWllb/iI2NFSs9zud6vR5XX301UlNTxUAfMWIEfv3110a/n5WVhVmzZuG6665DTEwMbr75ZrH9/fffR5cuXRAZGYmLLroIr776KuLi4hr97qJFizB06FBotVpkZ2dj5syZsFqt9ccl6HfpnJzPGcZfsFYYxjtYKwzjHawVhvEe1ksHIzF+Y+7cuVJsbGz9882bN0vvvPOOtG3bNmnv3r3SE088IWm1Wunw4cP1+3Tt2lWKiYmRXn75ZSknJ0c81qxZI8nlcumll16S9uzZI7355ptSQkJCo2P/9ttv4vfmzZsn7d+/X1q6dKmUlZUlzZgxQ7xeVFQk0XCgc8rPzxfPGSZQYK0wjHewVhjGO1grDOM9rJf2h43yABrgrujfv780Z86cRgN8ypQpjfa5/PLLpcmTJzfadvXVVzc69oQJE6Tnn3++0T4ff/yxlJ6eXv+cBvjChQvb/HkYpr1grTCMd7BWGMY7WCsM4z2sl/aHw9cDiJqaGjz44IPo27evCOOgcJBdu3YhNze30X7Dhw9v9JzyO0aOHNloW9PnW7ZswTPPPCOO6XzcdNNNIl/EYDC046diGN/DWmEY72CtMIx3sFYYxntYL76HC70FEDS4ly1bhpdffhk9evRAREQELr30UlEYoSE6na5N4qF8jIsvvrjZa5SvwTDBBGuFYbyDtcIw3sFaYRjvYb34HjbKA4i1a9di+vTponCBc1AeOnSoxd/r3bs3/v7770bbmj6nYgm0OkXCcYdKpYLNZmvz+TNMR8FaYRjvYK0wjHewVhjGe1gvvoeN8gCiZ8+e+Pbbb3H++eeLaoJPPvkk7HZ7i7931113YezYsaJ6If3uihUr8PPPP4tjOKE2Bueddx4yMzPFSpZcLhfhIdu3b8ezzz4r9qHqhcuXL8eYMWOg0WgQHx/frp+XYdoKa4VhvIO1wjDewVphGO9hvfgezikPIGiA0qAaPXq0GKiTJk0Sq0UtQQPynXfeEb8/ePBgLFmyBPfdd1+jEA861uLFi7F06VLRtuCUU07Ba6+9hq5du9bv88orr4hQFGpTcNJJJ7Xb52SYE4W1wjDewVphGO9grTCM97BefI+Mqr21w3EZP0MFEXbv3o3ff//d36fCMAENa4VhvIO1wjDewVphGO9hvTjg8PUQgQotnHXWWaKgAoWBzJ8/H2+99Za/T4thAg7WCsN4B2uFYbyDtcIw3sN6cQ17ykOEyy67DKtWrUJ1dTWys7NFzsatt97q79NimICDtcIw3sFaYRjvYK0wjPewXlzDRjnDMAzDMAzDMAzD+Aku9MYwDMMwDMMwDMMwfoKNcoZhGIZhGIZhGIbxE2yUMwzDMAzDMAzDMIyfYKOcYRiGYRiGYRiGYfwEG+UMwzAMwzAMwzAM4yfYKGcYhmEYhmEYhmEYP8FGOcMwDMMwDMMwDMP4CTbKGYZhGIZhGIZhGMZPsFHOMAzDMAzDMAzDMH6CjXKGYRiGYRiGYRiG8RNslDMMwzAMwzAMwzCMn2CjnGEYhmEYhmEYhmH8BBvlDMMwDMMwDMMwDOMn2ChnGIZhGIZhGIZhGD/BRjnDMAzDMAzDMAzD+Ak2ygOQ+fPnIzIyEgaDQTzPysqCTCarf+h0OowcORIfffRRo9+z2+2YNGkSTj/9dJx00kmYPHky8vPz61+/+uqrccYZZ3T452GYE6Hh2Hf3mDFjRrN95XI5MjIyMHHiRKxatUq8vnHjRvHaE0884fb99u3bJ/a5//77xXM6tqf3Ligo6KBvgmF8i3Nsl5SUuHx9wIABGDduXIefF8MEMqwbhvGeefPmCb38888/Ll8nrZBmGEDp7xNgmvP9999jwoQJwjB3MmTIEDzwwAPiZzK0/+///g/Tpk2DyWTCTTfdJLbToH/jjTfQs2dPSJKEiy++GI899hjmzp0rXj///PNx7bXXoqKiAnFxcX76dAzTOj7++GOPk6P9+/fj5JNPrt921lln4brrrhMaOHjwIN566y2xGPXjjz/inHPOQZ8+ffD555/j2WefdXnMzz77TPx/zTXXNNr+9ttvIyoqqtn+rCWGYRiGYRjmRGCjPMAgI3vp0qV49dVXG23v1KlTIyNh+vTpyM7OxmuvvdbIKCeD3Pkzec7JW+iEDBLavmTJElxxxRUd9pkY5kRoahw7oYUpMsjvuusuMbad9OrVq9HvXHTRRRg0aBBef/11sR9FjDz55JNYt24dTjnllGbHJYOdDPehQ4c22n7ppZciKSnJp5+NYRiGYRiGYTh8PcBYuXIl9Hq98Gp7Ijk5WRgOZJS4C4H//fff8dRTT9Vvi42NxdixY/HDDz/4/LwZpiPZsWMH7r77bpGm8dJLL3ncd+DAgcKYJq85QUZ5Q494QzZs2IA9e/bU78MwDMMwDMMw7Q0b5QEGGcwjRoxAWlqax/2sViuOHj2K+Pj4Zq9RmO59992HRYsWoWvXro1eu+CCC/Dzzz+L32eYYIRqLVx22WVQKBT44osvoNFoPO5fXl4uHomJieJ5t27dMHr0aHz55Zew2WyN9nUa6ldddVWz45SVlYkcwoYPSgVhGIZhGIZh3FNZWdlsDkUPi8Xi71MLGNgoD0Cj3JWXnAatcwBv374d//rXv0SBKQqpbWqQ33DDDeL/0047rdlx6NhkoKxdu7ZdPwfDtBcUrr5z5068+eabIlS9KUajUeikuLgYf/31F6ZOnSqMb/rfCXnCCwsLsXz58vptlO6xYMECjBo1SqSGNKV3794iQqXhw1X4O8MwDMMwDHOcM888s9kcih5//PGHv08tYOCc8gBi06ZNOHLkiPBmN4XyzGnwNuT6669vFLpLYe9U3I3yzx999NF6Q+Ldd9+t34e8hFTlkIx/qtLOMMEEebI//PBDUbCQirm54oMPPhAPJ1qtVlRSv/fee+u3XX755eI5HY+qsxOrV69GXl5evXaa8s033yAmJqbRNuqEwDDhAEWK3HzzzSgqKhKLXM8//zzfQxiGYRivcOdIoSLWTaMWwxU2ygMIMgqokjMVpWoKVZematE0cMlTTj+Tx1utVjcyEKhQXEtQ+wFniyiGCRaoVdmtt94qLupUUd0dF154Ie68805R1DA6Ohr9+/dvZjxTKDu1D1y4cCHeeecdYbiTga5UKkVovCuoHgMXemPCDdIRQZ08KIqEJlC0eEyRWLt27UJERIS/T5FhAlY3DMM4oFbOw4cPb7ad0nDdtRcMN9goDyCGDRsmclRzcnLQo0ePRq+RMUChHwQZE1Tk7bzzzsN///vf+n7K3kIhva6EwTCBCi02kXfbbDaLPHJXrcmcdO7cuV4rnqAK7YsXLxYPik4hTzh5zZtGpDBMqEKLUURtba3b+g3OfSglauPGjeLnLl26iCisv//+WyxWMUw40RrdMAzDeAvnlAcQVHyKjG/qU94SkydPFqGDFEJIYeveQnnoNJFqqbo7wwQSDz74oEjv+M9//iMqrvsCMsTJk04ecip+SJEnXHWdCSechUCp44Arw4I84s59qEaDs1giQfcqCmVnmHCjNbphGIbxFjbKAwiqJn3uued63bLs4YcfRmlpKd5//32v34O8ghRuOGHChBM4U4bpOCjE/I033hBGNLVB8xWkA+ph/tNPP+Htt98WIe4U+s4w4QLdBygFisY/FTpsyHvvvSe6dJxzzjniOUWQNAwxJCM9JSWlw8+ZYYJJNwzDMN7C4esBBhkeV1xxhfDauWp31hC66FPRtldffRV33HEHVCpVi8cnL/xZZ53FoVVMUJCfny+6CdCCFU2EPvnkE5f7de/eXeS7thYKYf/oo4/wyy+/CC+5p8JtX3/9tcuwedJTampqq9+bYfwNGdVPPfUUnnjiCRGGTvefyMhIUQ33888/F+kczqgqWjCeP38+HnroIRw+fBi7d+/mNCgmLGmNbhiGYbyFjfIAgy7mcrlchNO66pXsKqx3+vTp+PTTT8X/nqD8p19//RVz5szx4RkzTPtB4YG0QEXcc889bvebNm1am4zyM844A+np6cL4byl0/bbbbnO5feXKlWyUM0HL448/jqysLBGN8swzzwgvH3XpmDlzpojGovsRQalSN910kzBCaB8y0MkQYZhwxFvdMAzDeItMkiTJ672ZDuHss88WVdipoJUvobB4Cs89duwY0tLSfHpshmEYhmEYhmEYpvXwUl4AQqFQS5YsgcVi8elxKXR9xIgRbJAzDMMwDMMwDMMECOwpD0CMRiOOHj0qQqOob7KvyMvLE3nnXJyHYRiGYRiGYRgmMGCjnGEYhmEYhmEYhmH8BIevMwzDMAzDMAzDMIyfYKOcYRiGYRiGYRiGYfxE0Bjls2fPFkXKoqOjRU70lClTRLskhmEYhmEYhmEYhglWgsYoX716Ne644w6sW7cOy5YtE5XJqae3Xq/396kxDMMwDMMwDMMwTHgVeisuLhYeczLWx44d69Xv2O120aObvO0ymazdz5FpOzQsq6urkZGRAbk8aNaOQgbWSnDBevEfrJXggrXiP1grwQVrxX+wVsJTK77rt9XBVFZWiv8TEhLc7mMymcSjYUuwfv36dcj5Mb7hyJEj6Ny5s79PI+ygm0GXLl38fRpMK2G9dDysleCEtdLxsFaCE9ZKx8NaCU5OVCvKYF1BuvfeezFmzBgMGDDAYx76zJkzXX5pMTEx7XyWzIlQVVUlLki0Ssh0PM7vnbUSHLBe/AdrJbhgrfgP1kpwwVrxH6yV8NRKUBrllFu+fft2rFmzxuN+jz76KO6///5mXxoNcB7kwQGH7fj3e2etdBx2u4S8ilrozVbo1Ep0iouAXN668c966XhYK8EJa6XjYa0EJ6yVjoe1Ep5aCTqj/M4778TixYvx22+/tRgioNFoxINhGCaQySmqxi/bC7G/uAZGqw1apQLdk6MwaUAqeqSwl4JhGIZhGCaUkQdTEj0Z5AsXLsSKFSvQrVs3f58S4ysqKihGx99nwTB+M8jnrj2E7ccqERepQnZSlPifntN2el1gtwOUjnP4sL9PmWECnwULgJde8vdZMEzg88cfwL33Ou4xDMO458AB4PrrgdpatAfKYApZ/+yzz7Bo0SIRs19QUCC2x8bGIiIiwt+nx5wIcXGA2QzU1ABRUf4+G4bp0JB18pCX6c3omRJVH/oUrVUhSqPEvqIaLN1RiOxIOeTTrgO+/Rb4+mtgwwZArfb36TNMYEIaufpqwGYDqLjr5Mn+PiOGCUzWrwfOPhuorga6dgXuu8/fZ8QwgcmhQ8D48UBuLoViA++8E76e8rfffltUXB83bhzS09PrHwtoNZwJTo4ePf5zSgob5EzYQTnkFLKeHqttlotEz2l7wd7DsJw+zmGQkyH+2GNskDOMOxYtAq680mGQX3cdcM45/j4jhglMaHF30iSHQT5uHHDLLf4+I4YJTCia94wzHAZ5797AjBnh7SkP0nbqjDtohYmK8H31FXsxmLCFirpRDnmk2nW0T6eCQ7jwyZuhKT5G/R+B774DTjutw8+TYYKCH38Epk4FrFbgqquADz8EuL8ywzRnyxbgrLOovzBw6qnADz8AkZH+PiuGCTyOHXMY5AcPAj16ACtWAGlp7fJWfLdiOp7PPwduv92Rk0GhUwwTpujUSlHUzWC2Nnut8+Z1uOq+q5BUfAyWbtnAn3+yQc4w7vjlF+DiiwGLBbjsMmD+fECh8PdZMUzgsX07cOaZQHk5cMopwE8/caQiw7iCUqXJIM/JAaiWGRnkGRloL9goZzoWuvhTSCFFPpBh7qKPPHNizJ49GyNGjBC1F1JSUjBlyhTs2bPH36cVVnniR8oM2F1QJf6n5+6gtmdUZT2/0tgoGkiy23HKB68gQl+FI32HQPbHn0CvXh30CRgmyKAFXiq+Q7VJyDD/5BNAGTSBgAzTcVBaB0WTlJQAw4cDP/9MTbH9fVYME5iQvULz58xMh0HepUu7vh0b5UzH8fvvwCWXHA8tnDOHEmf9fVYhx+rVq0VhxHXr1mHZsmWwWCyYOHEi9Hq9v08t5KFK6W+v2o/Xlu3F/5bvE//T8/oK6k2gPuTU9ixBpxZF3aqNFhRXG7F2fynuuOgxfD36Ijx33xy8u7PK7TGYtsMLWCECFXtdvBiYNs0RiaVS+fuMQhLWSwhA0SOffebwlFN0CRXaZXwOayVEePNNRzQJGeRZWe3+dmyUMx3Dpk3AeecBRqPj/3nzONevnViyZAmmT5+O/v37Y/DgwZg3bx5yc3OxgYq6MP5vbdYE6kN+/ZgsDErSIn75L1iTUyI856rMzthw/wxEx0XhzwMlmLMiB3sLqzr8c4UyvIAV5JhMx38eOtRxX+EiiO0G6yWIadju7KSTgGXLHHVKmHaBtRLESA2iG3v2dLQM7N69Q96a47uYjuG994CqKmDsWODLL9mT0YFQ1wIiwcMN2GQyiYeTKvpbMSfc2ozamqVGa5BTXIOv/jmKhyb2hlLZfDGqh9KC7rPvgOy31ZDfOBPF510Mq13C/mI9yvQmGC027CmoxrGKWsy6cAD6pMf44VOG5gJWQ2gBi7watIA1lq5VTOCybp0jDJfuJ6NG+ftswgLWSxC3crrgAkeB3dGj/X02YQFrJUiprATOPx949NHjnTs6MKKXjXKmY3jjDUcuxh13OEINmQ7Bbrfj3nvvxZgxYzBgwACPoVYzOb/fp63NyEDPKapBucEsjOrDpQaRN37ZiC7CO17PgQPAuedCtmcPjBE6xHZJQ4EEbDlaiUqDGWabHbVmK0w2OzbnluPmj//G9WO64cy+aSInnULgmY5bwGICgH/+cbRyosXDF15wtEFjOhzWSxC1cqLK0XffDfz9N6cN+gHWShBQXe0wxKmoLs3L9u3rcHuFjXKm/aCLEBUQoTB1ymOi/spMh0LhU9u3b8eaNWs87vfoo4/ifmpR18BT3qWdC1qEcmszMsg3H6kQxnSUVgWdRoHSGhN25leJUHYKVxeGOXn7yINRXAxLRme8fNfL0AwZjJzcCmGQ15is4thWmwSqF0dBVbllRsz+aTd+2V6A03qmiJz0FK2/v4HwWcDiqJIASIWiVk7OyCvKj2UCUi+sFT+Tl3fcIKfwW1q8YoO8w2GtBAF6vaM9Mxnk8fGOGiV+cCByUi/Tfgb5+PGOirhU2I3pcO68804sXrwYK1euROfOnT3uq9FoEBMT0+jBeF9RXdegtRl5w8lDTgY5FXDTKOWw2SVoVUr0SI4SBvvSHYWwf/W1QyPFxSLHr2jpKpR1642iaqMIWTdYbKLwm8UmCWO84TvStl351SLXnIz8/cVcBM5XC1hffPGFx/0oqiQ2Nrb+wYtXHcjWrY4CVRUVjjBcmjjpdP4+q7DEG72wVvzcymnChOOtnFauBDp18vdZhSWslQDHYHCErFMx6thYR72FIUP8cipslDPt056GBjh5NKjdBq3WMh0GGYVkkC9cuBArVqxAN7ohM+1aUb1ha7OqWosIWScPOUGh66U1ZujUCkRrVSLEvWbDZsguv+x44cPffkN63+z6Y9Dv1Bgtwjsua1B3hCLVVQqZMNANZhv0JqvwwK/YVeSvryfsFrAoqoRCEZ2PIxQeyrQ/O3Y4jIyyMmDkSG7lFAR6Ya34iaIih1Y6sJUT4xrWSoBjNAIXXeRYtKL7CXUkGDbMb6fD4euMb7FYHMV3aMWJvK00wLt29fdZhd2q7GeffYZFixaJdhwFtGIOWgCMRQTn87epojp5t8mYpvB08oZTRfVjlbX1YejO1ma0jYq6kVFNBnRhpRnVJivkMhmUChk2HC5HVlIkCtO7oeyOe5EIC/D66yK9g1ZI6Rh7i6qx81il8IY7oZ/IOBfp4xKgkDkWX4qrzeiREoUDxTV+/Z6CFfoO77rrLrGAtWrVKq8WsCiqhB5MB/Pii47eyjRhovsKR/MEvF5YK37i+eeBnTsdnvEOauXENIa1EiS89RawdKkj4ooWek8+2a+nw0Y549uWG9Qn9scfHbkY9D+13mA6lLffflv8P27cuEbb586dK1qlMSdWUZ283VRVnfqKUxg6tT4jo9zZ2uzLv4+K8PWSGkd+WLRWiUSdBlGWWhgLqrBBH4cuCZEwzJiFxITIRjl+dIw7xnfHvsJqlBscnnhZ3UMhp11l4rzIOCdD3S5JUMhlMFttfvqWghtewAqyDh7JycDjj3NvZT/BegmiBayaGuDf/+6wVk5MY1grQcI99wB79wJXXgmMGePvs2GjnPERFF97113A558DSiXw9dfAqaf6+6zCdoWWaZ+K6k7oOW0n45v2IyPbaVQ/eFYvbMotw4ESvQhr16oUSKwoxsNvPgi9UoNpV8+GVilHsk7jsuhOr9QY/Pvs3rjz000iRJ06qDmd5mSQ06/Q+5NhrlU58tXVSkXHfCkhBi9gBTilpY5eyjTotVrglVf8fUZhDeslwPNiydgjrZDH9f/+z99nFNawVgIYq9VRgNpZhJpaBQYIbJQzvsv3e/99xw3hk09EiyeGCaWK6k2JUCtQWGUU+zWksMaE2Eg1kqKswqjufiwHj7/1EJKqSlGsi0NM4TFsscox6Jlf0Cs9Ghed1AlXD+8Krfb45XhszxSc1TcFP+0oEJXXaZ2FHk5vOS28RKipB7oW1UYreiZzsau2wAtYAd5b+fTTgUsvBV5+matGBwCslwCFKnVTi8BTTgFefZW1EgCwVgLYIL/2WsfC1QcfOIzyAIILvTG+gdo8UCVcCjG8/HJ/nw3DnHB1dV1dRXW9yYIKvUnkeW85Wo6jZXrR4qTWbINGqRD7NYSMdLVSjmFdE3DWoY147tXbhUG+JykTU659FQcSHcVezHZge141Zi3ejSHPLcMrS/fUH4PC4e+Y0BMnd0sUxrdK6fCMO4q+OzzjCZFqKBVyJEZpcEbflI79whimI3or5+Y67it1PX4ZhmkChalTKydqrzl/vkM7DMM0x2YD/vUvgKrgUyvNjRsRaLCnnDnxyoUUVkhMnOjvs2GYNhVzo9xxClUnzzgZ4lQF/ax+qYiLUGHJjnxUGCww2+yibAIVWaO+40kxGpzROxXpMY2bhOvqjPlTl32Js997HnK7HWu6DsbtUx5FlTbK5TkYLXa8tSpH/PzAxN71ofBPnd8Pn/55GGtySlCqN8NktQtveYJOg+4pURiaGY+J/alPOa/KMyECdeugVoHO3spUqIpzyBnGfSunNWuOt3KiausMwzSGJm833wx8/LHDO75gATBiBAINNsqZtkN54w89BCxZAvR2GBIMEyrV1XcVVOFQiR5F1WaRt03GOGGRgAqjDRVGAyoNeaJK+tWnZAojmjzsFLZ29s8fY+L8V8X+Xw48E49PugMWhaNFmjtsduCjPw7ijrHd60PZ6ZhPnt8fR8oNOFiiF4XdRGu1CBWiNSqRs05e9SoKX2SYIMd+LB+208dDtX8/rF2zIF++AnLurcwwzbDrDTBPPg/a1atgj4oGfl4CuR9bOTFMoGK32WG48WZEzfsQklwO6ZNPIac2aAEIG+VM26AV2auucrRAo1xyyvljmACEDGUqxkZh5Tq1st6Q9VRdnQzfJdsLhDFMRja9YnXhjC6pMeObTUdFUbdrT+mK9QdKsO1YJRQpgzEiIgYfDL8Qb4y6zOscvyqjDQs25mLa6Oz6bXSuXRN14sEwocrBHQcQe+5EJOTuR0lCGl6967/IyDHh7IhqsTjFMIyDnCMlUF1yMbr+/TuMmgj8757XEGlIxNlFrBWGaUhOYRUMt9yBQYs+gV0mw9ybZqA2eWjAaoWNcqb1/PknMGXK8Z7k1H6DYQI4NJ3+L6+1CG83haZfOqyLKNTmrrp6jcmGyloLjNbj7cfcYTLb8PfBMuw4VIIaSQaTxQ5JnojxN72DiojW9VKm98krN7bx0zJMcEL6XPl/3+KGIwdQFJOEW6e9iAKLDrrNedhdWI17z+wZkBMohvGHVn5++yvc/s9aGFUa3HvNLGyNymKtMIwLrSyYtwT/XvyFMMhnXfQgfskaHdBaYaOcaR1btzoqq1MuE+WQO/MzGCZAQ9NzywwwmKyoMVlhstqwK78a6w+W4eKhndxWV6f99GZH729R+dzNezh7hXfOP4T3v52FGWfdit+6DRWvtdYgd9IpvnGOOsOEMhSx8tm6XCxKGIRtF/4b25OzcVCdCEWlESqlXCymfb5eg8cn9xNRIwyDcNdKRHccOP8BFEfEYm1SH9YKw7jTijkOBy9+HEnV5VjQ8/SA10qbqq8XFhbi2muvRUZGBpRKJRQKRaMHE6Lk5DjablRUAKNHA99+62grwHiE9eJ9xXNfHps85GSQl+tNwutNnvHkaC2So9UoqDLii7+OwGSxiRxyJxSqXlVrQXG1CVYqDOIFww9uxbefPIjs8mN4aPV8yCTvfs8VkSoZLh8avoV6WCthRkUF8vYcxLeb8lCqt+D73qfhQEInsdhF6SJUAJGKLC7dWShSSZjjsFbCDKsVeTm59VpZ2Pd0rMkawlrxAtZK+JF3MK9eK79mj8AXgycGhVba5Cmnxve5ubl48sknkZ6e3iz0kwlRHngAKCgABg1ytKnRcY6rN7BevK94PmlAqk/CiSiHnN6DPOR0AU7Qqeu/d61KibQYmTC8ozRKHKuoRa9UJcoNZuwv0qPMYEa10QxLXRK5p6WCS7Ytx+wlc6C2W/FPp764+eInIMna3mly6rAujfqVhxuslTCCihOefTY0R4ugmjITiEpotouYRNklFFYZsb+whusqNIC1EmatnKZPh3blGmhIK9FJzXZhrbiHtRJmzJqFmP++idhLZqEiPiOotNKm2d+aNWvw+++/Y8iQIb4/IyZwmTcPuOsu4JVXgPh4f59N0MB68b7i+bHKWlw/JuuEDXMq6kbhSRSyHqVVipswecHNVjtsdYXb1EoZFHIZNCoFNh2pQFGVERarDXK5XFRCp97gZqvk2iiXJNy35jPc88fn4uniPqfhgcn3waRUt/mcB3eOxdMXDEA4w1oJj6KLhvIKZF19KTTr10MdEY2E2ioUuzDKnVCHg30l1TgDqR16voEMayVMCpQazejy4F3Qff4p4uQK9C06hEIXRrkT1kpzWCvhU8w37e3/Iu6ZpxAL4LSDm3DYhVEeyFppk1HepUsXMcFlwmSF1hneQ4b4J5/4+4yCDtbLcTxVPCev9b6iGizdUYjspKgTyvPRqZWiqBvlhsdEqFBrton3rLXYRA44/Tmo33dKtIRzB6Tjk3WHxevU+oxWUJVkrCsVsNutsNobe8sVdhv+89PruGTHSvH8rVMuxUtjr2uzh1yjkOGMvql4YGKvgMpt8gesldBld0El5q89jLyjJXjkzQeg2bcZ+shoXD11FvYkZ7X4+xEqDjNtCGsl9LVysLAaN33+Ivqs+QE2uQJ3XfBvrOo+vMXfZ600hrUS+lo5UKzHuSs+x7Sv5ojt/xl7HT4ZOjnotNKmWeTrr7+ORx55BIcOHfL9GTGBk8drNDpyyOc4BjnTNlgvx6HVTHcVz+k5bc8pqhH7nQjU9ozC4cnTXVVrFjnktIqqVMigVcpB/m+jxYacwmqs3FMIq82KaK0SOo0SneMikJ2sQ4JOBZuLIm82mRxWuRJWmRyPTLoT/zl9utcGubzOCKcFg9gIJUZ1S8DdE3oJgzzQqoD6A9ZKaDL/jwO48r31WLxuH2577X7027cZNZpIXDt1Jnak9fBKN71SWR8NYa2EJh//eQjTPvwb32w4gvM/mI0JZJDL5Hj8ooewpPeYFn+f7qqslcawVkJXK9M//Bvfbc7DwO8+rjfI3z39arxFrWiDUCtt8pRffvnlMBgM6N69OyIjI6FSqRq9XlZW5qvzY/yVx2u1AldeCSxfDqxfD1x6KZCe7q9TD2pYL8chw9hdxXOCirFRng/t56nHuCua7nvxSZ1FlXUa7wqZDJFqBagEWxXlmZttwuDWw44v/j4qLs5alRzdk3TQaVXiHHJLa8X+zZDJ8PikO/DF4EnY1KlPqz5/lwSt+AxZSVG4emRXxESqPH6mcIO1Enq88ssevL16PxRmE97/5jmMOrwFNeoIXH/ZTGxM6+XVMeJ0KgzPdB/e7orWXDuCEdZK6PHrzkK8uGQP9EYLnlz+Pq7e+CPskOGhyffiux6nenWMKI2ctdIE1kpoauX1X/eh2mjBlZt+xhO/vC22vzvmcvzn5CuCVivKtq46Mb6nPf/YrcrjparTN94IfPedo7r69997ZZCH+oW9rbBejqNTK8ViEI09CllvCoWZU9g47deaRSTad8m2AmzLq4TeYoVOpcTATrGY0DcFh0sNsNhsMFgoh8gOg7m5qU3e8FqLHTsLqpGoU6OkxtzIQ35S3m5ctXkJHj7nLtjlClgVylYb5BqlHJ3jdchK0vkkbz4UYa2EFkt35OOd1ftFSkhCbTUyKwqgV2kxfeoM/JPR1+vjTB6YBqXS+8A+T9eOlBDpOMhaCS2sVjte/HmXqIMSY9Jj/IG/xXa653zb/wyvj0NpYayVxrBWQk8r767OQYXBDJnViqkbfxbb3x15MWaPuUY4ToJVK20yyqdNm+abd2c6pBp1q/J46aX77wfmz3fkkn/5JTB+vF/PP9hhvTQPK6fFIBp7DUPYKecrv9IojGkyzuf/6XoRiRZ+zhmYhuRojTDead//rdiHvYXVIifcycFSPdJitOieHCkKt1Eht2O1x9ufuYJ+vbjG3GjbObvX4LUfX4XWakZOUme8e/Klrf7cdN3vkxaNMT2SMLE/a8IdrJXgpemibGqUBs/9uAuWOk0WRSfi8qtmo0tlIf7p3N/r49IV4l9jsn22AH3poNZ5RgIV1krw4sqB8fdhiurSi9ertFG44srZOPnIdnzfb1yrjt03I8brfVkrTDDq5ViFAVvzKkW0IxRKXH35s7h0+3J8MPxCrw3yQNVKm3vv2Gw2fPfdd9i1a5d43r9/f1xwwQXc8y8Aq1G3Jo+3yxsvA//9r+PFuXOBCy7w+/mHAqwXBxQ5QQs1NC5oMYjGC4Wsk2FNBjm1LjuzXwqW7XC9iGS22vDXwTJsPlKBrokRYvGHepHnVRqhUyvEPiqFTFTVpLAmeg+dSo4BnWJxpLyVeeqShJv/+haPrZorni7rMRIfn9Ry4ZCGxEco0SUhEhcN7YQz+6Zx9IgXsFaCD7oH/LT1GNbklArdkQ67xGmRX1yNYfl7saFzP7EfVY32VDnaFT2Sdcj0smWNNwvQK3YVIVRgrYSGVk7tkSjGZnZJLnKSMsV+pJPWGuTE8G6JXu3HWmGtBFshN8glpEdrUWYwIbkkH0fj0sQ+lRHR+GDElJDQSpuM8pycHJx77rnIy8tD7969xbbZs2eLCoc//vijyNtgAqcatbd5vLY//gCeftqx8X//A669NiDOP9hhvTSGFmhoocYZWUFjj0LWyUNOXmT62dUiUpnehC1HK2Gy2KA3WaGPUqPWZMWewmrhTUvWqUSIOKFRyqCKVIlibkU1Zvy2txg1dXnq3kAV1p9Z9jau3rxEPJ877HzMOuNGEbruLaf1iMcdZ/QSOUutCZEKZ1grwWlk/PurzdiWVwVLg8yQTXYbXlv8Cs7esxb3nfcAfuh3epuOf80pXb2+d3izAH2guByhAGslOLXy8NdbsPVoZSOtbDlSjpvXfInXf/8E9513f5uMcSJWq8C5/byr/cNaYa0EQyG3Ocv3otxgEemE1BXnUIQSwzeuxsrvXhRzso+Gnd+mY0drAlMrbTLK7777bjGI161bh4QEh8u+tLQU11xzjXiNBjnTDl7shMg2vYfOyzxexejRwEsvAQaDox95gJx/sMN6cW2YZ4+LclmDgDoDNF1EotD2/UV6lNSYUFNrQa3VLhaCyBo3WezQqGQor7UiQu0IiXe2QKsxWsWDhqYIdfKCKJMBby56Aacf3CiK7MyacCPmUlhUK4jRKHDz6T1xSnbrvILhDmsluKBF2Qe+3IwtR6sabZdT28AfX8N5u3+HWa4UldbbglohQ+/0aJ8uQFO0TSjAWgk+rTz53TZsyK1s9tq0P77BA799JH7OqCpp83tQa0212ruFY9YKayXQC7k9t3gHjA2GINUmGbNpDV7/7kWo7DYMKsgREY2tCVl3MmVIRkBqpU1G+erVqxsNbiIxMREvvPACxoxpuWUD0/Zq1O2Rx3us3ICuSVEilOrIv253GEdeFm7riPMPdlgvrqGx5GqhRudiEanaaEVumd7RS9wmid+N0iphstpFgTajRUKlwYwknVrkhVMLtFoam2abo4J6K1qUUjGqEUd3oFapwd0XPIRlPU9p1eeKUMkxdXgXjOnOBnlrYa0EF5//dbiZQS6TqGDVHFy0cxUscgXumPIIVnYf0epjU7RLemwEYiKaLyS7Q+fFArRaGRrhqqyV4GL13iL8eaC5N+36fxbVp0i9curVeOcUzzVLIpQymKxSs84gpJcLhmR4fT461gprJYALud39xcZGBjkxbv8/eOu72cIg/67f6fj3OXd7NMip9SzNB5tO/2ieeONY76MjdB2olTYZ5RqNBtXV1c2219TUQK1WI9Q5kTZNTfdtTTXq9sjjVa5ejVt+nIcP734Rb5Qb6gu09UmPxu78ahFuVV5rhkImF9svHd4JvVJjvD5/g8kKq01Cgcj5Dc+K7OGuF18sItHCT2mdQa5QyKBRyEXuuEwmBznMqZCbwWyDxW5HpcEqwtspdN1b73hDdqZm444LH0FpZCy2pvdq3bnHqHF6n1RceXJm2I1zX8BaCa6J0+yfHfmZDQ3y55e8ganbf4VVJsddF/y7xUUtWsTSqhQwWW3ifkm6oXtKbIQK3VOiEK1R+bSQJOWohwKsleCBxvUj32xptv2ajT/i6eXvi5//O/oKzBlzZYvHovlgdIQcFqtdFFF0aiY1RivSBL2FtcJaCVRumr++WZecUw9uwrsLn4PGZsWPvcfggcn3t5hOGKNVQYIEs9UOOyQo5HJEqZU4b1A6usRHBqRW2mTpnXfeebj55pvxwQcfYOTIkWLb+vXrceutt4rCCaFMa9s0udr3rP4piFAphaEeoVIgO1mHHceqPFajpkHhLa4WAlzl8abt2YZ733gQkaZaXLzkI/xz28Ootdiw7mApFm7OQ6zWMTyoRQd5JHflV2H9wVLcPaEnJvRNbXGwltaY8NehMqjkMiz4+4j4rOFYkT2c9eKrRSQaS3RhpdeUcjm0aoUYa5SqrVXKYbDYhQFeYbDUjdfWGeTj9v+N8ogYbMlw5Ju1xrOnVcoQF6FCv/RoDO/G1dVPBNZK8PDGyr2oMTWYOEkSnln2Dq7cuhQ2mVzkkS/p7dkLRXeLTnFaJEVpUFxtFotqKrkcKdEaKBRycW+sNllwpMzg1YKuN4Ukz+gbGhWlWSvBw8d/HkRhtaXRtis2L8Gzyxy9ld8++VK8durVLR4nUi2HXCGD2eq4udG9kOwShVyG7kk6MbcjyOBgrRyHtRI8/LD5KFbua9w3ftThrfi/b2dBY7Ngac9TcM/5D8HWgkGeolMhVqcWtgvZUjRfpJpDvVNjMK5PCvYWVXvtKOxIrbTJKP/f//4nWgyMGjUKKpVjFdtqtYrB/V9n5e4QpDVVxt3tu+5AKZbuLBDtnNRKuTDUaUJPF1V3f2ya5HvrdWtp0cCZx3tozd8Y/Oq9wiDf2OMkvHrqVYjOrRCTIIvVhpJqE8pqTMLQpnOgEEJamc2vMuJ/y/eJi36vtGi3gzW/ohZ/H3KEag3IikdGXGTYVmQPV72cCE0XkUSbMhlEWkWkWgGVQt7Ic0B55ba6yAy90Yq6OYtXkLdi5q/voiwiBudPex0FMd6HnZ8/IBXXjM5CdIRKePTCMRLEl7BWgoNlOwvw+vL9jbbJ6oIEqQ7DA5Pva7GwG4UWdkuKxIisRJQbzCKVhe6D1NYwv7JWLMRtPWIXrQ7jI9TimuDNgm5LhSRTtG0InwlAWCvBo5Wnf2gcUUL0Ljks/v+/4RfixdOn1YfhOu8eTUdpWowGQzPjsa+out7QoChEihCjXFvqSLI9vwpxEWqc0i0BV52SyVqpg7USPIXdZny/o9n2k47tFi1pl3cfgTsveBhWhWfTlcLTP7rxZJGXvi2vEgaLFZEqJTLitEJYn/x5GHqLFTqVUoz1swemBYxWZBIpu43s27cPu3fvFj/37dsXPXr0QCBTVVWF2NhYVFZWIibG+/50Tu/z26v2C6OyYZVxgr5CMkjpj3Pr6Y48BVf7koG+KbccxTUmdI6PwCndEoVnmoxvmoyQd4A8feTloz92j5Qol143Opej5QYcKHH0tOyWpBNG8oGSGny45hDyKgzi9ynHiC7WRdUmYcRQyMbYnsmwHjiIhLMnIK6sCHsy++DZ+/6HalWEKIhF+1cYzCL8l0KCaWVWp1EiJkItWk7ZJbvwaIzrk4xrT8kSIetkiNB71y8GWKw4VFoLq82Okd3ikRildftduTNgTuRvFagEk14C5ft3Rn2sP1CKF5bsFgtGcrlcLGjRawaLzRGaVNcLOV6nEhqyNk24cwGF2j66ci5u/nuheP7lwDPx+KQ7YFGovC7m9tY1w3Bqz2T4m0D5e/kK1krgsrewCuf973eYXdW1kSScdGwPNnXq02izhrx5CodmHYtrciRFq/H0+f3RNTGy/t5B9z66Tx4s0QvjnO495N2gxeFItRKZiZFeL+i6Sx0Ltb8XayV4tTJp35/4peeoRnmxVHuKnClWuyP6i0iN1uLpCxxaWbKtQBgaVPSU5oHkwKH6KknRGsggE/c/uyRhcJc43HtmT9ZKA1grgcvu/Cpc+MYamNyEOF6wczV+6TUKJqW60cIu2Sg0B6RfI1srLVqDGRcOENG8Dcc1ORo//ytX2B90b6k/hlyGXqnRAaOVticqA+jZs6d4hAOtqTJOF8StRyuEx5gKVEXXhYHT65TnSiueepNNrHCSB9rZOiwhUoVJ/VNRZrAgUafGkE5xKKwxiWrUuro/Phm/n63PFR73SmoTIINYGR3ZNQ7HqkxitZQKXJltdrGKSksuYvjJgE2Hy9Ffrscb794vDPL9yZm469pnAbsKERLl9imQQxMjC+VfOFZs9WY79GazyOel8yTjnjze1ObsYIkBqdEa4bnsmRaD4VlxOHdQGg6XGsTgz3BRpMf5Xe0rrMY/h8vE687PFuoexo7Wy5tvvomXXnoJBQUFGDx4MObMmVMfuhVsxeDSY7RYtPkYduZXiXDxGjMVeLOJRR6VHKAygjSW0qK0qK61wtpCZTetxYjXFr+Kc/b+IZ6/dNq1eHPUZV5X8aS9Lh7aCaO5mFu7EE73lmDBuRg87f/WHTcyJAkX7lyFn/qc6ljMksmaGeSkzwGdYnGswgiLzS7uIbTgPH1Mt/o0KGcEF903X/x5t7jHJEdpERephE2SobKWFqsdK23etth0V0gy1GCtBIlWAIw4sh2bM3rXa+WXXqMb/R4N6QEZMcivNLnVyu3jo8Sx3/9tP/KoDpBKjlitStRZoQXr1Bi5mK9RhMkv2wuEtlgrDlgrgauV+77Y1Mgg71V8CEdi01Crdjj1vncReTW4c51WlK614hzXVP/kvZU5+H1vMWRyGWK0SiRHqWGHXBS43nKkAp+vz8Xjk/v5XSteG+X3338/Zs2aBZ1OJ372xKuvvopQg1ZFai1WRNmUYoVSrZALY9tpoDurjO8qqMIfOSXYmlchBolcJkN8pBqZ8RHiddpGhrLVZhOGM0HHoGI3P20vxLZjVWLlhlZ+qHI0DVGZHCLMIi1ajS15VcgtN4g8bepJaZFkKKysxad/V8HiqSI/vaddwoOfPouM4qM4EpuKq6Y+g0KrFijSixUnel8y5J1OxoZmDc2HKmsdraXo/CmUfX9hNbbnVYpzlcnyRFGF3mnROKtfqri50GqUq++KjCkyrt5dvR8alcJjXn6w4m+9LFiwQLzvO++8g5NPPhmvv/46Jk2ahD179iAlJQXBBvX5nj4mC7N/3o0qAxUeBJQ0FqklmpXyhchQlqHCaIGtheCfJH05/u+bWRiSvxcmhRIPnXufywu+OyiT6dSeSbhmVFbILySFg1bCgdYUJ3XFzrxKvLV6P3bnVyC/QW7sfWs+xT1/fIHJe9biloseg0Q3qyacPSANr1w6BJvzKoSxQAvOQ7vEC007oXPZU1CNWYt3oKDKLLZVG/XQqWXIiNOJFCryoFMYIi3ohmuLTdZK4ONOK5P2/oE3v3sBK7sPxx0XPgqzsnlE1tieSXjvmuEtauWPA6X4YcsxVNSVpy6usdRrJV6nFvMtcghRP3TWCmslUO8tTq3sKajEviJD/fb+hfvx2eePYXdyFv516dPQu2ipmRatwhc3jfaoFWdK75PfbcWfByrqt5EtQ8WnKa02NUaDwioT/jxQhiPUiSrRv8UNvTbKN23aBIvFUv9zuFFcbcLh0lrsLawRXjKlQi6MbVqZoQkDhRDRSv6PW/JF+LjRYhfbyDwoqjIKbzf9TN5oZ9EByrsmg5VWRPcU1qBMb0Lv1Chh4P+xv1SEudN7kYeaQsErah1huc7hXti8mKRHaBHq6Qm34JWfXhN5GYXRSY1eo8rWnqBXnfaOxQ6Ukqe+7jlpsLLWjA2Hy7ErvxoRSjk06ubfFbHxcLm4YSTqNEiJ0YZkrrm/9UI3mZtuugnXX3+9eE7GOfXi/PDDD/HII48gGHGufr62bI/oDNAob1wUeTOLvsYtFXi7d81nwiAv10bj5osfx99dBnh9DtEaJSb2S8Ft43uExDgNBPytlVCnNcVJXfHK0j2Yu/agiOxqEPWHu9Z+LgxyYl2XgS4NclrAumxEpugHO7Jbotv3WL6rEHd/sUm8hxN6qxqzJKK3eiRHiRBdum9U1JrDtsUmayWwjYx6rZjqWnHWMSFnPeYs+g+Ukh1VGh2s8uZaoS03nJbtlVae+X6HKG7qUiuIQmykw+CnRSzWCmslEO8t7u4rfYoO4pMvnkCsSQ+F5D4P8aSuCS1qhc7v1o83IKfYkerbEJJPbpljIYD0QjVMKG0qaIzylStXuvw5HKC8oK/+OQq9ySKM47RYrQipK642ikrPgzvHip8pxI7+sHqzTXju7HaItk207i9C7ySHd488y5JMhn8Ol4twdHKYk1eZWsDQ4NicW4HCaqMIubBLMhjNpkYGyImUE9iX3BUXXPea12G63hjodCTRC9BGEQAUVuzwZMZFKJERHwmFzPFdUZgIeeNpcSE7SSe+R1qcoLx0Zwi/MzQx2PGnXsxmMzZs2IBHH320fhuFtZ155pn4888/Xf6OyWQSDyeUHxMIEyOqvEy1Dmh80Dih2gm0wEOTJAW1g2nQg5IustQipiWeG38D4mqr8crYa3EwoVOL+1P47Rl9UjC+TwpOzk5E1wQde8h9SDjfWwKpOGlTKqqNuPL9P7GrzoPR0Iy4dd3XeGDNp+Ln58ddjw9HXOjyGL1TozGmhRQPus89/PWWRgZ5Q0jSNOkb0iXW0YFBJj+hFqHBDGslMI2MqhoTrpu7HpvzmntKnL2V1XYrFvU9HQ+de6/LVk59WqOVBga5K630z3CcKxW30rFWWCsBdG+hud1/luzAO785Ch02pGfxYXz6xeOIN1ZjU3pvTJ8606WXnBjZzXO1c3qfOb/udWmQO6HZIjlRozSB0/qv+XKdF/zrX/9y2fNPr9eL10KJvRRS98Mu/HOoTBihZHBTLjUVM4uLVKGq1oLf95WIPOrcUr1YaSEPuFImE97jGrEK5Mh7pcso5cJS+z3JLon88jK9RVQ5rzJaRAg75QhRaHetmXpQkgdbalUl6abI7Ta8+NN/RUuBek7QIHdpoIuqu8cNJPJWlhus2F/krFIoF5+T8urJi06h7iV6k/j+SDzkAaF9thytEPkloURH66WkpAQ2mw2pqQ7PshN6Tvnlrpg9e7YoUuF8dOnSBf682FOhxJk/7MC9X2zCPZ9vwm2fbMTD32zBzB+2iwKHVHzdOe68YfjRHfWrSJSjdOeUR7wyyEkpFOFBuUZXjOyKbl7ksjJtJ5zuLe0NXVfJwKBJExUcpUUtWhSl/+k5badFUGeRxIZc+vZaDHlueb1BLo5X9/8Nfy3EI6vniZ//M/Y6vHfyJW7P4boxXVvUy5r9RSjRN24X1RS6n5RU1QqjnPTYmhahoQprpX2MDDIqaG5HzgH6n57TdnrdFdM+XI9Bz/7q0iBv2lv5/vPc91b2pVYKKmqF1gd1bl073VCFtRIY9xZycI545meXBnl26VF8tuBxJNZWYVtqd0y7bCZq3BjkkSo5rhyW6fEcc8v0+HVXUYufhfylBZUm0QWLnIVBaZTPnz8ftbW1zbbTto8++gihAl2E31yZI1Ye6Q9GF+i4SLVYjaR8BAppp2rk5CFXKGRiUNK8n/43UjVAe12hNUlqlO8tr5vgWGwSqoxWsS95mI9WGLEmpxTmuvjbE576SxKe++VNXL5tGd799lnE1rYy3r0tb9ngZ+f9hRYcDpUaxP+0EEF55n8eKMWS7QWiXciizXlYtbcI2/IqRI46VZDfX9z+59pRBINeyKtOVSOdjyNHjvh1YkSFDGlBp6TajBqjBfmVBmw4VCb63pdWG4UGvXCKCw3c9/un+PrTh3HnnwtafT6JOhVGdU9C5/jwy8nzB8GglVAsTtrUIP/n8PH8u6btA59c+YH4+bUxV+EtKo7oAYoscQVN1qj3OKV1vb0yx8vPYxatRC8Z1okXxlgrAWFkkEG+em+Jy2O2treyL7VCDhGqKD1pQBprhbUSEPcWSruY9NrvKDU2n7h1LT+Gz754DMn6CuxM6YZrLn8WVVr3EbOXDusEbV0BbXd6+W5zHvRuIkqaUmuxC/0FwjyvVXEtFNJKBiY9aNVJD8YcnwABAABJREFUqz3e6oo8cz/99FO7F5HqqIrSzot0qd4kvHKVwqCkcHIJchmFzcqgpSJlKjnMNhNSozTIKzeK8A3nRZDC18lMVVLvVZkjzla8Qv/U/UzDU9jgNgmlNeZGRu0Jdb2TJDyyai6u3LoUNpkcD59zNyojOjYHVhS0s0uI1ipQY7LVf3b6XNTSymSxocjoKB5HufaUX65VyXCwtAafrvNv+LQv8JdekpKSoFAoUFhY2Gg7PU9LS3P5OxqNRjz8Sb3m6iJHqHgHLVZRSLrNdtxTR34CBempBdRWC15Y8j9cvMMRuhZhOR6e7w0pUWqMzE7EVSdn8sSmnQmEe0uoQbmkFIJLYYWucBYnbZhzSiHr7gxyYl9SJvQqLT4cfiH+O+ZKj++fEa2qr5juKUR485FKrz4PpeHePaEneqWGfnsgT7BW/GtkOIumUci6O4OcsMnlYu7lTW/ltCjfaiVSI/e6xVMow1oJjHsLRRzf/flGtzaNzmyExmrBnqRMYZC3ZKtcdUqWy+0N9fLnAffabArVBQuUeV6rjPK4uDhxgaJHr169mr1O22fOnIn2oiMrSjsv0pTLSqHVZGBq1QooZHIRUk6V0Y9V1CJKo4BaLsfBUgNsdX0lJWpF5syzFrmux4eiqKZe500XBmrdvi0Vp2ott63/Grf+9a34+dFJd+LnPqeio6FbDBWPK9Ufn/TRkBdjSJLETYiiBUSYv80Kk9UgchAHdYrFztzGBmUw4i+9qNVqDBs2DMuXL8eUKVPENrvdLp7feeedCFQaao5+JoOcokZcVVNvSS8UFfLewudw8pHtsMrkov/4gsGTPP6OTi2HQi4XC22UR3hqj+SQ6ggQyPj73hKK6NRKkRNLC8Xk8WsKFSLVKBWNck5v/ni9x2OuzxyISf96A0djU1tMgxreLbFZPiuFL765cr9YeCNDJ0ajgNVT15AG9E6Pri/2GM6wVgJjAev6ees8HvOvLgNw6TX/wYGEzi4rrTdkQOc432olLZrvW6yVdkPXinsLOVveWrVPtFd2x87UbFx+1WyURcaKhyd6JWkaaUV4xssNWLu/BMu2F4r5YrfESOiN3hc4vHR454DRS6uMciqWQCtOZ5xxBr755hskJCQ0MgS6du2KjIwMhEJFaUcLNBvKDQ7vtbAByDiQyYTnm3pzlxnMKKmxQa2Sg4oEkhddhNV6seLvTUGqtnL1pp/w8Or54ufnxv0LXw6eCH/g7hOSMU690MmLLqIFJECucLRjoyJwFbVWpMYcX9EMVvypF1q8mjZtGoYPHy4iSWgBi/KnnNoJxMq2zokRFQY0mCxiwYaKILZWKZnl+Zj79Ux0LzuKKnUkbp/yKNZ0O8nj71AXjYfO7oN+6TH1ReVa2zaKaTv+vreEIjR+aXGJcmJpTDf0ANJ3nV9pxMBOx3NOSZt/5dY0O84FO1eJ1jR7kx3eiaNxrqNtGhKrAfqkN85n3X2sCk8s2oYDxXpoVHKxqE33WHFaXoj8smGdvf3oIQ1rxffoWrmARQXXNhxtrpVB1GZTqcaeOq3sSslu8b21MuCkzASfauX8Qfz3J1gr/r+3UI2on7bmNztGanUJ0qtLsTmjt3juvL+0xGm90+u1Qp7xz9blCq94blmt6GSlq3PqmLxcwdIoZZgyuOX6QgFplJ9+uqOX78GDB5GZmdkszCfQKkq3FZqcUAGy/MpaHCrWC2Ob8r4NJqto7yVCr602mK0OL7fFRC3ova+f5iJKyWeMOrwFs5a+LX5+Y9RleP/kixFIUFV2yrV3hu87+55TlXoyxug18pb2SXCfexUs+FMvl19+OYqLi/HUU0+JVI8hQ4ZgyZIlzYq/BVJlW13dxIiq9JNE6hoWtAqtxYgvP3sYaTVlyItOxvVTn/bqYk/hS2f0TkGmn9thhCv+1EqoQgtKpC2qhEudLcjbRh4/MjBo0kRjfmL/VLEf3fPW7i9udowLd6zEa4tfRXlENM6f/jqOxXgXkXb2gIz6YzvzCZ9dvEO0FXVqmq7wkpd/ZpVchlN7pbRrL/ZggbXiXyODxtnibceaHaN/QQ4+XvCkyBu//MrZotONN4zr64jIYq34HtaKf+8tBN1XmjrJk2vK8dkXjyOtuhTXXfYMNnTu59X7ZsSocfnILuL9aT75+q/78PehMugpvdhsF3qpMFgcBaS9nDyO6+V53tfRWmlTr4QVK1YgKioKU6dObbT9q6++gsFgEB66jqwovXv3bp+1eaI/9JJtBfhjfwn2FFSLPHIyJJ0h5rRCSgY60fDP4gxX9zf/dO6HH/ucioqIaLx82rUINJyV5Kk1nLg+iih+majIDplc9IGmoiol6jbVIAxI/KEXgkLVAyVc3Zv2GVTtliZG6w+WQA4ZHEtercOo0uLVU6/BNZt/wg2XPIXiKM9tM5yMCpAiH+GOv7QSqtBiF2nLuRjm6IShQL+0KKiVSsz/4xAKK2pRWmMUKVgNmbzrd7z642uQQ8KS3qNxLDrZq/cclR2Pm07vUR8OSGG4sxbvbGRkECK4sG4DzXE83T8n9EkWrQjbqxd7MMJa6Rgj42iZHnqTDbvzK3Hbx/+gutaEXYWNveSit/KCJ0Vv5b879UNerHeLV4M7x+DBs/uyVtoZ1krH3FtoXk8Otii1Et9tykNZtQFLdzVe7E3UV4iibt3L8nA0JgUF0Z7bADpJjFRh1kWDRE0RMpTJTtt4uBwVerOIqrS7SG9sKbAkKUqNByb2dmtk+0MrbbJ8qH0SFZNqCuV1P//88wgUWtvmybnysmhLHnYXVMNqd6y8kCHpKofVuSmQ1t4sChXuOf9BPH3mLT5vfeZLnN8pRZhQJAK1mlMqZIgUeVN2FFa1rihXIBMsevF3ZVuCLna0Etkqg1ySEFd7fMGN0jUuvuZlrw3yRJ0alw53rL4y4akVKiCalZUlCgFRvZK//voLoQJNHm4b1x33ndULd03oia6JEfhg7SHMXrIbH6/LxdLdxdhwtBpltcfD/Sbt/QP//eElKCQ7Fgw8C09MvL3F+wnVZJg2qis+vXFU/YSFtP/ebwdEzp8nRZORQRO6ptCmznFa3D/J/cSJDJk5K3JECCMVZe2WqPOqlVWw48/7SijqxWlkDMiIFd62QyV6bDhcjt9zSrD2QBm+31qAX3YV4Y9DlShvoJWmvZWvnzoDBje56U4iVDJcNyoTC28/lbXSAbBW2v/e0i1Jh78Ol+PHrfl49/cDeGPlfnz2Tz5KGtSUijdU4pMFT6Bn6REci07ClVc+3+ICllYpw1l9U/D5zaPqa4qQ55ocp1QMmFKB3QUfS3WeZ1dqoBbUz180EL3SXBvXpIUP1xzEX4dKhY2SpNMgNkLZ7lppk6c8NzcX3bp1a7ad8jPotfagLRWlKdSdcmsbesrdGeZ0QaTchC1HKsRKJIVRUxgQrcAEOv0L9+OCnavxwrjpkGRyt30wAw25zOENpfB1+pqpBy3l8FOP9h7xaoQK/tBLMFS2FRVRjVaolTLRAq1vuqM4DbVx+Xl7AWotLRfqUNhteGbZ2zj10GZcdO0r9UVCPFW6daKSQ7RYOmdAOsZ09261lgk9rXRkAVF/QZN0qhr9ytI9os2nR09bznrMWfQfKCU7vuk/Ho+efae4rzTl8XN6Q2+xosZoQ5eECFw+NLNZmxoyMNbvLxW1IVpEBuiUMnFfEIu2NjvidWrMuGCA24rrVNV31uJd4vpCdV5KasyIjzSKXua04EdeT1rwoyicUFt089d9JZT1Qvef7HFR4p614O9cLNlR4HHsdi89Ut9beWtaD7e9lf97xWAcLKnxq1YoT/3JRdtxqFTv0Eq1CfE61gpr5cSgsbJqTxHe/e2AR3uJiu9SNEnf4kMojErAVVc8hyMu6pNkRClw76R+KKgyIj1GixHdEpCZoGs0JqtNFhwqM4gc8pYilK0NInOpdTUVn47UKHH/Wb0wsX+aR3vwn8PlwnOdV14rUpfjI9XonqwTiwHtpZU2GeU0mLZu3SpWfxqyZcsWJCa67rXoj4rSrWnzRBfEdQfLxEWOWniVGxw5CS2FChH+NNu7leVh/pdPIclQiUptVIt9Y9sbL+uQ1O0riRAxR3VMOFqkVUkY0iUWN4/tjHcRGvhDL4Fe2bZMb8L+Ij3yq2pRYTCLNBHqS94lMRJxESqoFHKxKllZ694wjzIZ8OaiF3D6wY2wQ4bRh7dgcd+xLY5PyktKjYlAlFaFzgkRuDJAWmEw/tFKRxYQ9Sc78yvw1irPBvmII9vx1nezobZbsajv6Xjo3HtdLvJGKoDxfVsO4TtYohfFO72BFsmSYrRi0kTFQJOiNHhgYi+c2c91HQzyVLyxch/2FFaLLihkaND9u7jaiBqTFUO6xLlsZRUq+Ou+Eup6oXsBtbidt/agRwO5S0WByIt19la+9rJZLnsrRymB/hmxuHBIZ79phfLUX/5ljzDIKSKRnE4mqwSDxcZaYa2cEGazDS8u2eXRII826fHRl0+hf9EBFEfGCYP8UILr4mojuifhshGZHt+zxmiF2WrzOmWYjPFItRIapRyZCZG4eWw2zuznvmDp7znFWLqrUBjnNB+Ni1SKGkfOe0vPFF27aaVNRvmVV16Ju+++G9HR0Rg71jEJXr16Ne655x5cccUVaC98XVG6YQL/tqOVwjggz5mzABlVBw+EPHF3pFcV45MvnhAG+fbU7vh46GR/n5IjusDecvAxfcdUJZFWwnRaJQwmm7gh0Q3xprHZ6JES/NXX/a0Xf+PUV0GlUUwC9CYrYiJUwiDffKQClQaL0J7IB7JLKNGbUFZrhlImg9Fia9YipunY//DrmWLVtVapESkbS3uNavGcOsVpMKhzHLQqpfAQUDGSUM2jC0Y6WittKSDallol/ob09dz321v0wu1MycaW9F4o1sXj/vPudxt1lZ0a1chT4GxLQ4aFeD1JV1+jwdtbKHXcoBBIuUwutHnJsE5uvX7Ck7HeEdmmF50a7GIBL0KlQHykCrVmq/Ce0wIvFWVt2MoqVPDHfaW1eglGrRALNx1BjYcWTkRZRAwOxaWjXBuNqz30Vu6VEdPMq0a1iTYeKRceN0qfGtolvt20QiHr/1u+D0XVRpHvS/MumteSLmx2Oh8za6UdCBetLNpyFDUmz1oxKdQo1sWhNCIGV1/xLPYnuk8l1qgcbdScWnFVaI2KMUYo6d7U8iIWebqvGN4Fp/RIqteakmpYuYH08vqve1FSY4JWFPW2I8KoEMXr6EHplnkVRiTqVO2ilTYZ5bNmzcKhQ4cwYcIEKJXKeq/1dddd1675Gb6sKN00gZ+KBVDVZ/KSx0aoxR+jqrZ9PMS+gIolUChIp+pi7E/ohGlTZ6Ja45/K0SoZYKGoAhpQCodR7on6qusAivVm6C3kRVWKFSdayUoJgXZogaAXf9JQXxSGfqSsFgeL9RiRFY+DJQYYzLTKKYmUBWqPRz+LtBGbJMYSXeoq3PSZpHSND76eKSqs04WeCrptTW/eg9QVN5yWjVHdk0K64mww09FaaUsBUcpPDLbetnNW7MXag5Ut7qfXRGLa1GdgUShFFWlXUCjgsMyEek8BTeQp1I8izSpqzZBJQGykCqdkJ4rKtlS8s8bUcnuay0dmYnyfVK+0SfmEK3cXiYVztVIhjA2KuKJJktlmR0KkY/JUXG1q1os9VPDHfaW1eglGrXz85yE8tWiHV1qZPnUmIi1GlLvprUztlgZ1imvkVSOv9by1h4TXmhaTKCosK1GHyYPSfa4VMmi+/idP6CAlWouiapMjJ10ug0KlEG3WSC9lNSbWio8JB63QPO/p73e2uJ9ZqcJtFz2GTpVFbj3kRKxGAbPFXq8VZ+HtbXmVIlVKp1KKLghDMuOQER8pjOOWsj1USjlGZCeINEVvPs+bK/eLcHVNXaethveVtBgtorRKYbCTB13XDlpRtjWUnHIlaKBT+EdERAQGDhwo8jPaG19UlN5fXI2vt5Y1qgRdoKoVf3j6I9NNPi5CjaJqs9fH7EiDnEJB5n/1tOjDTG2frr18Fkp1cehoyAinHppkWBGUG6yjiqUWe4uLF1FqObISdMI7TqLpmxYtCo6Qt0MnBnrorNb6Uy+BUGk9Qx0hPFh/HyrHyt3FUCgcURKlNVaxCmlzGuR2tHiBpfDaeV/NgM5ixN7ETPxr6tM4GuvdohyFIFEYYZ801x4Fxv8Eg1ZaU6skUIyM137Ncfv6yCPbMeTYHrx38iXiea1a6/H6fVqvJERFqFCiN2NXfhW+33KsrhaLDMlRGlEnpMpgwbKdhaIib/eUKOS3ULiTwnGHdI73SptkaPy6s0iE3naJj0BBpUlMmqhwT0SdoUE5h/QztecZ3T2pUQ/oUIG10j5aeXrRDrfzubSqEpyVsw4fDz2vXivu9ELOuEn906DTqlBcYxZjlAzy2T/vFg4g8to5K7zvLarGsd9rkRGn9alWnPVcyLjQaRTC40fnQQY5OUZoOxlBtQpHKyvWiv8INq3QPO/Wj/+Bwc18n9rTXrp9BT4Zco7wwlERak8GOTlCT+2VLJx6NEadhbf3FlY72ijXcbBUj10FVSIMne4/VW6cN04oralbQvO0EncFiUtrTIjRqlArt4l7TMP7SpnBjLQYjYj6zIiLaBetnJCZ36tXL/EINpbvLEKZ3i6KWzgLT9EXnJ0cJQbA0TIDYiPVohWas4WXN4jFSqllw+KEkCS8s/A5DCjcj5LIWGGQe9s7tj2w2R3NpOm7ou+SBrHoRe5oRe66GqIcSI+NgFatQKpKLow3KupAg55Ci2mg19SEXhXQYNXLiVRad+qrS4JOREP8vq9YvEbQyqOzZ723OstJ7IKiqHjkxaTg9imPuszhc0WkWi48Fs4wQSaw6SittKWAaGtqlQRCvt/zP7r3ZAw9ugtz6xa5qPjOov7j3e4brZZjeLcEDOocL4wKtUKOvw+WiXsmTe7JyHDqXRujEJObfYU16JMeIyZczlairhZ3KTqKvOveQIZGfmWtCGGkQyboVDDbbOL+QedBnkfKOSQvZP9OsY36pYciHXlfaa1egkkrRqMVzy3e4Xb+llJdKlo5ZZcfg8Jux7zhF7iNJEmNVmNYt0R0S4oSWiEPNGmAPOT0PDOevNuOENporVw4M3LLa6FWyHyqFTJubJJdRCC60grJgnRCkWuJURrWig8JZa3QPG/x5qPIKW7cRtOJxmLC+988i9MOb0bnykK8MM59irFjTKsxsluiqI1AnQ8iVQqhFVrspXFKnXooGopSHUk/W49WYkTXeGErGIpqRMRUQ5wjmByFvdOiEeOFXhoWJKaCodERFPVrb3RfIWM8v8IujPQJfVPaRSteG+W0gkOrTDqdrtFqjrviBoEM5b2lJ8U3qgRNP5NBSE3nqR0X5d9IXoSl04Ci1hIUDkTHMHnj7jsRZDLMH3o+ehXnYvrUGTiQ6Ll4SLucQt13Ql+fUi4XRjZ5SWjwkjbE91FnpJsbFH+g36ObTlK0pj6niQY6DfjDpQZRZTFUbgqhpBdfVFonKB+nX0Y0/j5UIcKALFY7CsxeRKNQef66Y1GY4BVXzhZV1mnltSVobEZrFEiKjsC00Vkec4mY8NNKWwqIBhPfbj6CWjcrXuQdn//VU8Ig/73rECzpNbrR6xFKIDNRJ+qs0KSoe1IUFAq56JpAXjWqIn2oWC8W1uj1pvfT6AiV6K5AtVqoswIVcqTQXHvD+4FSJlrN9E2PEcfw1tAge4a88hRGSNcVup6U6S3iHmSz22CyScJDf8f47iFVM8Lf95VQ1Qt55V7+aQeMbiLHk/TloqgbGeRHYlOxtNcpjV6n+V+3pAj0TIkWi890/yOj26kVCrklxwOFrNPildMgd0LPaXu53ozsFB2Olhp8ohWdWon4CDWqa62orLU004rFZhMGDeWns1Z8S6hqhcgt0+OjPw64fE1tteDdhc8Lg1yv0mJZj5Ob7RMfocTQrnGwSzIxJjPq5ov7imqEVsgYJgcO3Vui1AphN9DrlA6i1qmFjba7sAbXjMrEnOU5KK0xi4hLsitIK2RCaFVydE3SYWzPZK882s6CxNQmkDp4UFG31GgNyg3WOtvGLuasSq0K4/ukiKiS9sBro3zTpk2wWCz1P7uj6UQ8ECFjkC6cTaHBcXJ2ggi7oxAK6pct1V2knZ+qqb0t+pjb6aIqQUH1xDsgjp0KWv2edZLHMMP2hMKn6M/sMJ5l0KrlSInWiDwMupE4iwlFqmRiRYnClSWJQhvVQjTkOSmrMYtQEFp5EhM4rRKTB6aHzE0hlPRyIpXWnW3PimqMOFRiQI3RDIPZWlcQquXPTiFQry1+Fb91G4rPh5wtthVGe74Y0oIQyZAMiIRIFXqlRguD3Nnjkgks/K0VXxcQ9TfOIlIr9xRh3hrXE6cBBTmiGm60uRZ/Zg7ETZc8AZOqsZfmwpM6QyF3RDKRkSHJILwUZGTQvXJ4VgJ2HqsUExWDyYJaswxalUJ45ehvRQuupESqFzG4c7xIWakxWlBQZRKGAIUF0mRJpVRgaKbD6+ENOrUSESolIuIoFNcmzo/y/NJiNfUFQ6O0Mtx7Zk+3xa+CFX9rJRT1Qq3CZi7egb8PlLl8PcFQKfqQ96hLF7zyiueaRSeeOzBNGMo0FqmYKU2B9A20Qs4G6hJA9VVIH7RQ1VArBIWyl+mBnslRoiaCL7RC+9Gcijx/lCrWUCt6k004nzrFa/GMh1ZqwQprpX085F9uOIK5aw6gzNj8dZXNgjcXzca4gxtEAd7rp87Ahs79Gu2TrFPh5O5JwuCm+wqNe7qOO7XSOy0ab63cjyMVtWKxy5GaRLW+VMKBp5DJxM+lehM6xUVi1pQBeHWpozCbVGefREeokRKlEUa5t44+nVoJrdIRpk7FE6nKOhUMTYxSi3ksPSf7hjoVXNWOHXu8NspXrlzp8udghEKJyDBwtdoo+pMrKJxIBpPSEa5AIRO0CkMFbFyFp9OiJ0VxW2EXnnOfO8olCXf+uQDf9R9fnz/ra4Ncp5JBJpfDanMsRpDx7Opz0OejHn/0PVSbrIhQA51iI+q3HS4ziBxzutCpVQr0To1CemykyAFxtpcjDwdV5yVjjUKYaX96T1oBDhVCSS+tQVd3YSN9UVgctT2jVdXiGpPQlogsUchFekOt2XPlTPJO/N83szAkfy/GHtyIX3qNqu9D7g61HBjbO1mEQfVKi8aAjNgWq20y4a0VXxYQ9feE6asNR/D5usPYV1wDg9nuMsqrX+EBfLLgCcSY9Pircz9RKNGo0jbT0cVDO4tJkrNgI+WH072TPBk00aFJVG6pQfzvaB8qE4U+deSd06lFuCGdABnjZ/ZLgWW7XXg0eqbGQCF3tGWiewBNeloTIUWGRvfkKGw/VonBnWOxv1iPcoMZVrtddG4go+O0Hkk4tUcyQg1/ayVU9OKs6PzrrkK88etelNVaXWolrrZKGOS9S3JRQL2Vr3wOR5v0VqZFYNJK5/gIt1ohFm85JlrtlustzbRC4es0D6K55+m9U7DhcLlPtEL7TRqQimOVjqrFdF+meRu9Fz2oQ8LdE3qiT0bozL2csFZ8qxXK3/7y78P4PacUZhfRV0qbFXO+/w/OyvkLRqUaN1zyJP7qMqDZfteO7opzB2a41ErvtGis2F0k3otsAludU5TGPhUiJAOe9iXD22mfnNUvDV0TdPh6wxFxPLoXURG2nqnRrequ0/C+QqmXZHxTgUZxb7HZRdvePmnRuGN8j3Z1HoZemUUvoFCd/ZVGkZPWcJWMVkOOVdQKI5xWaOgCqVQoYLZZxR+6ziYXiEFRt83hD3AUqmoP7v/9E9z95wJcufkXnHnj2z43yCmHKSFKLYobTBqQhh+35uNImUEUbGsoPboP0HdGK8G0akTfDy1sUA9A8obQyq/wjMsoRJ1y8uWiGAntX1BViwMlemGMk1ecvnfaTt+5M2QlFAuMhBvOC9u6g6Uo15tE4T5q+0KLVqQpp0YoDMngoZ5Nj5JczP16JrpUFoqWM+TJa8kgJ7olUQ/K7hjeNSEk0iCYjsEXBUT9HX47Z/le/LStAB7qbCK2thofL3gCccYabMjog+svnQFDXVRLQzrFaesXs7LHRTVrSXOgpAbv/3ZAePKc70cL1xRhZrSYRagsrYNFalSieBWF+qXFausnYmQc0ORqUGeH0dKaSU5DQ4OuLX3SooQ3kSZuNIGi87uyHT0ZTHDrRVR03l6AX3cWYMvRKrfpieT1o2gSartZpIvHVVc8j8PxGc32i49UinkNpXq408qsxTux8XC5uA9KTbVipKKEcjGfJKPkgkEZQhe+0ApB+18/Jkscjz47dUjwppUa4xtCQSt/HijF5txy6N21CZQkvPLjazh7758wKZS4+aLH8UfWkGa7UT+PEV0TxZhsqhVqj/zubwewu6BKGOo0V2yoTbqak2FMoeyVRqqToHDU8aJaAWnReOScvs2015p7QMP7Ctkk5MU/KTNWLAbQwjPVXKAUD4q8bE+8Nsovvvhirw/67bffIpCZ0C8F5VvL6r94ZwVM+uIprF0Gqv7nWKKhvIQIlVoYqAZaYayLTyeDVBjk5BEmA8NMYdst9+duLTf8tVAY5MRbo6b63CCPUMkwvney+LwjsxJx27juOHtAGr76+yj+Olgqio+QwR2rVaJbYqSoJEqGFoWRVBktUMnlIlyQIgoo1LFrYqQjF8ruqKpNocxyk0zknpMBr6QiPMLDfvw7d4Z3hdIkKpT00hrob3hWv1Qs3VmA4mqzGDvOti8itEhJY8GR9uAuamzU4S0iJ4k8eQfj04Xh4KlqZ8OLWXKMViz2hNJYCnXCVSu+nDg9/PVWbMitaHFf6qX8vzFX4qIdKzH9spmirZMrrhl1vP4CaYna0zT0nHy67jA25pY3qorrhLaItpgihF0mrgNkmLiaiLW1LWFDQ4MMF0pJo0nayd0S22S4BAuslRPXymvL9uGvgyUorvEcqUU1S74eMAHpVSW46orn3NbvodZ/5HH2pBXyfBvNtmbzQ6EVmwSprhgbOT0Olel9qhXC18cLBlgrvtHKjrwK5JbVeo4AlsmwvMcITNy3DrdPeQS/ZQ9zuRsVdIvVqVxqhRyBG3PLRH0pSpOCy1RhRxg5XesphH3b0UoREUXHanq8tuDuvkKLyh11X/HaKI+NPe6lIu/mwoULxTbKlSA2bNiAioqKVgnBX3RPpi8+xmX4RFZSJDbmVsBstSGmzqNLEw8yvGWSHNa6SiB0LSMDk8rtV9O2ugrkranW3hJTty7Fkys/ED//Z+x1+PSkc3138Lqwq4zYSLFCSzcVWiWigU0rp4+e61h1WrG7UIRdkUdkT5G+vqcmGe7rD5QJYRAUhk7VeMkLTt6KnceqRE9M+m7jIzUY1T1RrALvzq8W33lBpVEY7bQoQrm+2UneVdEOFkJJL62FFlyoOBTpxpE77picULgeRWWQWMRF14VWLtm2HC8s+R9Udhv+6dQXN138hNsesE1JjdVAp26f3pFM+xHOWjlRSFdPLtzulUHuZP6w8/HpkHNgVbjWSVZiJCb2d9/TNbdUj6XbC0T+tqeJGhkZp3RLFMVPl+4oFNd4X0ycwtnQYK2cmFbeXJkj2pK5q27elI+GnS/SBt11+SBnxeUju7odc95qheaOp2QniHa87aEVwtfHC3RYKyeuldV7i4STzRu+7zcOf2YORnGU6w43GgXQv1McojWuixTSnPBAsV7UUrA6TCqXkAc9KcrhxabUJWdPc1/h7/uK17PXuXPn1v/88MMP47LLLsM777wjSv4TNpsNt99+O2JigiMUxt0X/8/hMrG6b7NTgQGH91t4wEVlP8cwofo1Ul1RN6ouTpUC6Q/WsNL4iXL2nrV4Yckb4ud3R16Mt06ZCl9Cw4vaapAx3TVRh6nDOzdaBaLPQ6tEewtrRNhGVpJOeMKpBRqFCVKrAuorTp7uhq2viPhINZKjtRiWFY8pJ3USInQO6vG9U/DH/hLRZ5ba2pDRvnBjHrYeqRSLAqHi4Qg1vbQG0hNFUvTPiBGFZCjXk/RDeUgUfuRM+3BFak2pMMh/6HMaHpx8H0xKtVfvGRehFFEcFOLHaRDBRThr5URZtbcQ6w66LlDlpGv5MTy+8kM8dM49wlNOuDPII1VyXDa8i1sNkffk7ZX7RS/llswaCxV81CiQoFKL3DxfT57C0dBgrbSdNTnFWLajwKNBHmE24pHVc/HqqdfUa8WdQU5OjUuGdXZbhbk1WqE7YmqMVqQAtpdWwg3Wyolp5dedhR4Ncplkx91rv8DngyehKDpRbHNnkBMpMREeixSSUV5ZSwUJPUcc0/yxb3oU0uMicKhEL+abvsaf95U2uZQ+/PBDrFmzpn5wE/QzVRocPXo0XnrpJQQDrr54kTNNBeCoarTJJoxWWiChfam6OpXFp0FBYe10AaWwbZtNgkxGD8eFWtjmTXLQW8MpuVvx3x9egkKy44tBEzGbevz5oEKk8wjkrCSjmQwYqsh54ZCMZsZww37TlEPRNPeeQv8zYhXCAHeVBkAFSWhy1/S4FMb48/YCcdxO8REiXYBypqi4AuVyUOhIqBjmoaYXb9HVFXujCrMmSjgVWnBEnLQ0OaHFp/0JnUXLGUnWcnE2qu1AhZ2iNI4q61QTIZQ9ZaFOuGnlRKBr9Ie/HfB4j+lcUYDPPn8cnaqLYVBpcO/5D3k8Zo8U99VqyciYu/YQth6t8KqYKc3nKB+P8v1o8bWtkydnoaFw8YZ7C2uldWNo0aZjqHGXE1vX6eODb57B6Nyt6F18WLTe9DTvIq24q8LMWgksWCut1wrZP26RJMxc9i6u2/QjLtj1G865fg7MSs9t+nqler63/LS1ADVm1wUXG701LZTVUmV0R2i5ro2RkYGqlTZ9GqvVit27d6N3796NttM2yiUOZijvOTMxAptzzaD1GgpPIoNUFOeoy42llVby+KVGa4VBkF9e6zDEZY6eepTzQAgjlaq32x0Gsd2LvufEvsRM5CRm4lB8Oh6bdMcJG+SyOu++yOStK7BGofn0WSPresy2pt80PaftVEn0oqGdhJfbVcVRT4Z+Q+86vT8thpBx7wzdCiVCWS+uoIsbFb5ZtCVPXOQoJI8WXuxuCk89+PvHeOH06Y78VpkMv/Ru3C+5KdR3XOSoSxQiCyRERWBUdoIo7hRqCzrhRrhp5USga/T2vHK3r3eqLMIXnz8mDPKchM549owbPR6Prsb3ntWrkYacE5dqkwXfbcwT+X60kOstlCdIVanbOnmiyZozzYzqk9BiHxWSDKWoqrbCWvEeGsM5hZVuX9dYzXjv2+eEQV6jjsB/Tp/W4ryLvOSsleCAteI9NIYPFNe430GS8NTy94VBbocMb46a2qJBnqRT4aGJfevHYUODmBajft5WgH2F1V63rjpaphe216DOcW2KjAxkrbTJKKceezfccAP2798veu8R69evxwsvvBC0/fcaGxRR2Hq0CjEapTCoaQCRAUltv6g9RYZGgZJqM0r0JuFVp9ZfVMyKcmYp9F2stkgUCqgQhoO2zm1Of3yLzdFuhgZUmcH1amipLg5XXDUbJoUadvnxlb224iir5WhFRedED2rDQWHo7sJ9m/abbgotOJARTrnDVBzOmxUnbwx9Z+hWbAilBYeyXlxBf/shmXH4ZuNRUVW2xm5zLFo1IbM8X1RY7152FLHGGtx9wb+9Ov4p3eJx49juoviis5tCl/jIgFjlZE6McNPKiUDX2wo3HQzSqkrw2RePoXNVEQ7EZ+DKK59Hic59aCEpZ0KfJIzrlepy4lJmMCGnkNrNOFK5KELFU5V3gu5c1H6Jum5QAbbWTp6c3kZnn3S6F4V6VFVrYK20TisURu4KtdWCtxc+j7GHNolokulTZ2Bjp74ej5cRq8G0U7rVP2etBDahopWO8O7SsU1WN5EakoRHVs3FvzZ8L54+cvZd+HbABI/HI8fm7EsG1bfda6iVWosVh0trRcSxSuGo02X2YpGkvNYKjUrRpgLRga6VNpk+L7/8MtLS0vDKK68gPz9fbEtPT8dDDz2EBx54AMEM/YGHd0vAkh0ForI45cZSTqwzt5y8ugM7x+JomUG0AqO+3t2TdaIX87EKE6qMtOriqDRdZbSKEPfUGDVKaiyiKT2hUspF3kRTA+WkY7uxqP948bxaozuhzyGr659Ola7J4KU2ZVSUjs6NDGoa/J56Xuoa9Jt25UlvGDribf6Ft4Y+7RdKRnko68XdzYIq6tOYoLoEO49VN9t/aN4uvP/NLCTWViEvOhlvjLrMq/ehgPaspGiMyEpkIzwECQWtdFRYHB3bFSnVpcIg71pRgMNxaaKVU3FUgtvjUAGegZ3j8Mi5/erPs+nEhRabdx2rEmGDVPSU7iWVdUVPXeFYBKYWNjbRp7y1k6fWRFWF63WAteI9dGzqNeyq7dmbi17AGQf+Qa1Sg39d+jT+6dzf5TGcZ0U9xW8b1wNqtcKlVmjOuLegGhUGi3DU0MK0xeTe0GCttD+hoJWO8u7q1EqXfcid7Zlv/ctRqf7xibfjy8ETPc7Veqfp8OCkvqKYsyutRNmU2J1fhbIas3CSx2rlMLSwgkVDmNoQTh6Y3urPHQxaaZPpI5fL8e9//1s8qqqqxLZQKpbQNy1G5KdSz3KqIE4XS4IM7LhINUwWm8jJbhi6nRwdIQZymcEiDOAIcoeLkHagqMosDHL6IyshwWJt3P+bJlGfLHgCmZWFIo+8pZWnlqC5mlImR88UHXqmRuNouRGFVHDLJonJFBlLVHDBU4l/Z79pWj1y1c+d8sZb21tc1wpDH/B98QZ/Eep6abrySQud9PelRawu8RFirBjNVljqBv25u9fgtcWvQGOzYFtqdzER8mQ0NITSMLol68J2chHqBLtW2mviRJMJWvj9+1C50Bjdh7oluF64fe3HV5BdfgxHY1KEQV4Q07wQVUaMui6NSY3TeibinEHH64o0nLj0SNaJ+wf1jqVFZqqxQhG5lD6iksscrc9cQPLUqpSieNVVI1ufVtKaqKpwLYjFWmlZKzR3o37cqdEaMR5R23ghicJwz8pZD5NChRsveRLrMgc1O56izsFBUZI0nm88LRvXjspyOcknyGFDHXnMVjsok5HuWaQHN1JhrXQAoaCV9vDuutMKjdmmXLfhh/r2zE+feYvLblDnD0pBSkwkYiKUGJmVIHqSO1trutIKnT+1zCTnDenDZqdoY2oT2Pz96Sg078uI1WJIZjz6prf+7xcMWlGeSI7GqlWrRDjIVVddJbYdO3ZMDPSoqODOCSZDMzM+UqzgkBGbqNNAQy3RZDKRL04DeGK/VIzpniQezpVeCgs/WKrHyt1UWdwoepiTYVJSYxQehrxyg2iZ5rw4iwrotVX4ZMGTwiA/FJeO37OGntC504BWyxXITtYhPS4S3ZKicPeEXqKAQo3RKgxsMphaWpGm1+jmSIJ3VcitLb3FW2Po19Q0964GM6GqF+fNorTGLEKbjlUaRQVNqrlA+XQHSuRiUiP+1nY7bvnrGzy6ap743WU9RuLu8/+NWrXWq/eiGwUZEhlcXT2kCVat7C+uxtdby3w+cSKNvbUyB7/tLUZlrUW0hCE5Uf0S0lbT+cvjE+/AKz++hnvOfxB5sSkuj3neoHRcPDzTpXfSOXEhD9/vOSU4VGIQ6Vk0qaJ7F+mQjHHyCNosjslUw4kT/R5FYaXGRmBcrxS31al9FVUVzrBW3GulotYiFohJK1SHhJwqTflg+IU47eAmPH3WrVibNcTlMc8ZmIIhmYlIi9VgYp+0eg9500k+1djZllch2oCSE4bmetTqjKD5Y61zVboO1krHEqxacRizRT737jbUCi24UrqFDDIRCULRUE35pdcoTNu4GJ8NPlu01XRFVa0d/73ieMRVQ1xpZX9RDQwWm0jzpfuKXZJEa2WKamm6hkXRWqkxGnRN0gmnaVtyyYNBK20yyg8fPoyzzz4bubm5MJlMOOussxAdHY0XX3xRPKe2A0GPzGFIkDeAvN7kGaCJiRg9DYq1NQ3dzkzU4bQeyfWGelWtBZ+tO4zttVViIlP36+L3dSYD5n01A71Kc1EQlYBrrnjWY0sBuojTwCVPhatFV9IBhdzTOdEjPVYj+vjR5+iX7l2v54bQTZFujq76uXvysnekoR8MhKpenCufuWUGVBksOFxmEO0BaQzq1HJISplYCKJWgVa7hDhjNf71jyMXae6w8zHrjBu9qplA416jcqSSpERrRQ45E5oEs1aW76SJk93nE6dZi3di/YGyxq2cJKCyYXVcurHUveehhE645JqXPBaqoilHnzTXnga6b5XUmMRCW35VrVgwJT2breQZt4oesnKZBLlKhmgtdSCxCeOHvIm0UJCdHCXaE2YmRIrrfVuu57pWRVWFJ6yVxvciarX62q97RbvWRvXVJKDCaIPSRTVp0spZN74Fi8J9oaqU2AjhHfc0yTdaFKLSOs1t6FyiNHLhLRftP+0Qzh1INhitZPiwVjqaYNbKsVZ6d71JCXF7X4GECqMVGudqUgMKo5Mwefp/YVS5d6JQC1x3XmZXWiHUchmMNodtZJMAnYZmfDIYzTYR0k6nTosE3RJ1SIzWCq201U4IBq206Z3vueceDB8+HFu2bEFioqM/HXHRRRfhpptuQrBDg4rygUZkxaOg0oQyg1kUIqA+3bSimRajEa+7GnxNBUErP+W1FpRUm8Sgk5zGs8WM9xY+iyH5e1GujcY1lz+Lo7GpbquzkxZJJ1Q1vdYqicHTdD86LuWKp8dohKeSDCEKCzmRVR93/dzbajj72tAPBkJVLzQmNh0pR1FVrQhBom4FVByRLqSUF0RjnwapsxVaRUQMbrjkKZFP/pGbldaGkLmuo4TXuhtRhEqB0d0TRVE3JjQJZq2Qhyw9Kd7rsLiWJk9GoxWvLd2NP3JKPBaKijHW4MOvZ2LO6CuwOnuY8009nmtchNrta6SzkhozqmrNwmNhsUrQm4/3+aRTERMoG1nncmQlRoqii7RH57gI8TkobepEruftkT4VarBWjtc/WLK9AIu3HMOewhq33W3Ic029lZ9Z9g6Wdx+BVd1HiO2eDPKWtELnolHIsaegSngy9UZLfUtcQvwoAQazTbTRJWd9RF3BYNZKxxHMWjFYvPfuepMSYrXa8ekfh/BnTgncdQg01VXmpZD1iohofN9vnHjuySAnyHnpzt7QudGK01FJP8sAkQZMWqH202Qb0HiOj1ShV11acahrpU1G+e+//44//vgDanXji1VWVhby8vIQ7DhXdGiltnN8pKhSTrl0FFYRrVXCJkkum9a7EkRSlBqVepPYl+4hNAZkNpvoQz7msKP9BlX7zEnKrDe66YJtsUnC60j56WSY0GAuN1hRY7aJ1ylNgxYJju+jFP+TYURVCSkkhM7bF6s+3hZy85ehH+iEql6qjRbklhpELhKN6wilwhGlQRc4uQwVtVakVpVgfM0x/Jg2UFx0t6f1EA9vkGSOMFkK8YuOUImLJbU9C9VxwgS3VmgBNNLNtbZpWFxLk6eP/zyEN1bkoLDaTXn1OqJNenz05ZMYkr8Pzy95A2fc/C5MSvdGBKFWyDCiq/saDg51kSFuE4VL3RGlVYkJVWaCDsO6xmNwlzgkRWt8cj0P16iq1sBacRSPovSpvw6WIqdI77ndrCTh2aVv4erNS3DptuU47db/89iRwBut0Din+kJr9pegutYi+o27bkkrQ7SGKgrJROrjmf1SWSsdSDBrJVLlnXeXWovR4pSnlBDi6UU78Mf+0hZbM1+96Sc88+u7sMnk2J/YBTtSu3vcn7zraTFat/aGN1qRyPC3ko1DKR8KERVJ0cdU1I1yyMNBK22y1qivn1glb8LRo0dFSEiwo2sS4kB5rA2h3uNNjV13hRhyy2pRoreKcCrKK6KCE3Sr2ZuchXH7/8EtFz+BbZ16i9FI4bm0ckMhT+TxJkMkIVIlBgittGZGqFGuN4urPHnqaZFALcnrvRt0EKOFvON2KGUylBvMbWqv0RH42tAPZDpSL4cOHcKsWbOwYsUKFBQUICMjA9dccw0ef/zxZjekE4XqK1DuHK2O2iWbWHQiaKJO2/sW7Md7X85ErKkGhde+gPXJPb0+Nh2KFsC6JlBkSoSY8E8akBaSkRRMaNxbNF6GxbVUtIcmBvQ66csTlP40/8unhEFeFhGD66c+3aJBTroiDY3Icm9o0IIuTVQoJcUdNHmiReC+nWJw6+ndMbxrQqsnMi1FCoRjVFVrCHet5FUYRJ44RWt5Y5DP+PVdYZBTb+WHz7mrRYPcG63QeKUFqY/+PCRC012+dd0/5OWj9rn/OrWbMDRaiye9sFZCVysZXnh3B2TEiLQNZ3HOGpNNzP/JRqDnOcV6fL4+F1uOVmJjbnmLBvnUrUvx3NK3xM/vj5iCHSmu0zcakhilweAu8W7tDW+0QlC6B9lf5Fwc2S0RU4d3blOV9WDVSpuM8okTJ+L111/He++9J56LAmg1NXj66adx7rnNK/IFG60NcfBUZr9XqhJHRLs0qigoQSuHuDC/Nf5afDdoAo4lZkADMqQlJESqERuhEq3WaMJz3EiXYLaakRSlEZUHYyNV2FtYgwqDWXjWyZtCRhCtxhKUx6vTOgaiv1d9mI7Vy+7du8UN6N1330WPHj2wfft2EZ6l1+tFWxBfEqVVisk75f44q8tStAeFq4/Zsx6vfPsCdBYjDqZmoSomQXjQW+5A6ZgMUSsZqt5538ReiNa0XJiQCQ2C+d5Cq/r7K40e7xnpMVq8+9sBt5OnPQXVIgyX0qU8EWmuxdyvZ2DosT2o0EaJ9Cda6G2JBJ0KD0zsVV8R1+WxVQoUV5maFZBrCnlmJidFtskg97bydrhFVbWGcNfK1rxKFFWZRNG4lgzyJ1b8H6ZvXCwM8ofOvbc+HPdEtUJEaRXCEeKJWqsd1UYzzuiWLqIvW4s3emGthKZWvPHuktPi2415Iqpww+EKkXJLrZyVcrmwK6gt89r9JaLGlLsuAE4u3r4cL/48R/z84bAL8MK461tMh6KIkpMy41usi+CNVuwAkqJUOLVXCh6a2LtF/YWaVtrcp5yKJvTr1w9Go1FUMty3bx+SkpLw+eefI9hpbYhDS2X2+6ZHi6rsk7asxLJeJ8OiiRDbC5M7iT+AXaJelhLiIlViwCZo1Y2OY7ZSew0J/TNiEKtVYUd+FQZ2ihGrXnROdD5UUK6y1iq0E6NV4bQeSSLU19+rPkzH6oXehx5OsrOzsWfPHrz99ts+N8rJWKaiG7mletSYHN5xmtBf9Od3eOint0V7P6poe8dFj6FaE9nizcAJGeQ08TpnYHqbChQywUsw31sm9EtB+dYyj/eM/CpjfWVzV5Mn+pnSjjxJRWsx4oNvnsHIoztRpdEJg3xnasueDOLqkzPre8a6g9Kz6Lxagpwd8TpNmwzy1rT3CaeoqtYQ7lqhArz5lbUwe1o9kiQ8vHo+bvxnkXj6yNl34ZuBE3ymFWLrkYoWPY8EpUC2xUnSGr2wVkJPK954d6l+lCjOqTfBZLELh4lKoRTFqan4WnGNEYWVJuEY9MQFO1fjpZ/+CzkkfHTSZDwz4aYWDXKCNHvFyC4t2hveakWpkOGy4V3aZJAHu1baZJR36dJFFExYsGCB+J9WnG644QZcffXViIgIvFDpttCaEIeWyuynxGhxy9afcc/3c7CpSz/ccN0LsCpUomUaDQzyiHeKjRA3JgpLpwHlEBVVvLWjoMokVo2nDusiqnbSzaq0zit/rIIEZxIGT7xOjeFd43HJsM6iVVsgrPow/tdLZWUlEhI89wGnCqT0cOLs5ekJWlk8qUu8uAlEqJU4UlyNW79/F9PWLxSvLxg0EY9PvB02hVJ4yd0VMWyISg4o5Y6FrAsGZXj5CZlQwd9aORG6J9M9I8bjPYP6fXuaPFWbLC1Gk0zfsBijcrehWh2Bay97xusaDSqZI/+7JQ6XGkT0V0s4aqB4LpLVFE9RZSdSpT4cCXet0NBpKaLk3D1rcdv6r8XPdC/6cvBEn2qFoDag3pCVFN2mMFzWS3hrxYkn7y45RkgrBpNV2BvOcUKaUuvkOFJmaLHgc/+CHLy6+BXhTPls8CQ8fdYtXhnk1Jmjd2oUkqM1Le7LWmkHo9xisaBPnz5YvHixGND0CFW8DXGg7Z4KMfRcuggXLXKEg2ztOxJRMbr6DjYkmt5p0bjopE5YsbsIMhjEcapNVpitFmGUU/GEuyb0RK80xyBtuFhAK1QUzk6rQrSqy8Z4YOFvveTk5GDOnDkteslnz56NmTNntjmipLTGhIs3L603yF85/TrMOXlq/UW9pTm+s9I6HZPSNG4b16PVq6RMcONvrXTEPYMiSTxNniglqSXeH3kRulQW4Jv+E7Alo3ez151Xf9Hpo75zBy3+ypAY3XJdCUqX8sabQQtoPZJb19+3pagyV5W3meawVuQoqKwFdan1xJJeo/DNgDOwNa0nPj3JdZiy7AS0QnSK81yR2knf1NZHLbJeTpxQ0IoTd95dx/WaCj27nvuTA7ClORgVcqP+4zFGPR6fdAckmfv5l6yBR5uiJRN0jqKFLcFaaQejXKVSifCPcMGbEAdPOejd/liO8//7hPi5/IZbUX3Ffeh7rEq0OaCqioM6x9YXsOqaGCmMbQrBqKg1Qy6To0dKFC4Z1gm9Uo/3lA3kfAimffTyyCOPiJ6anti1a5e4+TihqqIUsjV16tQW2348+uijuP/++xt5yml1uTURJVsnXIh/tq/D+oGn4v3U4Y741jqate+jSZfaUTOBwmXVSkV939Zpo7O8ChtkQotQubd4umc0nDxR/iwtutL4J0NApaA0JtcTIZXNAqtcISZKNrkCj0+60+37Ow0MguqM0O2Iok+onSf1enV6TXRuF5kVIkqL2mpKLgx9J1SM9J9DZUiO0Xjt1Wgpqqxp5W3GNawVGtdy0YXGZVunOq+HXa7AA+fe59HjJ3OjFfKoedPzeVBGXH1NlYbHk1y0gaO5XWs8gKyXEydUtOIJSh2kTk80fhtG2lJUCdWYIsddcbXRbQs0gUyGWWfcKBTnziCvX8Cqa79MDsOkKK1o60fRvC3dW1gr7RS+fscddwgD4f/+7/+gVPqvyXqg56CnbPgTk5+7Fwq7DVWXXYn4997E7ZB5rArorbEdqPkQTPvo5YEHHsD06dM97kP5406OHTuG8ePHY/To0fXFTTyh0WjEo9Xk5KBHZiayx3V3jNvxX0PaWQDzsn0ef43uDamxGjw2uZ8Y5+UGCxJ1agztEs8e8jAm1O8tzskT1QmhojsNJyN0lafIp2i1FdUNEmWVNiveXPSiyB//9zl3C0PDE7I6fZGKKN2JKlRHqJQY3DkWi7fk40CJ3mNxNYr2ovOgc6QCpA3aLjd6D6pxsrOgGgXVpmZ54O7QtRBV1rDyNuMZ1ooayVFq5FU1ji654a+F6Fd8EA+dc49DKy0Y5K60Mq5Xsmjb9vaq/S0WI4yLUiNJp0ZRjeM8XDkkabEtr7JW5Lt6qxVCx3rxCaGuFZ1aKSIMSS+U0lpUbRLtklVyOVJjNMImqdSbkVfVuMXmaQc34vItS3H/eQ/ArFQJrbjzttO0jCJT6P8ojQrpcRok6bTITIwU0b5UlJG1cuK06ez+/vtvLF++HEuXLsXAgQOh0zXOvfn2228RbjTNQdds3ojLn78TKosZNWdPRsynH4mrPl38PRnTbGyHHr7QS3Jysnh4A3nIySAfNmwY5s6dK9rwtQsrVgAXXwxceCHk8+aJcUuehVeX7vGqqFtJNbX1U+CU7KT2OT8m6Aj1e4tOrRQ1RKhDAc197DZJhItTeCF13SBDJEarqDfKaUH3vz+8hIn71sGkUOGDERdil5v2NE4vhlIBKGVy0YGDJjhkaFBbHbNNEkVCWyqAQxMaitAiKHyYJjMN6wNRLjlNAPtlxIm2ha3J1aNF5uxkHf4+VCZ+pkkSHYMiZlx1NmHcE25akewOrRAURUhaacq0DT/gyZUfiJ+X9TgZS3qP8fgerrTSOy0Go3skYf4fh70qGEV6GdQlDtuOVor894bFpUkNVJAuNUaLninRolNOa/JaWS++IdS14ozWXXegtO4uIMFmkyBJdhgtNhwq1SMxStXIKB91eAve//ZZaK1m7EjrjrdPmer2+GoFkBmvE5Eq1CEqLlKJ+EiN8JCTQU6pt6wVPxrlcXFxuOSSS3x0CqFDQ0+3Na4SKl0kpFEnI2rh10AIrs4xgacXMsjHjRuHrl27ijzy4uLi+tfS0tJ890bz5wM33ghYrcD+/YBeD0Q5xn5eea1XhyAPyObcCq6DwITNvYVC/KhoVZXRCq1SDoOdmjQ5ct6o4i21GYtQKUShKbvNhtcWv4LJe9bCpFDilosed2uQO5fdaP2td2o0YiPU4mdKkaKJCE2YqEAotZKiTh17CqqEJyUhQo2SamOjyU99AUdRz0QjPC+F1UaxcECh7VTUkRbgnBOe1uTqHSipQVmNGbmlBtH+TadRIplafcZpUWuxN+tswrgnXLRisNiQEaNFid7sMMQliJ7TBZUWoRUyGGgN6+pNP2Hmr++K350z6nIs6TXa4/EVLrRC6YRn9UvDsp2OglHZiRE4UGJANXnf1EpkJ0XiQGmtW71U1Wqwt6CmbnFMJlrWUphvemwEYiJUYv/W5LWyXnxDqGuF/v590qOxcHMeyvVmsXBK13eqyl5YWSuu0xSZSNlRFjsw8sh20cGDDPJlPUbi/0ZMcXtscX+CDOP7JGPqiC4iksQZyduwbSFrxTe0ylKk/scvvfQS9u7dC7PZjDPOOAMzZswImuqFHUG9p3vS6cAfa4H0dEDrXXEDJrTwh16WLVsmirvRo3Pnzo1eo9XCE4aO8fTTwKxZ4qn+4ktx9JU3EWmWo5NdcuTreHnN06gUYjU10AtvMO1PuNxbyDCmtk5WG3kwJGhplmSn0DoLTPWOPxsiFRKe/uF1XLDrN5jlStw+5VGs6j7cY59YSUZhhUq8fvkQaBpMnMi7+N9f9wlP4LJdRaJSL7VnIilT/mxMhFIsEpw/OEPosHEBRzNiItSg7PIotUpM9CLVSuGVcdZO8TZXr2G7mpMy4+o7h5AXh35/fJ8UXMVtPFsknLSiUcmF4Z0rFnql+sVcY91QM9RFlkxZ9zOeW/qW2PbOyZfgldOu8Ri2TnqhRaWmWiGjwVkwqsJgwic5JeI1Z2Fe2qdfRnQjY6GhXg6VSkiIUgnNyCTAZGusl9bktbJeTpxw0QpFKO7Or0YsXcsNZuGppugmm80uQs7p+p1fQR0O5Bh4YAfmfjUDkRYTVnUbhjsufBQWhesuGqQg+h0Kgb/6lK7ISmpc2JNyyFkrfjTKn3vuOTGgzzzzTDGo//e//wlP3Icffujj0wpSCguB3FxgxAjH8169/H1GjB/xh14o77yl3PM2Qy3TbrgB+PRT8fS3S2/CZ+fdCNmaI2LiRBfTwV1ixYokrdS20BJTTIwMZlvAF95g2p9wubdUGy11hq4SVbVWlOubt0CzWG2YveR/uHjHSlhlctx14b+xvMfJHo9rsUvCIO+WpBP1FXs0WORytpY6VGoQfZ0pDJg8E+T5pkJAZXoLNuWW45uNR3D3Gb3ExKlRAce8CjHRIoOcQgtJ56Tx1uTquWpX0zk+UvRkp9xdmrRRTQnyqDCeCRet0H2BilWRVoqqjMLb1fSWQpHtZ/29FC8scXS3+WD4hXjh9Okt5pFTmLorrTjfd09hFfYV6YVRQ0XlqLgcLabReP37cAW6JZpF+0InTr18+fcR4akjTdB7NNWLt3mtrBffEC5aofFAhikJhO4nZOA2ze6gUPEBh3Zh/ldPQWcx4veuQ3DLRY85csk9QHUbuibqYGwYa14Ha8XPRvlHH32Et956C7fccot4/uuvv2Ly5MmieEK75a0GCxUVwKRJovAVFi8Gxo3z9xkxfibk9HLZZcD334viOS9ffJ/o+arNrxaTpvTYSPx1qBRHyw3iwro5t1K09fM0MbLYJNH2RhfghTeY9ifktOKGGpNVhODS2Cd9uCqG26/oIM7fvkoY5Hdf8G/80kIYrhPqFds5QddMT7RgRpV3i6ocBjlNgMhmoVxdkYcuAUarhI/+OAyFTI5zBjq6gTjTsUjTH645hIOlNRjUKbbR38PbXD1X7WrofwpTBFTinKiYF0fNtEy4aEVXF+VxrNwoDAJXa7zJNeV45pe3ROrH/KGTRfXolnorU6GqvmlR6BTfXCsEGRYHSwwimiVCKReLVKQVUotMJsFqk3CgWI+vNxzFVSPl9d43+v/fk6j7iQw78ytFu0Aa387x3pq8VtaLbwgXrZBxXF5rEZ5rMk5d1fRRWy1467vZiDbX4s/MgbjpkidgUrVc3FellIvaDjrWSofQqlGZm5uLc8893uuRVp/ow1Ol57CG8mknTwa2bBF5tWgSNsyEJ6Gml7xrb4Q+Og4P/Ws2PhtwlggjpBChvYU1WLOvGDmF1dhwuFzkrPZNj3YbxS48FUpaTYWo3BnohTeY9ifUtOIOalVDueQl1Sa3xRCpX+zNFz8uKuL+1OfUFo9JUSnEsUoj4iNVzfREL5OXkRYCaIJFGyjXkELYndEsNBGggkBrc0pEGKDwutSlY2Um6nDNqEzhfcgp1gtvv8MTYhFF3rzJ1Tversb1AhyFKpJXg6NmWiZctELjOCVKgzKDayODKI6Kx21THsW8Yedjxpm3tGiQO+o3AIXVZpdaIXYeqxL3NtKVTC47rhVaxKJtdR76jYfLG2mFoM4hl43oLDyLVKiKFuFaqxWC9eIbwkUrOrVShICXujHICfKI33XBv7Gy+3DccMlTMKo8p9XSCKXbBXXGoVon5LluCmvFz0a51WqFtkl+NPUAtFiOhyaEHWYzcOmlwB9/UDUJYOlSoEcPf58VEwCEkl4oROi7hL649Zmv8GvnQbDYqF2S4+JL10ya8FMhnmqjGZtE8bZEJEerxWsNoYs3VdhUUl9yrRIjuiUEfOENpv0JJa14IlrjWLlvltohSYg3VNY/XdV9BL7vd7pXx3QaGqKoT7VJFLxpCOXdkrecoBBDo9kmepDTohidh1RX9Ir+T9CphKeFivOQ5puGHA7IiEWFwYJDJXrxP3kyvGlbo2vQrsYVwdKuJhAIF63QfSE2UikiOZqish3/rFRr4Zkzb3HbW7kpdDyTxeZSK0RhlUmkdpCmDE20Qvm5wtioq9/QHlohdKwXnxAuWnG0TnadMiiTjsdjbejcDzdcOgMGN728GyLUJJMhIZLyvlX4dVfjcU6wVnxPq86SQgooX7VhP2Oj0Yhbb721UYuBYG8v4DU2G3DNNcCSJUBkJPDTT8CgQf4+KyZACCW9OHOWSkF9Y2tEuw2q4klY6wwD6mlMBaOo9dKR8lqMzk4Uq5O7C6pFRVAyGpRyObRqBVKiqSpmBPqmxfj7ozEBQChppaXJU2KUunEoriThkVVzcf6u33HVlc/hcHxGm4z9U7IThAabtpHRqZVIjtbgYEmNWDyjOZHz/cUudRMoag8VqVEiRqtyWfW2YXeRhoWxvG1XQ2ktVNiRJmjOMEPHxw+edjWBQLhohaAiUE05I+cvPL38PUybOhOHEjq16ng0VGmMD+0aLxaUXbVcSovVCENDtGJroJX6PeoKWVGhOHedB05EKwTrxTeEi1ZoXHVPicLy3ce77RDdS4+IkPX7znsQO1Ndd+5wCxnTaqVoYRYfqXY5zlkrfjbKp02b1mzbNWSUhiO03HrbbcBXX9HSG7BwITBqlL/PigkgQkkvzpylKhG66iga0rQ/MkErpSI8rKIWAzrFCuN8ypBOougG/T7tGBehFF6KQZ3jguZCybQvoaQVT9BEg3ogr95b4tCMJOHB3z/GrX85JoUjju50aZRTGKFwMNQV8mmoParp0CctGpkJOhEC2HTiQxoblhmPvw+VQ5LIayATC2fkCaH5Cx2Pjq1WyJEWrRVV3N1Vva3vLtKGz+2sukuhiTRBo7BC8mLQpClY2tUEAuGiFSItVuvwANYN+rEHNuDt756HxmbF9A0/YMZZt4rtDTVB45p+xy6qTjeGejUnRGqQEk35p3BpJJzZK1V41qpMdmiVjnZr4rhisu9YjNYo5MhOjBJv5mutOH+X9XLihJNWaL5Fw8HpiM4qy8NnXzyO1JoyPL7y/3D1Fc+L7VKzdmfOzuaNiYtQiR7kXeIjRX9yV+OcteJno3zu3LntcApBCoW/FBQ4rv6ffQZMnOjvM2ICjFDSi06tFMV0KN9HJlEhj+OroXXXX7GNbgh0QS7VmzA0Kx56s03kodKFsnN8RP2FMjFKE1QXSqZ9CSWttMSZfVLw8tI9MFsl3Lv2M9z555di+1Nn3oKvB57ZyLhwGhUK0olNQsOsPnqdqqgnRWmFl8RdGxnSGGkx5i8lSqkqL5WcJsnWTeBEa7S6FlGkV9Jze4T7NazoToV56DzpfciLQdeCYGhXEwiEk1YGpMeIYlLkiRt9aDPeW/icMMh/6jUaz1JRtzoUdVpROBeZ6kJnG1oalKKhksuREKURY92doVFsMCMrKRK78qtE5AnhMHYcUSb0MxkslBbSXlohWC8nTrhpRa2UiVabXSoK6g3y3UldcecFD9fvR5lMVrqRyBx6ESlMTSxyjUImFsSc95Vak9XlOGet+J7gCLIPRNRq4JtvgDVrgPHj/X02DNOukLeNWlaQh40qcZrNjmq4Iu+owQWd5kFRGsrvsSMhUh0yF0qGaS2UO+cqJM9os4uJymW/fIx7134u9qWq0R8NO7/R7+s0cmTERYpeq1TFlnDaGbI6Q51C4Ud2i0eCTuMxf47C18nrQRqkPuVUbV1MmsT7KMQEzJGCYhOFfXwR7ufq859oqCITflqhdIoh+zfgg29mQWs1Y1mPk3HPBQ/Bqjg+xiPVcqTEaFGqtzj6mFuOFzGkkUXDiyJB4iLV6J6s82ho0Dl0io9AbIQKm3PLUW2yidZpBEWZ0H2Qeje3t1acrQlZL0xrtJJUchSff/4YMqpLsC+xC66+4jmUR8bW/z61GeyZqhOtMCnykUK8LVZHLjgNc6VchuxknUjxoPuKpxBw1orvYaO8tfz1l6MPOS37UNg6G+RMGEAXtnG9U/HTtgIYrdb6MCln2JOY+NS1yCBPeaRaIfJ7QuVCyTCtgeovOBejqDIsFaKhvDcKs6sxWnH92q9w2+8fi31nj5uOD0ZMafT7aoUMt43rgYn90/Dqsr3YdqRSVLWV1xXUoZ9pwnNqjyQRdUJ4mjzp1EokRWmEQXJKtwTsLaoRfctJs0nRGlDsi97k6OlKVdZPNIrF0+ena0IwtKZhAkMrw4/uxMvfzESE1YQV2cNxx4WPwKJQNdbK+B7onRaD2T/vFt0/4iJJJ1YxpsnYoAWsrMRIrwwNXV3hqLQULQZ1isGWo5XYV1wDqpeVGqMRN7uO1MqJhPYy4aWVzvoy/O/Lx9G5qggH4zNw1RXPoVQXV//7Shlweq9k3D+xNw6XGjB3zUFxLLqfkLecFqsoqnFEVryovUCRkZ5CwHWsFZ/DRnlrWLAAuPJK4OabgbfecoSuM0yY0C8jRjx251ejymapD1+nECi6zpIxrlDIhCedLozRWsfEKRQulAzTmokDtX+harM0wYlURwgDgQrRUN7buK5RmLhlhdj38/NuxJLTrkSaxSYWt2ghi/qYR2lUGNc7RUw07j+rF5ZsL8C2vEphkFNoIE3AyCtCWqM2Mi3lzzUshtMzJQojuyWKY1NObbnehIpaCxJ1aozMSqyf4LTVe0Ht3n7ali88I64+v7dVdZnQpyWtjO2ZiFuXzkWk2YgtfUZg9jXPIAEKl1rpl+HwBs5be0hEl2hVSqgUCrF43BpDo6lWhnZNQFZSFGuFCWyt9ErCLb/OQ+eyfBQkZeDBm16FVRuHeMigUynEfSJCo8Qd43qKMUWP03smY+ORctFKjcY03VOW7yoSRm9RtanFyEbWiu9ho9xbfv7ZUWmdlpPIGG+hHybDhBp0AT61R7LIzdtfrBcXRzsl74G84yQLORJ1KhHONDQznou4MQHNoUOHMGvWLKxYsQIFBQXIyMgQRYAef/xxqCk9qQ3QJIJW8mniRJMUZyVYWqAiI4IK0fxTYMTiR99G5sqf8engs2GvtTg8FXaHVyExWo3MxOOLWjTRuL1JtEmtxYplO4q8TgtxVQzHUSAuCgdKZMhOicJVIzMxuntSqz0ZDb0XZCQdpnB7u4SRWQn1n6Hh53dV8ZoJbPyllY25lSi472WM/eItvDJuOgxW6oVsE9OwWkqRilI10sqEvqknbGiwVphAwyutHK7AkRsehWS34+VTr8ZBKQo2g6NeQgUsIt88NTYCMZGqRr3CaYG2Ib1So72ObGSt+B42yr2B8sYvuYSaHjo85W+8wUY5E3Y0vABTsDpVWDdb7VAoqDugI9e8U1wkMhNOPEyJYdqb3bt3i0Wld999Fz169MD27dtx0003Qa/X4+WXX27TMWkyQ5MImpw0bM1CJBw5gPSUTBRVGaFOTcFXw85FrcEs8rsb1tmpLatFRmxEo0UtV9EmPZK9nzx5KoZzcrfENtd4aOq9ibIpsbewWuTAUyjjkC5xwiNJOEMjXVW8ZgKbjtaKtqYK6bGRdVpJxkvn3i483EaTVRRxq+/2YbWJcdtQKydqaBCsFSaQFrE8aUVpNontpBVdQiweOf8B4aFueFOhH6kQ24HiGuwuqPI4nlob2cha8S1slLfE5s3AeecBtbXA5MnA/Pkcts6ELQ0vwJuOlONImUGE1Oo0SnExJA85F3FjgoGzzz5bPJxkZ2djz549ePvtt9tsaNCkn7zYNIkoqTFBVTfxH7TsW0x5eyaW3/oYFo66sG6SZK83yJ01GSjuhApU/XO4HJ+sO4zrRme5fa+2pIX4ssaDK+8NfWaaMyZHq1FhsIhJWnxkfP1E0lV1eCbw6UitJBzcg2lP34Q/rr4dC0dPEfogD5mpSfE2wmKTsP5AKVbsLsKZ/VLdvhdrhQnmRSx3WlFWVuDGGTdi/+gJ+HTSdNgkuZiPocE9xSkWSuOg195etR/je6WIxStfwVrxHWyUe2LvXkers8pK4LTTgC+/dBR3Y5gwpuEFuNpkEfmtFEJEoURcxI0JZiorK5GQkNDm3y+uNuFwaS32FtaIirbUCmbypmWYsvBlyCUJxl17UTnEigiVDSaLrb4mgxOljFJBqL+rhHd/y8EVw7tAraaGT77DVzUeXHlvqMK1Uk557hKitEoxsaqm/PcIlcfq8Ezw0R5a6VZ0GO99+BB0+gp0/elb1Aw8G5pItWiJRga5s5I6/SCHTBRsI0Pj9eV7Ma5Xsk8NDYK1wgTCIpYrrUTV1uDd+Q8jLW8fNCXFsA89D/kRMZAkuzDGZfRP3SIWaYbaXpKneV9hNTbkluHk7CRffmTWio8I/k/QnmzbBpSVASedBPzwAxAZ3GERDOMruHgbE2rk5ORgzpw5LU6aTCaTeDipqqoS/+8vrsbP28pgtVHhNavw4p25aTmeWviKMMh/GDMFz064EXG06g9J5JE7bQhnv3BqNEgTEXq9tMaCpbsLcN6gTghEyCtB4cNUcMcJ9X+mVohF1UbERapEcSH6nISnitdMcNEeWskozMXbc/+NeH0Fcjr1xO3XPgeF0Qa1xQS9ySoqR6tU8gY9lSWqZiIiTg4V69vF0PAVrBWmpUWs1mhFra/BnI8fRe+8faiIisNt17+IclkkrHqzuJcI21QmF79DeqFhRfcWeo3aBZJxz1oJTOTBkp9xww03oFu3boiIiED37t3x9NNPw2w2t+8bUx75Tz8BS5YAscf7/DFMuEEhRRSqTvlI9D89Z5hA5JFHHnEYth4eFF7YkLy8POHZmDp1qggz9MTs2bMRGxtb/+jSpYvYvnxnEcoNZozIihNevVM3r8Kz370EhWTH10PPwYyzbhFtyaina7nB6pgo0UM63rmA/ievIG2j/wsqj0/SAg1dXTscqoDrhL7b7ik6EU5I3h1RF1UGkQ9MxXjcVbxmwlsrSQVH8H/zH0aSvhx7UrvhpmufhyYpUWiluMYkPHxKssrh0IfFZofZKgmDnMaYyeYwNAIVHWslrHEuYt1yyy0nrBXU1ODtz57AwLw9qIiIxi3XzUZ1di+hFSqIRuNIkhxecanBvYVGEf26TZJE28BARRfmWlGGa5ERt9DqlF4PpKc7nlP4OsOEMS31hmSYQOKBBx7A9OnTPe5D4YROjh07hvHjx2P06NF47733Wjz+o48+ivvvv7+RR4MmUAdL9EhPihcLVhN2/4FnFr4Ipd2O706aiOfPvxsKhQK90qIRF6ESIXo0QaK1fqXcMWEiJOfMSfwnOXq9BigN2+FQ+ooz1JD6QA/uHIu/DpZDqZCjtMYk2lN5qnjNhK9WulYW4n+fPIKU6lLsT87EbdNeQI0uFkPqtHK0zODQip0MCjLCJWFoUHiuc3GY/g9kQ4O1EjqLWC+++KLHfXbt2oU+ffq0ehHLG63E2Ex44YunMTh3J6q0Ubjtutk4kN4dp9ZphcK6FXITzHYJMgmNjHHSDw07ut9UGMzieIFoxHYKc60ow7XIiEuomNsFFwBHjgDLltEb+e7YDBOEUOjU11vL3PbGDJXekEzokJycLB7eQBMmMjKGDRuGuXPnirZ+LaHRaMSjKSarTYQGkjYm5u6D0m7D4kET8OJF9yMpSismQZFqpeiVTFrKrzAKo7x+ckTh68LN4Zg8UY5cv4wYnAgN+7zqTqD4jrftcMiTQfl9pXoLRmQl4OyBaUiO1vj8vZnQ0croLb8jrbIYBxM7485/vQRlaipiG2ilU0IkivVmmOuqvFFurNBKnUFOWlH4wNBgrTD+XMTyRiv9tq/DsMPbUK2JxN3TX0BprwGNtJIRF4EqowXF1eY6Q9yhkbrbChQySjuMQEmN+YQqlbNWwtwob2uREXc5Gi6xWIDLLgNWrwZiYhzF3RgmzKHQqTK9XVTBJKi4BuXypEZrUFBlCpnekEz4QUbGuHHj0LVrV7G4W1xcXP9aWlpaq49HuthwuAxGiw0fnHEtjmRk4/c+o2GwAYYqo+iXrFLIxOSCQg27JGhxtMLoCGO3UX6sw8Agbzl5ArKSIkX+YCBHuLhrhxNq3otwpz21smD0xZCr1VjddzSOaWOBJlrpHBchjIBNuRWO8Ns6TTjXBGQ+MDRYK0wgLGK1pJXf+p+G56bchwMpWdiU2qOZVig96qqTM/He6gMwWu0iDQp19xW1Qoa0mAjRLpCiStpaqZy10r4oQ7nICOVozJw5s+UDUlwHrX4tXgxotY7/qbgbw4Q5ztApymnaX6RHmcEsimxQJUydWoGNufaQ6A3JhB/Lli0T9xJ6dO7cudFrFCLbWkwWSfSH7RKnFXmvP/caDbtVEnoh45oeu49VQaVSoG96tJhMpcfWYvuxKjGhEq3RZBAhe/3So0WfZl0bq8k27fPanhEuvmyHw4SnVj4ZOlkY3larrZlWRmUnYtLANDzx7TaxKEw5sQQF5pLXPCVae0KGBmuFCeRFrKZaWTB4kketTB6Ujm1HK5FfUSvGNK1haVVyMc56psYIA57aC+racG9hrYS4Ud6e+RmecjQaQRf4u+8GPvsMUCqBr792tD9jGKYudMqGbXmVwnCgdhQqhVIU2qFwQSrCsyu/io1yJuigMMSWQhFbg0YlQ3ykChW1VqiUcpitdtHCRQ5J5PHRXCKnRI/4SDWmjcrCnoJq4c2YdkomDpQYUG22IlqtRHZSJA6U1qJHSlSbqsm66vNKUMtCMvgpJNDXES7cjSG08adWeqdFo1dqNIZkxqO02ogSvUV4D6lNUqc47QkZGqwVJtAXsVqrlS7xkRiamYBtigqxWEXtNUkrVMGcoDHdlkrlrJUwMMrbu8iIuxyNRjz1FPDmmw4XxUcfAZMne/8BGCbEoYs5GQ9kkFOFS+eFmEKJJK2jf+aGw+U4s29oVL5kmBPRytDMeBFdQhMUkgoZC+TTUynkIl+cJkLkId9bWI2z+qcI7wIZ4OlxEciuy5uj5ydSTdZVn1cn9Jy25xTVcIQLExRaofvP6T2TcVKXeGzLq8DgLvE+MzRYK0ygL2K1Vivje6fU52QXVpvqc7JrTFbROqyt9xbWShgY5f7Iz2hETY3DM06QYX7llSd+TIYJIZKiNdhcWI3k6OMGuXO1l3rHpsdpUVRl5AsxE/bQQpVWpRDeiqIqExJ1amjrGpGTR5zCDE/qEicmQzR5OX9wRrvkzbnq89oQmqDRe7U1p5BhOlor+VXGdjE0WCtMqGmF5mLtkZPNWukYlOFYZKSeqCjgt98cOeTXX++bk2WYEOKkrvFYdbAGNUabMMppZZZC12uMVkSolSKs8ESKhjBMqNAtSYf9lUYRakjtmmIiVKJ1k1jAMtuQFqsV2ygn1jl56ZMW4/O8uYZ9Xim0sCnkjacJGu3HMMGkFV8bGjrWChOCWmmPnGz6fdZK+6MMxyIjjSBPPRvkDOOS3imOfL5yvVncAMgzQUXeUmK0ouLmiRQNYZhQYkK/FJRvLcPRcoMoVUL1GGjy5FzAIr3Qwlatydpo8uLrvDl3fV6d90vyLLYl1Jdh/K0VXxsarBUmVLXi63sLa6Vj8EEMePtDuRn0R3f1YBim/aC+l5TLRz0hT+mWgJO7JYoKn8O7xouVW7oQt7UgFcOEEt2THSGD1EdVo5SLUEOj2SYWsIZ0iRMhts7JS3tqxtnnld6PchCrjRZRAZ7+p+cnkq/OMP7WitPQIM85/X8i45i1wgQ6fF8JL9i9xTBMixdiX+fyMUwoQp6828dFicnSZ3/liroL2Uk6RGqUYvLSUZoJ5z6vTHDAWmEY72CthA9hZZQ7PevUGo0JbJx/I46G8L9WUmJicOmgBCzfWYSDJeUwW21QKxXokazDGX0TkKKVWFN+hvUSWPeVQaka6E5Jq9NMhV80k6IFrh6ajGMVUTBYrIhUKUXki1we3nplrfgP1kpwwVrxH6yV8NRKWBnl1dXV4v9mvcqZgP6bxcbG+vs0wg7WSnDCeul4WCvBCWul42GtBCeslY6HtRKcnKhWZFIYLYHZ7XbR6zw6OrpZnz3nSgcJ4MiRI4iJiUEwEkqfYefOnejdu7dv2t8xJ6SVUBhXRCh8DlefgS7jdDPIyMhgvQTYfSVYCAVtePO5WCv+I1S0Eqp6Ya0EDqyV8NRKWHnK6YtqWr3dFfQFB/vACYXP0KlTJ74RBJhWQmFchcrnaPoZ2JMR2PeVYCEUtNHS52Kt+IdQ00qo6oW14n9YK+GpFbZ4GIZhGIZhGIZhGMZPsFHOMAzDMAzDMAzDMH6CjfIGaDQaPP300+L/YIU/A9MehMrfJBQ+Ryh8BibwCNVxFaqfi/EvoTiuQvEzMf4nFMeVpp0+U1gVemMYhmEYhmEYhmGYQII95QzDMAzDMAzDMAzjJ9goZxiGYRiGYRiGYRg/wUY5wzAMwzAMwzAMw/gJNsoZhmEYhmEYhmEYxk+wUe6CQ4cO4YYbbkC3bt0QERGB7t27iyp7ZrMZgcybb76JrKwsaLVanHzyyfjrr78QTMyePRsjRoxAdHQ0UlJSMGXKFOzZs8ffpxWWtFUD48aNg0wma/S49dZbEcg6+Oqrr9CnTx+x/8CBA/HTTz8hmDQwb968Zt85fRaGCSVtuIL1wrQnoaQX1grTnrBW5vlEK2yUu2D37t2w2+149913sWPHDrz22mt455138NhjjyFQWbBgAe6//35hOG3cuBGDBw/GpEmTUFRUhGBh9erVuOOOO7Bu3TosW7YMFosFEydOhF6v9/ephR0nooGbbroJ+fn59Y///Oc/CFQd/PHHH7jyyivFAsSmTZvExZce27dvRzBpICYmptF3fvjw4Q47ZyY4CHZtuIL1wrQXoaYX1grTXrBWfKgVaonGtMx//vMfqVu3blKgMnLkSOmOO+6of26z2aSMjAxp9uzZUrBSVFRE7fqk1atX+/tUGC81cPrpp0v33HOPFCw6uOyyy6TJkyc32nbyySdLt9xyixQsGpg7d64UGxvboefFBB+hpg1XsF4YXxHqemGtML6CtSL5TCvsKfeSyspKJCQkIBChkOINGzbgzDPPrN8ml8vF8z///BPB/J0Tgfq9hxveauDTTz9FUlISBgwYgEcffRQGgyFgdUDbG+5P0ApvoOjGWw3U1NSga9eu6NKlCy688EIR3cAwoawNV7BeGF8QDnphrTC+gLXiW62wUe4FOTk5mDNnDm655RYEIiUlJbDZbEhNTW20nZ4XFBQgGKHQ6XvvvRdjxowRxh0THBq46qqr8Mknn2DlypXCIP/4449xzTXXBKwOaHug6sZbDfTu3RsffvghFi1aJL57+r3Ro0fj6NGjHXq+TOASatpwBeuF8RWhrhfWCuMrWCu+1YoSYcQjjzyCF1980eM+u3btEsUHnOTl5eHss8/G1KlTRa4s0zFQPgfll6xZs8bfpxJStLcGbr755vqfqXhHeno6JkyYgP3794ticYzvNTBq1CjxcEI3gr59+4p6ALNmzeqAM2UY/8N6YRjvYK0wTGBqJayM8gceeADTp0/3uE92dnb9z8eOHcP48ePFl/vee+8hUKFQYYVCgcLCwkbb6XlaWhqCjTvvvBOLFy/Gb7/9hs6dO/v7dEKKjtYAVeF0etrb2yhviw5oeyDq5kQ0oFKpcNJJJ4nvnGFCTRuuYL0wviSU9cJaYXwJa8W3Wgmr8PXk5GThAfT0UKvV9d5Bau80bNgwzJ07V+RIBCp0znSey5cvr99GoRP0vOHKTaAjSZIQwcKFC7FixQrRjosJbg1s3rxZ/E8e80DUAW1vuD9B1Tb9pRtfaIBCybZt29Yh3zkTHISCNlzBemHag1DUC2uFaQ9YKz7WygmXigtBjh49KvXo0UOaMGGC+Dk/P7/+Eah88cUXkkajkebNmyft3LlTuvnmm6W4uDipoKBAChZuu+02Ub1w1apVjb5zg8Hg71MLO7zRAG3v3bu3tH79evE8JydHeuaZZ6R//vlHOnjwoLRo0SIpOztbGjt2bMDo4Nprr5UeeeSR+v3Xrl0rKZVK6eWXX5Z27dolPf3005JKpZK2bdsmBaoGmn6GmTNnSr/88ou0f/9+acOGDdIVV1whabVaaceOHX75DExgEuzacAXrhWkvQk0vrBWmvWCtSD7TChvlbkrb03qFq0cgM2fOHCkzM1NSq9WiRcG6deukYMLdd05/DybwNECGNz1fuXKleJ6bmysM8ISEBHGBJqP+oYcekiorKwNGB9Sybdq0aY32//LLL6VevXqJ/fv37y/9+OOPUiBroOlnuPfee+s/b2pqqnTuuedKGzdu9NMnYAKZYNaGK1gvTHsSSnphrTDtCWvlXp9oRVZ3AgzDMAzDMAzDMAzDdDCBmyjNMAzDMAzDMAzDMCEOG+UMwzAMwzAMwzAM4yfYKGcYhmEYhmEYhmEYP8FGOcMwDMMwDMMwDMP4CTbKGYZhGIZhGIZhGMZPsFHOMAzDMAzDMAzDMH6CjXKGYRiGYRiGYRiG8RNslDMMwzAMwzAMwzCMn2CjnGEYhmEYhmEYhmH8BBvlHYxMJvP4mDFjhl/P7bvvvvPb+zNMQ1grDOMdrBWG8Q7WCsN4D+ulY1F28PuFPfn5+fU/L1iwAE899RT27NlTvy0qKqpVxzObzVCr1T49R4YJBFgrDOMdrBWG8Q7WCsN4D+ulY2FPeQeTlpZW/4iNjRUrPc7ner0eV199NVJTU8VAHzFiBH799ddGv5+VlYVZs2bhuuuuQ0xMDG6++Wax/f3330eXLl0QGRmJiy66CK+++iri4uIa/e6iRYswdOhQaLVaZGdnY+bMmbBarfXHJeh36ZyczxnGX7BWGMY7WCsM4x2sFYbxHtZLByMxfmPu3LlSbGxs/fPNmzdL77zzjrRt2zZp79690hNPPCFptVrp8OHD9ft07dpViomJkV5++WUpJydHPNasWSPJ5XLppZdekvbs2SO9+eabUkJCQqNj//bbb+L35s2bJ+3fv19aunSplJWVJc2YMUO8XlRUJNFwoHPKz88XzxkmUGCtMIx3sFYYxjtYKwzjPayX9oeN8gAa4K7o37+/NGfOnEYDfMqUKY32ufzyy6XJkyc32nb11Vc3OvaECROk559/vtE+H3/8sZSenl7/nAb4woUL2/x5GKa9YK0wjHewVhjGO1grDOM9rJf2h8PXA4iamho8+OCD6Nu3rwjjoHCQXbt2ITc3t9F+w4cPb/Sc8jtGjhzZaFvT51u2bMEzzzwjjul83HTTTSJfxGAwtOOnYhjfw1phGO9grTCMd7BWGMZ7WC++hwu9BRA0uJctW4aXX34ZPXr0QEREBC699FJRGKEhOp2uTeKhfIyLL7642WuUr8EwwQRrhWG8g7XCMN7BWmEY72G9+B42ygOItWvXYvr06aJwgXNQHjp0qMXf6927N/7+++9G25o+p2IJtDpFwnGHSqWCzWZr8/kzTEfBWmEY72CtMIx3sFYYxntYL76HjfIAomfPnvj2229x/vnni2qCTz75JOx2e4u/d9ddd2Hs2LGieiH97ooVK/Dzzz+LYzihNgbnnXceMjMzxUqWXC4X4SHbt2/Hs88+K/ah6oXLly/HmDFjoNFoEB8f366fl2HaCmuFYbyDtcIw3sFaYRjvYb34Hs4pDyBogNKgGj16tBiokyZNEqtFLUED8p133hG/P3jwYCxZsgT33XdfoxAPOtbixYuxdOlS0bbglFNOwWuvvYauXbvW7/PKK6+IUBRqU3DSSSe12+dkmBOFtcIw3sFaYRjvYK0wjPewXnyPjKq9tcNxGT9DBRF2796N33//3d+nwjABDWuFYbyDtcIw3sFaYRjvYb044PD1EIEKLZx11lmioAKFgcyfPx9vvfWWv0+LYQIO1grDeAdrhWG8g7XCMN7DenENe8pDhMsuuwyrVq1CdXU1srOzRc7Grbfe6u/TYpiAg7XCMN7BWmEY72CtMIz3sF5cw0Y5wzAMwzAMwzAMw/gJLvTGMAzDMAzDMAzDMH6CjXKGYRiGYRiGYRiG8RNslDMMwzAMwzAMwzCMn2CjnGEYhmEYhmEYhmH8BBvlDMMwDMMwDMMwDOMn2ChnGIZhGIZhGIZhGD/BRjnDMAzDMAzDMAzD+Ak2yhmGYRiGYRiGYRjGT7BRzjAMwzAMwzAMwzB+go1yhmEYhmEYhmEYhvETbJQzDMMwDMMwDMMwjJ9go5xhGIZhGIZhGIZh/AQb5QzDMAzDMAzDMAzjJ9goZxiGYRiGYRiGYRg/wUY5wzAMwzAMwzAMw/gJNsqDmIMHD+LOO+9Er169EBkZKR79+vXDHXfcga1bt/r79BiGYZhWMmPGDMhkMpSUlLh8fcCAARg3bpxP3mvXrl3ivbRaLSoqKuq3T58+XWxv6UH7OZEkCR9//DHGjh2LuLg4cT8aOHAgnnnmGej1+mbvTZ+BjtGzZ0+X57Zs2bL69/n666998nmZ0MXXurHZbMjIyBDH/Pnnn+u3z5s3zyttZGVlNTre2rVrcdFFFyE1NRUajUa8fssttyA3N9ftZ5HL5Thy5Eiz16uqqhARESH2oTkgw7QG5xj+559/XL5OOiG9tIbLLrtMHPPhhx+u33bo0CGvtEIP2tcJaeLWW28VGiGtpKSkYMqUKUJDTVm1alX9MT755BO4YsyYMeL11n4mf6D09wkwbWPx4sW4/PLL8f/sXQV8m9X6fuJNU7d17gpsMDYGQ4a7u+sfHc6Fi8NwvdjlIhcYcHEZrmMbsCEDxtyt67a6t0kb//+eN/26tE3atOvWJD3PvSH25cuX9TznnNee12g04pxzzsG4ceNkAl+1ahVmzJiBF154QYz2gQMHdvelKigoKChEIbiJyc3NRWVlpRi+//d//yev01g49NBDm47jWnL33Xfjsssuw/7779/0+tChQ5sMmLPPPhsffPCBvE+jgkb53LlzMW3aNHz44Yf44YcfxCAJBp0B69atwx9//IG99tqr2Xtvv/22vN/Q0LCD/xUUFFpj9uzZKCwsFMOAY/Goo46S1+l0ovMpGOQNxy/5oSEpKanp8XPPPYfrrrsOQ4YMwTXXXIPevXuLQ+yVV17B+++/j6+//hqTJ09udQ00SN59913ccsstzV7nHk9BIVpAJ9EXX3whXOF4feSRR8QIzs7ObsWVJ598Elu2bMFTTz3V7HUeS9DwPvroo5t4xUBjUVGROBK4tjzzzDPCoZbgWvHOO+/g3HPPbfY6jf1ff/1V3o8J+BViDuvWrfPbbDb/6NGj/QUFBa3ed7vd/meeecafn5/fLdenoKCgoNA53HPPPX4uzaWlpSHf32WXXfxTpkzZ7u/x+Xz+QYMG+W+88Ub/SSed5D/wwAPDHvvnn3/KNU2fPj3k+w899JC8/49//KPVe59//rlfr9f7jzzyyGav8zfwt4wcOdJ//fXXN3uvvr7en5KS4j/llFPkvB9++GGnf6dCz0BX8+b888/3jx8/XvZS3G/V1dWFPZbvX3DBBSHfmzdvnoz//fff32+321vt5Xr16uXv3bu3v6KiotVvOfnkk/277757q3MedthhTdyYOnVqxL9JQYHgPM6xw3k9FLS5OVK89tprfpPJ5J89e7ac98cffwx77DHHHOMfOHBgyPcqKir8ubm5wglyIxgOh0M4RC798ssvTa/PmTOniStGo7EV/x988EE533777deh39RdUOnrMYjHHntM0gGnT58uHteWYPT82muvRf/+/bvl+hQUuhtbt27FJZdcIumHjDYMHjwYV155pUTk6MF94403Wn3mu+++k/eYhaKgEO9gRIJRhDPPPFNuP//8s0QwOor6+no8/vjjUkb18MMPt3r/uOOOwwUXXIBvv/0Wv//+e6v3zzrrLIkW+ny+ptcYdXE4HJISqaCws8Ex/cknnwgvOAb5/LPPPuvUue6///6mNYfZI8Fgpgn3c4zIv/TSS60+y+yTRYsWSQakBkYNGcXnewoK0QBmkhx22GE46KCDMHr0aHneGbz00ksyvrmeaFlYGliuQQ6RSyyJaokTTjhB9nrMygoGo+fksMFgQCxAGeUxCBoNw4YNw6RJk7r7UhQUog4FBQWSSvjee+9Jicezzz6L8847Dz/99JMYDkwhZJptS9AwSE9PxxFHHNEt162gsDPBjRM3PhMnThTDmQYDUw87innz5kn6O40EOoRD4fzzz5f7UA4vfo5GCWsDgzdShxxyiNQSKijsbHz++eeoq6sTo5zlHayx7YyhQcfSrFmzJO2WjuFQ4BpFYyIUN5gq369fP+FD8DrF1Phjjjmmw9ejoBCM6upq0WBoeXO73R3ab82ZM0ecqwTvWQrlcrk6fD1ffPGFpJmHc8aSQ/vtt584pegoCwbXLxrmwWvY4sWLsXz58phyYCmjPAZrN0iCUIIFFOoJJlbLQaug0BNw2223ibeVRjjrllgfS8/qihUrkJqaKpsgikjRkNDABYSREQrxmEymbr1+BYUdDW66GFGg0aFFIY4//vhOGR7kFUFdk3DQ3mMdbUtQ6G3ChAlNhgfXMdbYxtJGSiH+tBZY461lG5In33//PUpLSzt0nrVr18Lj8bTJDRrkI0eODMkNRgX53cGGBjl68skny+cUFLYH1A1hLXfLG2uwIwXHJsciDWKC45V7K87hnVlLRo4c2ebYJpe4flGLpCW4ZtBJrIkjkisMwuy9996IFSijPAaN8pYiIhrozQ0m1vPPP98NV6ig0H1gCuynn34qkT9u9ENtcmiUc1IPFsvhhovGAN9TUIglVFRU4NRTT5WoGlVm6YxqD1STLi8vb4puEHysRRY6gtraWrlPTk4Oe4z2nrZ+hdpMkY90jjHKwlRDOsgUFHY2yAuWMgVz45RTTpG1I1SG1fZyQ3u/LW7QAPnzzz+b7pXDSqErQBuBAYqWt7Fjx0Z8Dhq+zNrQxjidrHvuuWenHLy1tbURcYUIxZfDDz8cGRkZkiXJbiC8D+ZxLECpr8cYtAHJ1KpQ9Rgc1MXFxa0UCBUUegIYyeBk3VbrC3paR40aJWmArDsn+DgrKwsHH3zwTrxaBYXOgQaChttvvx377LMPbrrpJokQMFWWUTdGv9uKBDIVkBEJLeLAVHamAHIz9dBDD3V4TdIMkM4YJ4yu/OMf/xBnAb//2GOPbXdzpqCwPbwJB64FdNrusccezaJxLBfk2GTL2a7khvZ+uPHO6+B6xUwSthpkOr1apxS6AizzCxW8YBlfuNaCweA6s3DhQilPCuYKA4Q0+LkXS0lJifh6kpOTI+KKdmxLMMvxtNNOE67wt3E9jDUHljLKYwxMv6W427Jly1q9p9WYB/f7U1BQaA1GxB988EFZeDi5s4aQHtVwNbEKCjsLWuuWcOVHrFMNbu/y1Vdf4e+//5bHTLdl+h+jaYyct9W+hq3GQvUI54aG3IjEgCEo7EMsWbJEesmGAt8j2N4mFLimcSPHdjkUoPv4448j+m4Fhc7yJhy0CB+zTkJhw4YNkhIbCaj9wzVFG/+h4HQ6sXr16pDGkQYaFmxzy7WKaxfb3yoodDe0vuA33HCD3FqC8/hFF10U8flGjx4tRj45ES6FnVyi8R1q7dK48uKLL0pbTgZgwq050QrF7BgEU0W03q4KCgrbwLINemZDOa2CwY0Na/24aDA6R0NFq69VUOhODBw4UO65UQ9lWND7rx2jZYdkZmY2PWfGR0lJSdjzM02cBjk3+awrD7498MAD2LRpkxjGkYLCO4zg0Zhnv/JQePPNN+WeEfBw4GaKfc3JX61PrYLCjuJNKGzcuFHqaa+++upW3GAE3Ww2NxNdaw82m00UqdnZgLwKBabE0whpjxsUQ1yzZk3MRf4U4hNMDycXOL5bcoU3psB3NIX92GOPlbWppYK6BgYcuUYwUyRcJhjXowEDBohwaCxyRYWFYhC33HKLkOHiiy8WZc9evXq1IouCQk8EIwiM1tGD+9dff7WKPpAbjADSI7vbbrvJRov8YaQuXGRRQWFngqrj3PzTaObmIzgq9vLLL4sz6aijjmrmiGLGh6ZUTiO9LdVycoORviuuuKLVezQOHnnkEdlMcXMTCZjyztTzO++8E3fccYd8PhiM5L/++uvS1aAtwR3WxdNwYqSfv19BYUfyJhQ0I4J7rFAtZV955RU5hmM9UvBY7tMuvPBCEb8KNiboBOB3cf2hIGk4sLTk6aefliwApuUqKERLS02K6HLubgk6kO666y4RpmZr2khw+eWX45lnnsHNN98sQovBGSk01hl15x7u7rvvDnsO7u/YcYcRd3bdiTUoozwGwbQNGuVMt+UG5pxzzpE0DQ5WTvJ8jwsSW2koKPQ0sB6Wwm1TpkzBZZddJgY4owz0vlKZk1E9LVrOyZ0pjawtVymBCtEAGtQcl9zM01FEVXQavozgUemWYjYUMtTAqDL7t3Ijw2gcexqHS4XV2tdce+21Id9nyiCNZ3KFG5tIOxHceuutsgl69NFH8dtvv4kwFo0P8o1OAHKQ19heaRZTDhUUdgZvQoEG9+677x7SICd4zmuuuUbKRcaPHx/RdfFannjiCdx4440SPaRxTiOcPP3vf/8r4qQ01lnH2xauu+66iL5PQWFngFyhIGe41nzkCp20FFvj2I8EmZmZIvTJc5Jf//d//yfp5+ymQ8cuM4RptNNgbwtUgtfU4GMOfoWYxbp16/xXXnmlf9iwYf6EhAS/1Wr1jxo1yn/FFVf4Fy1a1N2Xp6DQbdi0aZP//PPP92dnZ/stFot/yJAh/qlTp/qdTmfTMWvXrmVKidzmzZvXrderoNASb731ln/vvff222w2GcOc26dNm+ZvaGhodlxZWZn/pJNO8u+///7+ffbZxz979uyw53zyySdlvM+aNSvsMa+//roc89lnnzW99ueff8pr06dPD/s5r9cr7++7777+lJQUWZN22WUXuea6urpWx0+ZMkXebwtz5syR7/3www/bPE5BoaO8aYkFCxbIWLvrrrvCHpOXlyfH3HDDDc1e53ddcMEFbZ7/559/9p9wwgn+rKwsv8lk8g8YMMB/6aWXyjlb4p577pHvKS0tbfOcPIbrmoJCR8B5mmOH83ootDc3u1wuf2Zmpqw5bWHw4MH+PfbYo9lrxxxzjH/gwIFtfm7jxo3CDXKEXCFnjj/+eP/cuXM7vUZEst5EA3T8T3c7BhQUFBQUFBQUFBQUFBQUeiJUvqaCgoKCgoKCgoKCgoKCQjdBGeUKCgoKCgoKCgoKCgoKCt0EZZQrKCgoKCgoKCgoKCgoKHQTlFGuoKCgoKCgoKCgoKCgoNBNUEa5goKCgoKCgoKCgoKCgkI3QRnlCgoKCgoKCgoKCgoKCgrdBCN6EHw+HwoKCpCcnAydTtfdl6PQBtipr7a2Fn369IFer3xHOxuKK7EFxZfug+JKbEFxpfuguBJbUFzpPiiu9Eyu9CijnAO8f//+3X0ZCh3A5s2b0a9fv+6+jB4HxZXYhOLLzofiSmxCcWXnQ3ElNqG4svOhuNIzudKjjHJ6nLR/tJSUlO6+HIU2UFNTIxOS9jdT2LlQXIktKL50HxRXog/rS2sxa0UJNpbZ4fR4YTEaMDjLhkPG5CDb4ldc6SYorkQfFFeiE4orPZMrPcoo11JAOMDVII8NqLSd7oHiSmxC8WXnQ3Gle+Hz+bG1qh52lwc2sxH1bg8+WlKBCrsPvbPSkWg2wuHyYH11AyqXVODUsRnyOcWVnQ/FlejCupJaxZUoheJKz1xXepRRrqCgoKCgoBA/RsV3y4qxvrQODYxcGPQoq3PJe3sMSGvaICUnmJBkMWJtSR1mryzp5qtWUOh+QyPRZMC3S4tQYXdheE6S4oqCQhSsK8ooV+h+fPghMGUKkJPT3VeioBDdqK9nrjrQq1d3X4mCQrdvnKb/kidGRe/UBCSarSipaZCNVHKCEZUONzJs5qbjuZHicRtKK7v1uhUUosHQ8Pr82FxRj1G52wxyDYorCj0V67p5XVFyigrdi9dfB844AzjoIKC6uruvRkEhumG1Am43UF7e3VeioNCtET8aGFqUjxELg14Hk1EPq1kPj9cvmygq4gbDajbA5fF223UrKHSnobGsoBppiSYMyUqSSHmF3YnVxXXCo5ZQXFHoafBFwbqijHKF7sNbbwEXX8xeAsDBB7N4pruvSEEhOuHzbXtMZc/MzO68GgWFbgVTcLk5YoQiOMpnNuhhMhhgMellY1Xb4Gn2uXqXF2ajoRuuWEEhugyNtEQzUq0m1DV4QhoaiisKPQ1bo2BdUUa5QvfgvfeACy4IGOSXXw48+yzzQLr7qhQUog8bNwK77w7Mn9/dV6KgEBVgTSxTcCm2EwymF2YkmuF0e+Hx+uDybnNm0egorG7AkGxbN1yxgkJ0GRrkSqbNQmagos7ZzNBQXFHoibBHwbqijHKF7qkhP/fcQPTvkkuA//xHGeQKCqFQVAQcdhiwdClw/fUBJ5aCQg+HzWxEgtEg6rfBoNExNMcGo0EPh8srKYUenw+1DW4R42Et4MGjlXaJQs9BOEND40pSghFV9W5UOlyKKwo9GrYoWFeU0JvCzsWGDcDZZwNebyBS/vLLgF75hhQUWqGyEjj8cGD9emDwYODjj5XzSkEBQN80K4ZmJ0mNLNVvgyOA6Ylm5KQkICcZUgOYV2aXfrK79U3F4bv0Qk6Ccmwp9BzYggwNpq4HI8NmwcheyVjlr5UUXMUVhZ6MvlGwrsSMUf7www9jxowZWLVqFaxWKyZPnoxHH30UI0eO7O5LU+gIhgwBnn4a+P134NVXlUGuoBAKdjtwzDGBCHluLjBzJtCnT3dflYJCVECv1+GIXXuhoLpeIhVMzaXYDg0LphIOyEjEBfsMkte0PrPccPFzNexeoKDQQ9CWocHU23q3D8fs1gfHjuuNerdXcUWhx0IfBetKzBjlP/30E6ZOnYqJEyfC4/Hg9ttvx+GHH44VK1bAZlN1L1EPpt1qi8HUqcBVV6mon4JCKDidwMknA7/9BqSnBwzyoUO7+6oUFKIKw3KScdG+g5raPBXXNDSLXPB9BYWejvYMDabe8v2BmWofraAwrJvXlZgxyr/99ttmz19//XXk5ORgwYIFOOCAA7rtuhQiAI2KadOAzz8HMjICrymDfIdBZZXEOB5/HPj+e4DOxq+/BnbdtbuvSEEhKsEN0pADk0TMKjhyQWyucLSKZigo9ER0t6GhoBBLGNaN60rMGOUtUd3Y0zpDM/IUohOzZwPHHw80NACPPAI89lh3X1HcQ2WVxDhuuglYtAi44gpg7727+2oUFKIa3BT1z0hs1pNZMz4ocMV6WqbvMhqojA+FngrlwFJQiP51JSaNcp/Ph+uvvx777rsvdm0jiuR0OuWmQdXH7GT89BNw3HEBg/zYY4EHHujuK+oRUFklMQ6rFfjoo+6+CgWFmAM3TtN/yZNeskzTTTRbReCK9bRM32W0MCehu69SQaF7oBxYCgrRva7EpMoWo4DLli3De+x13U4ab2pqatOtf//+O+0aezzmzQsIVTkcwJFHBowMs7m7r6pHIpKsEjqv6LQKvim0hs/nl6jCqqIauefzLsHDDwO33aZanikodJJzfJ0GBjdOw3OSRGnaoNfJPZ/z9e+XF3cdZxUU4sDQoGGRlmjCkKwkuedzvs73FRR6Onw7eV2JuUj51VdfjS+//BI///wz+vXr1+axt912G2688cam5zQ0lGG+E0CBqqOOCihIs8fyjBmAxdLdV9UjEWlWCR1Y01j3rxAWOyyq8OKLwO23Bx4fcghw6KFdds0KCrHOuW+XFmHp1mrY3R7YTEapgz1yt9xmnOOG6K9NFfg7vwKZttZrDRWnGeFYV1KHgqqknfwrFBR2ogOr0oGNZXZ5PiTLhn7pia3S0VsaGpoiOw0NKrRTEI6Gxtl7ZHfL71BQiBaubKl0YMnWKiSaDKhtYFvBbR0MdsS6EjNGOVs3XHPNNfjkk0/w448/YjD79rYDi8UiN4WdCPYfv+QSoK4OOOgg4NNPA+m4Ct2aVTKPmQttQDmwtj99qVOG+bvvBjoREHfeqQxyBYUgzj39w1qsKa6FNygKsbHcjlXFtbj+0OHCOc1Z9nd+JZYX1CDVasKWSguG5tikD7MGKk5T4Mrh9nTTL1JQ2HEgD975PR+/b6xAVb0LOj+QmmjC3kMycfakAU3rk3JgKfR0rIuQKzzurd/ysWxLNRLMepgMBmQkmputLV29rhhjybh455138NlnnyE5ORlFRUXyOtPSqTCtECUwGAIq63ffDfz3v0DitvolhejNKlEOrPCINKrA9L8OCeRQWf388wMp62wTeN99O+5HKCjEEMg5bpoWb66C2agXrpkMOri9ftQ2uOX1d+fn44y9+uONXzcJNzNsJjHImVpYUtuAWqcbu/dPa9o8sQUUFacTTTGz7VFQ6JADi7zQ63TITrLADz9qHG7MXFGMklqnOLEI5cBS6MlY1wGuMBDDSHmC2SB7PW79Wq4tXb2uxMzq9MILL8j9gQce2Oz16dOn48ILL+ymq1JoAsXcEhqVDoYNA955p7uvqMeiM1klCuERafoSVW2DRXTaxNy5wCmnAB4PcM45wLPPqjaBCgqN2FRhx9y1pRIhTzIbYDbohGsWow5mmxnFNU78tr5cNlWas4zYUtmA0toGpCeaUOlwY31JHdIHBbRM2JOZqe99GhWnFRTixYH1zZJCLNsa0I5JsxphMeqFLwkpBpTXObGmqBZvz98Ep9snvFAOLIWeCF+EXPlmaRG4G+PaMrZvKlwev6wrGTaz3Pj6+lI70qymLl9XjLFkaChEKZYuDdSQv/wycPTR3X01PR4qq6Tr0JH0JbaUiWRRKNy4FbnHHQdDQwP8xxwL3fTplMXdCb9GQSE2OPfCj+uxpaoeRr1OykQSTAZkJ1uQaA44xJhqWFzdING+Ub2Tm5xkw3KSUOf0iOFBQz536V8oTNsfdS6vbKbYk1mvV3sJhfjBL+vL8NniQpTVOWHQkS9eWE0GGe9cm5KtJtTWuzFvTTn6pCdgXL+00A6sUjvSE5UDSyHOubKoQBxRdOjWNXhgs5Arlm1cafDgz7wK4VDfdLYH1DetKzTGkxKMSLQE9nxLtlZLHXpXritqJ6iwfVixIiBOtXUr8NBDSj06SrJKqLjOrJLevXs33d5///3uvrSYrCPfWF7XmL5kQoJJLxP6os1VqLA7m0UVbGZjRMbGk3+V4X9n3Yg1u+6Fl6Y+jHWVDTvnBykoxAjnVhXVwuP1w+nxCr+4GdpQakelw9V4pF8c9S6fVwx1DTREGPHLTk6Axw/MzxkObM4XA6PTug8KClHMl3f/yEeFI7AWscSD7ik6iItqGoQ7JoMeHp8f1fUuMbrpwOKNhobVbAw4sIx6MeppjLMca5sDS2VvKcQPV/47dwO2VtfD5fHB5fHC4faizO6SbEiNK1xbaIBTWFRbW4LXlQa3D3anFw1uLwZn2bp8XYmZSLlCFGLVKuDgg4HSUmD8eOCLL1QKbhRAZZV0bR15pOlLfduIKrQUiis78Qy8d9TJKCx3YvMvecpgUOjx0DiXX+GAU7JO/PD5ALNJx4eykdpaWQ+LQY+aBrdEyzOsZomks+acMLhcOOT7d5Fx3DkoqHOhwp6I06YMwYSBGcrAUIhLvpTWOuH1+sRIcLq9Etkz6XVS+lHhcCHLZpZjuTVLaeQJwXVsYo4FG0rcKPD4UVPvFkfzngMzxCDneqRaoyrEjUbJ/HysK6qD3+8TpxSXA3KC79EIL65tQO8UluDqpH6ckfLgtSXbBPRJ86EkN1OcwzTiL9p3MAZm2rr0WpVRrtBhcBAXL1iKrOOOgKm4GP5x46CbORNIT+/uS1NQ6BKwPpytz2hAR56+pAvLl5/nrsApj96OP26chvqEgPGdbDUjKcHUeaE4BYU4AtvTLN5cia2VDpTVOiW90OXzw+HygQEMprIzcp5fYUeK1Yz9hmUj02bG8sIa2URZHHYcN20qBiz6HSmFW/DfU67FngPTlUGuELdr1MLNlWKUN3h88Poa3/D54NEF+FKnYzqsH8ZGsUQJBDbCUlOFM+67As7EJLx445MocwKXKweWQpzB5/Pjz7xy/Li6BB6/D0auKx4/6PbVwd/ECTqlWPJkNRkxcVCGZJxsW1vqcNy9U2GtqcQHT7yFIo8e4/qnoX961wtZK6NcoUNgxO/X7/7AsdefDVNFCbb0G4Zv734JB3pMGNbdF6eg0EVg+h97kbP1WXD6EgXd6CV1N0YmmL507t4D24xyF+QX4fB/XIh+eauQ9agDHz/2RtN7nRaKU1CIs3Xlzd824Y+8SlFXZwSDIlS0Dbx+iMGhtUVzef0Y3isZ5+w9QJ4X1jSgaG0+rn/qevRZvwJOayJ+HrW3SsFViFt4PD78tr5MnFhMpWUtOY1vb+P7whmvH+76gB7Dnv1S0SvZIlyhcZ5cWoSTb78Emfnr0ZCUisT8Tdhzr92VQa4Qd+vKt8uKMGdVCTZX1Ev2lZbN62+8MRuL8Ph8qHf7MK5/Mo7aLVdeI1+K1+Th+n9dj94bV8FptaFuyQpkjBu/w9YWZZQrdLiVwJRXX0ZGRQk25AzENRc8DNfGeixqWNvUN1ZBIdZhMxuRYGyeviTpfoPSRQgk4vSl+npknHkqEvNWwZGagVnX3ttUYsDzuLw+MTzqXRTaqRNnAL+bqfBqc7Tj8fDDD2PGjBlYtWqViCBOnjwZjz76KEaOHNndl9ZjQLXbR75didWFtWKQ06Bg31jNCDfqAxsnrSiHxvqUEVlNa82l/YC0ay5F2tZNqE1Jx39v/TcS9t4LFzWm4CooxBN+WFGEl37aEHAQ17vlNa4Ukk1C3vi3cYX2xoheSbjhsG0tnmoXLsElT1yD1LJiVGf1wjM3PQvXiJHKgaUQd/bKUzPXYEVBLWoaXHA3rieMjovT1x/gh8YV3o/ISWpmx1zWx4u0qf+H1MItqEnJwH9v+zeSJ03EKTtwbVFGuUKH+sb+vqEcsyefi2KXDm+MPxblHivMlQ5ZHN6db8Edx4xRE7tCzING8dDsJCwrqG7sT7mtBRpbolFEp730JZ/TBeeJJyNx/q+ot9rwv3tfhKPfYEmB1yLuHq8PTg+j7j7UODdImxo6A/jdR+zaeuInDxlRV8Z71+Cnn36SbgUTJ06Ex+PB7bffjsMPPxwrVqyAzda1tWIKrbGmuAa3zViKlYW18Pl9aNw3NW2UZGT7AerteLyBIAdTDCnMQy7oly/DoBOOAAoL4ek/ACXvfoLTRo9SvNhBUE6s7sX/fsuTwIjdGTDGNZAvzCaxmHQwiWHuh9cbMDpY4qGVRl1pLkbWg5ciobYahX0G47+3/wdZY4Y11ZArdB0UV7oPPp8fz89Zh7nrykRvQVtXCHnoDzixKFdCjnBtIfqlJwhXBAsWYOBxR4lmlmfQYJS+OwOnjxixw9eWTqmvFxcX47zzzkOfPn1gNBphMBia3RTiD1vX5WPW8q2oqHPB4dPjiQPOQ2lSugzoBo9fXv9+RbHUBSo0h+JLxyfUzRUOrCqqkXs+39ngpEujmNFx1nwzgsf0Jt7zOdvIjO2XijUltSGvcV1RNdYdfQqs338Ll9mCuy59BB/7c7ChtE6U2ykax7RCi0kfiLq7PVJHm2Y1Iy3RJM4ARjXo7W2p3k7v77Oz1so9nwcfE+vY2Vz59ttvceGFF2KXXXbBuHHj8PrrryM/Px8LFizo8u9SaA6O23/PXo81xbUSGmcNeUuQVVRRd9HAaIwCenzAL2vL8dvyzcARAYMcu+4K4++/Yei+46UEpCcY5N2xrmhOrN9//x0zZ86E2+0WJ5bdbt8h36ewDasKa8TQoMghudJUQx7EFafbL0rrNDL4nJRasKlSWkHhm2/Q77TjxSB3TtgLtTNn46KzDsAVU4bGvUGuuNKzMG9tGeasKoXLTWs7IHoYDD5z+wJri8YVdqX9a1NVgCtz5wIHHhgQsd5jj8DasvfuO2Vt6VSknJsYblzuuusuabWkRZEU4hSFhcg8/GBcnzQQNx19PaBvPYlxfSigOFZxXZerEcY6FF86tlGnoixTuVnT3VbUeEeD30dVdO16KOzG1md9UhNkEp/x91Yxppla2zvVikPH5GDy0CxsKKtD/rX/xMGzv4TXYMQXdz0H3/AJcGyswM9rSmGzGNEnLUFaPlG5nRusARlWqWeiI2JkryQkmgzIK6vDh39twc2Hj0Rehb2Zejtr3ZlaT+O9oLoep47NQDygu7nCVoJERkZ8/HtGG+i8YpR7XWkdvlpSiI1ldbJh8vnZ4gxSysH9Uyg3HDdNfD8zySyq0m8vKcXgR55Cn9deAD75pMcJjXYHV+jECgadWDk5OeLEOuCAA3b49/c0aJlRtU43/jNnvThwWTvu8+tgNOiaUnKbObF8gZIPPqbYm8Ptk7Zpg3oloT8N0GOOgeX99zGiB2UCKa70rLXl1bkbJJtQdBZ8FHPTQe/1i50SDDq2OBQYMbeYDahp8AhX+u2SjcFcT/baK7C2pKTstN/RKaN83rx5mDt3LnbfffeuvyKFbkdwimxyVTn6nHQ0EjdtwIRUOzIdNRIhDwVGMVYX1+DgMb12+jVHMxRfIkPLtmEtDc/uaBvG7xtyYFITH6h0+83SItkcWRnltrtRWufEoi1V+GlNCQ4cmQ12im3Y9ziMnT8L88+divxJU9CfvPL7MWtlCerdXlQ53GKEUKAnJ80CvU4Pu9OFouoGrC+pC3hudTppu+bz+YRb/HcZnpPUtKFgrTtT6xm5n72yBPGA7uQK/52vv/567Lvvvth1113DHud0OuWmQbUNipzfbEvDEqjyOqdsgAw6SOkGUwktJgP8tCh8fhnvLVP6jAa9lHfk+l2osCbA7vTg08F74opZs6EPlpXuIYiGdaU9J5biyvaLVC3dWi2tytYW18HtCahFW4yBNYDGNykTDHKK0TyuL+zukZloEq58YeiNK+b9Av2Y0YBpW2u0ngDFlZ61tlTYWUMeKH+ymgJ8oGHeMqORTt5Es0H2VDaLASkWo3Dlm0ojrvjxJ+j79gEslp36Wzq1kvXv31/1Qo7jwf387LW4Y8ZSPPLGT/AffAh0q1ahLD0HZ531UFiDfNvn63batcYKFF861hechmegfQvrt03ynK+zbVh3pbIzbWlYVhLmrimVlkzslbymuE7S0M1GvdTtuTxezFlditmrS9CQ2wdvv/AJ1hx4dNN5bBaTHMfU9zF9UjAk2yYp7PxJhdX1shhQ+I3GO89JsA3brxvKRT2UToCWHn5NvX1DaXykxHUnV5hquGzZMrz33nvt1gqmpqY23XjNCpGJhM5cUQyH04MUq1GMB6fbF6jpo7q61yeGd6ggFvmQbDHi8j9m4LkHzsXIhgoMybIFuhZUN6AnorvXlUicWIor28eXzxcVyBhnRhUd1BpXuGboGnnRki7kj2ifmPS48YdXMal03Tau9B/W4wxyQnGlZ6wt9gY3rGZDUykU/+J0+nJPZTKyQ0Fz0BDnmmMx6HDFD2/g6NW/bONKWq+dbpB32ih/+umnceuttyIvL6/rr0ihWwf3fZ8vx3/nbsCaFRtx27+uRb/CjShOycJppz+ILantR8CpcqjQHIovHesLHs7w1NqGdRc3HvtuNb5ZVoTNFXbMW18m+gk0mouqGrClsh6H/P41Jvzxg0TR15XYUekOqKxrMBv0MJsMskgw6rGyqFa8uvnlDtQ6PdJmjeCiYjHqYTYy5g74vIEWbQXVDSE3FjyeDoF4QHdx5eqrr8aXX36JOXPmoF+/fm0ee9ttt0nUQ7tt3rx5p11nLIKONEb8qLJOkTY62krr3LC7fHAHCbtRm4SbV5NB33rzZDbgltmv4eLPXkBWTRmOXj0PiRaj9C0nN3oiuntdicSJpbjSSVHd+flYvLkKXp8PSRYDbCYaGsG14165Z6aVFjXXwLUjywQ88unjOPun9/HP/9yCNE+94oriSlyvLaC4ITMK69xwB6VacVflcvtkL2UKIR9g0/txz+dP44LZb2Hqa9OQW1XcrVzpVPr6GWecAYfDgaFDhyIxMRGmFp63ioqKrro+hZ04uO/6ZCnm51Ui2VGLV9+7AyNL8lCclIFzz3wQG9N6R3SetMSOe5ZCKUrHExRfOt4XPJThyZruHTlRNtXvNbjF2E5KMCLZYpLWZ2/8lodN5XapUQqkmjulX3JdQ0DF84iV83DPF8/IedYlZmKlayRKahww6g1ynr7pCTKuKRbHdHca7jTSqZLLlET6Ibh4JBj1UgdI25sLiy3BCKfXKxF1ps6zjVoK87GCwOszG+NDMHBnc4VOjmuuuQaffPIJfvzxRwwePLjdz1gsFrkpRAZyiim4HOsc4xRHdFJhpwU0w9yob/6eyefFXR8/jeMX/yDPvz3/Bqw853LUN7hF48FGafYQiPdOBd25rmhOrJ9//rlNJ5biSsfBulim4TKThOtefkVgTQpOU6fN4fL45Bhqk2jg6E5y1+Pp9x7ChLUL4DEa8dNVd6DalAiL2624orgSl2tLvduLGqdH9kKeELXjXG78zGcPAke3xe3EIx89jv2W/wKfXo8fp96F4vRcWBzdxxVjZ71OCrGLUIPq3T834feNlbIxGlOyEcPK81FqS8PZZz6I9el9Iz73+AHpXSLsNXlg/Bjm8cCXHT0RheoLHgxOtm1twLcX9LR+uGAz/syrEOOXqbRWiwE5SQmSKkiVdEYgSu0uOF0+BMelJ6/7G09+9gQMfh/eGXcEFuWOAA8oqmXbGjdQDawqrgtEOkQSNxA1l7Qpv1+8snydb/NGYRKmsZsMOmTZzBJZT7Ua5brkWJiaGZVMbRyWHR+iPTubK4xgvPPOO/jss8+QnJyMoqIieZ3pg2xjo7D94JxBXjvdHpTUOOFquWNqARofjJSnWAywuOrx+KeP4MC1f8Cr1+PTq6Yh//jTm8b9bn1TQzpx2xKMzElAXKA71pXOOLEUOoYNZXZUU3MEfmkV2FJfQQOdwhponHN9ymmowYvv3o1RW9fAmWDFl3f/G5v23BeFJXWKKzsZiis7Z22xO92ScUih3LYKFDS6WAyAyahHaoMd/3lnGsblLYPbZMY3t/0L6/Y9tNu50qkd7gUXXNA1366w0xFqUA3OTMQbv29qGtC/DRyLS0++C4XJWVifGXldC8tg9xmS2SXCXhsLSxEviHW+7AxF9HB9wYn2NuDb60SYtbIYj327SlLQG9xeMcJ5qM7OWm8n/L5AjbdmLAdj/NaVeOmTB2H2efDlyP1w5+FXBYr6Ql2TRjA/xLNLA5u1T+SNKE5LdJx9y/0SXc9INMk1G30Qxfe6Bo/8JkbNGUGho4L/LmzbdvDo+FAL39lceeGFF+T+QLY/CcL06dNFsVdh+2EzG2E1GVFld7VrkGtg6UZifR2ef+9e7Ll5OZxGM+495y5s3O0QjK53oajGKeOe/ZVb8ro9wch46VTQHeuKcmLtHHC8VtV72jQyNCSaAiUhg+tK8MTr/0S/sq2osqXisWufhGWXvVBUUqe4orgSl7CZjaiwu6XDQCSg8yrJYsJgVyUef/M2DC7aiNoEG56c+hh0ex4QFVzpdNjJ6/Xi008/xcqVK+U5+7wef/zxqu9yFIOD6tW5G7G+tBYGvR6JJiOsRoO0aaovr0K/+hpsScuVY38esmeHz79H/zQMiLAdWkthr5aK0ss3BSaweEGs8oVj5aMlFTtcEZ0T4GG75Ehq69/5lfJd2ckWiRLT8AzuC24LY2RrhvjKohr8tbECJbVOVNW7ZSKmwX/qnv0xIrf5ta4prhGDPL/CIfV7hKSSNxrJrHHltzCFnGD5nhYlH1WyEdM/vBeJbid+GjweNxx3E3wh2gWGQtP5JR2e3ludiJGQB72SLUhNDETD+e/Ofwe+fvCoHKTbzCLqprVno6OCC0hOQvwICe5MrigBxh0PcpV1sXatgDwC0AGWZDUhxe+WTdNN5z6AlcPGwlfhEAX2cf3SZNy3nHvaW1fiqVNBd6wryom149E7zYI6V2QGOeHysuzDh3NnvyMGeXFGb9xy6aNYl9IHu1Y3KK40QnEl/pCdaEZRdeQ6Q4yWk1tH/vW9GOQVKZn45/89ihVZg6KGK50yytetW4ejjz4aW7duxciRI5uUA6kW+NVXX0ndhkJ0gYPqP3PW4fvlRahvTL8V9U49kK3z4PUP70W/6mJRWM/LiDxdXQMNn2nH7xpxSnN7wl69UuIkbyrG+TJrRQkq7L6wExEV0YdkJXUolT1UFJu9vWcuLxEFcqa4bip3SKsKqp4PzEhs6gseLlKvRfMXbq7EmuJaMeZZm82IG8E0wPkbK3DtIcNxyOiAYKHH48NrczeKYBvP7w5kkTe/1hbPtVLY7LoK/O+Du5DqtOPPvmNwxYm3w23omKotr4z16BIh9wVEe/jv6GDvc4dfeMoIPVXoM5MsOGvSAPm3DpUBEC/tU2KZKwqh8dbvefh+RXHERgYhIlZpaXj82n8huaYC69P6IzPBKMb9WXsNwAHDs2Xct5xL6GRpTzByQ2kl4gHdwRXlxNqxmLmiCE9+t1rWokjBNSTJbMAbZ9xI7zY+OPpipA0biCEOVzOuEMF8qal3y7qpuKK4EotYU1yDh75aiQpH5DpDAbE3PWYccR4S3Q34Yb8TkDRqWFRxpVNG+bXXXiuD+Pfff2/quVdeXo5zzz1X3uMgV4gusF72i8UFsvnXIL2QGxrwxEf3YuLWFaix2JDk6py69WGje2FM39SuE/YKJZMYo4hlvmwss6N3Vnq7iug0njubCp+WaJKoNqNjAzISMbJXstRPMxLPiZGpqowih4vUE0wrYl1Rpd0lRq7H64Xd6UeCSY/eqVYYrEBRTQOenbUW/TOskjb+wZ+b8cPK4saWGR37dymzpeHLUftj0uZluOTUu1Fv7rgTif+k/sZFgqI9PoMOGQkmOFxelNe5ZHHQUvkZJdccEJH+W8ciYpkrCq3xxq8b8fA3q4RjkWDXonVSEvL2hOMkyyU1Ix3VKRlI9nhF5LBXcoI45MiNUHNJCpXdaxuEN2V1TtFuSE7YVg4TT50KFFfiC//7LQ9P/bAWNY7IO9iMLVyDVX2HBzoZJCfizQtuk2ievaoeA9ITm7hCtOQL2xHml9sxuk8KnB6f4opCzGBWY8nhhtLIWzBzXVnWaxicBh3cfh0+PW2qcCU1yrjSKaP8p59+aja4iczMTDzyyCPSh08husCI4LM/rG1mkKNRefCVGfdh783LUGNOxHmn34dlucPaPJemVRUMm1mPqw9t+3MtYWtP2KsjruIoRyzzhXXPiWHE1TqqiB6qJoeR8Xlry+TvPWVEdtNY6J1mRa8UC75bUSwD7gip8dG3itRz4mSKORVr0xJMompOA9cPHVKtBhH/4OaeNdm5KQli7P/35w0SRefn6QjoTOtzv06PaYdcBpurHnZL54xk6TXLFHa9H34dYNLrMDDLJhHzNKtJ6srpYKhp8GD2qhIMzEzsshr+aEUsc0WhOVYV1OC52esiNsgn5y3Cy588KI7hsqQM/Lr7FNkAcc2hlkN1vVscbMwOCVfft2RLlbQjzCt3iPAVxRTTE80YlpMktYLx1KlAcSW+uPL8nPWoa3BBx2Uugu3POQu/xv3fv4AX9zkVzx5yETw+Pyw6HWwWIwqrGjBhYEaTBksovqwtrhFHdXFtA9ISzbLOK64oRDvWFNVKcIV7vhYSP2FxwvI5eOLrp/H98L1x44n/lG4GLImMRq50yiinbH9tbW2r1+vq6mA2m7viuhS6EL/nlWFrdUOz1yweF/474wHsu2kJ6sxWXHj6NCzuE0jraStFnVFNKlO7fH54vYxEGjCmTwpSE8xdKuxFYy9eEMt8sXSRInq4mhyCDxm5puosJzjtvTqnV4xm7XGKVd8qUv/rhjKUVDdImvlGjx3ldpe0XmJfYx7D9G+H0yNRNp6WdeM/rS6RCZTvdcT5Y3M6cPn8j/HvyWfCZTTJhXfWICf8jTeXxw+Tns4GozgL2MEg+N8n1+/vdKlArCGWuaLQnO/Pzl6LirrIon5Hr5qHp758AhavB78MHIufB+0Bn4dChvXSGpACjJwjqLS7rrRWSl1aziWB43zSdrC23o1evZJEyZ2Rc7Y4HNcvVeaHeOlUoLgSP1x5/bc8VNe7YDXqUetsx9Lw+3H9L+/g+l/elaep9bXwerwiEkpjg6m2BNcRrcSj5drLx1urGkSFmus493Rsx6m4ohDN8Pn8+GjBZtEZ0jW22GwPl/zxCe6a86o8dhuMstdisIkc4LoSbVzZtsvtAI499lhcdtllmD9/vhhQvNELdcUVV4hwgkJ04dmZq5s9N3vcePGTB3FA3kLYTQm48LR78Xff0e2eh/2RufFh4MOo1yMnJUE8RfsNy5b04lVFNdhc4ZCB3R5IANYE0wijwRHowxlYVPicXqh4QSzzZXCWTSbAlvVRTa24cpIiUkQPpyHACBiNaAqbcfKj8Rz8HqFDa9Vzggb1+lI7KhwucezQYcT6OvapZIScmxROoIzGb6qwS6p9aa0LJXVu8XhW2t0R131pTqxrf3sfj33Tde1VdEHtbDRHQ3ulAvGMWOaKwjb8ur4Mf26qiGjTdO7Cr/Hvzx4Vg/yrkfviolOnoc6SKF0IOB9wDLCciZkitU6PRBSpHRHMFR5DfnCT1TctQYjFrBi6vTgv0FD5I69CoiMHj85BPEBxJT7AOX1jWZ38/epZxtTGsXqfFw9993yTQf70vmfhjsOngvkkhVX10kGEhgL3Yws2VUrUr+Xa24wrqVbRbqlu8Mgaq7iiEM3Y2jiWOa/XawI/4eD349Y5rzUZ5K9OOAE3HHsTPAaDBHm4f41GrnQqUv7ss89Ki4F99tkHJlMggubxeGRwP/PMM11yYQpdV9P3x6bmIlAJHidy6ipRb7Tg4lPvwV/9dmnzHAzMsVZvwoA08RZpLaMYxTQa9cgrt+O+L1bA6/ch3cqUjuSI2mXxfdYEa7UbwYrS+wyw4knEB2KZL4eMyUHlkgpxlHCiatmKK1TriI5oCEi/bklL94tTJtj45nsEU9G1xxo4WTKNiQ6g1ASTRME5dphW5HA6xSCvrvfJGJVTetn1dRvoIK2sd4tR3B4MPi+e+/wxTM4PZJW8OuFEdBUo4kbxKoLOhOwkS5eUCsQqYpkrCgGQkz+sKJE6vDbh9+PaX9/DjfPelqdv734k7jrsyqYOBuRmTjL5wJZPRuwxIF02P+zOQIOb2hMaaLxXNjrnuD5ZzR6ZCxoY2fD7YTTopDzk6N16Y2h2aI7FGhRX4gOyNrp9kjHla8cx/MwXj+PINb+JEX7X4Vfi7T2OblpHbAlGKXviedJsJuRX2CUNl2VhwWtvMFcIBkCov0AtE66biisK0cyV2gaPtIfV+o6HgtHrwaPfPotTls2W549MuRAvTjpFsq0MOj30ej9yUwJrS7RxpVNGeVpamvTeW7t2LVatWiWvjR49GsOGdayuWGHHYlVhDaZ9vqLV6zUJSTj7zAcxrHwzFvQb0/S6vnHzT/NFot1MK4YeWclmXLr/ENTUe8R4ZuoHDSBieUG1DFymAjPaV1vvQVmdK+J2WXx/yIGtFaXr6lqnGsUqYpkvQ7PpOEkJ6TgJ1ToiHGxhNAS42c5INGNrlUOiYU2GOFOTfD64PV4xyuvdAWNUE9dgz2MqtCdb2QPZgBqHWxxGIpjGOu22ZuwgtHeUzu/Do988i8PX/g6nwYT/O+UuLO09HF0F+jN4Dfw3YOS/tM6JPmmJ21UqEMuIZa4oBMC5vKDKAU87BX8TtyxvMsifmXwWntrv7EAtSyP4kHoQzNbZrW+aOAEJOgfJfRrm1J4g6Mzj3FJb74fDHdgwcV5g/V+fNKvwi5upLDHy4wOKK/GBRJNBMgTbZIvfj1c+ug/7b1oEp8GI6467Gd+O3FYLzWgf10ZmMiZajBjTO1UcWHSmMwpoMeib1t5grrCVGp3h3O/R8BiUZVNcUYhyrnja1Sl54uuncOKKn+DR6XHbkdfgw7GHyev8FPdZHONcYOi4jTaubNcOb/jw4XJTiB5oMv6c5M/7Lz2q26J9++Ytauo/Xm1NbmaQE3sOTIHFaBLji5saqkIzPfnCfQdLG6ngFgEFVfV44MsVKGMfZZsFaYlGeP06EeOhOA8RaQ0s349nRelY50s4x0lHapvDaQjwfkh2orQlC4waP0pqGyQKzt7hUsPj9+PzxYWy6eCGnM6fFQW1gVYVDW5JWedmRMvg4PPGluPbB78fd816BacumyWT+9QTbsXvA8Z2wYlZ/sH/6qQ2iTzbpW+qtHJjBgLFrFpqLPB1OkIiKRWIB8QqV3oytPWBHN9QWgtHOxunP/vvin/tdw6qEpLw5p7HtXqfTii/L5Bqyk2Thuxki6QR0vGb25hmSN0IphIGylEo8miS7C6+xrXMbNCJ/olNnFrxlW2iuBLb2FhuR0FVOxo6Oh0+3u0QjCtai8tOvqPVOkT/Fx1Vg7OSsHv/5g6skpoG4czmynpZe7dxBdKdxOfTITGBoqhebCq3K64oRC38gOiMtLe9e3v3ozBlw9+46ZgbMHvYXs3e4z6xusGNrCRLVHIlYqP8xhtvxP333w+bzSaP28K//vWvrri2HolQPZwjNX5YE/H1kkLMW1eGrRV2lNd7mwzyp758Esev/Bl3HXYF/jf+2JCfv+2YMRjbJx1/b64U4YJMmxnj+6dLinqw8fzNkgLcNmMJqhoC56+r98BmYeupRBngrA1mr+W1xYEajZ5gcMc7X7bXcaJpCHAjTY8kU4e4kaBRzfSgsf1T0SspAfmVjqY+45wIkxLYasIvtT/0SJaxdVogiSMQZfb7JRW90Q8USEfvIh20qb99gIsXfC6P/3HMDfhh+KSuOXFjaj49sTkpFnE8UOCN7eCoBrq9pQKxhnjjSk9EcAuZ1cXVWF9WH1Ys0ejzilOYeHbfs0IeR50FRinom9pQ6sCQLAcGZAaEdDg3cC6ymY1NcwmdxNIK0QckmvXItFlgYeaNUS+tEpdtrcEJu/eN+SwsxZU4C5443Xjj1zyJwoUEB3Wjg/bTXQ7Cj0P2RJU1pdVhTFyk8G5JDXngb1H25MOEwRmwu0qxprhOjqEjiz1KpL2T0YDspAQxOhRXFKKZL//7fSOq6j1hsxrZFUdz+O5/xauiTdISRpbeev3Ir7RjeK+Aeno0cSVio3zhwoVwu91NjxW6HqH6rjK6GEl9Nj9768dLJZ2cKbxa9i6FQR7/+mkxyN16AwpSskN+PsXCwWYVA3yvwZlhv+eOT5bi3fn5zTxVfEzF0PoyO4Zk2aSVE1NMqupdcV8DGw6KL+E1BN7+PR/z1pZKVgUnPDp/hmYl4fQJ/TFj4RbxQtJDyV7dfMyhnGo1wuHywe7appZOL6WrMUKugeNe34kWZ6HwR/9dpFXgEwecJxuiroKu8Tr5m1gLSIOcjolJgzNx6JgcUZbenlKBWIPiSmw7jlla8voveSIyxaj0+lJHyLKQDEc1XvvoXnh1Bpx7xgOoNye0Oob2B7NHuLViiyeCc8CKwpompyCdVFTLPXR0L8xcUYwlW6uwpapehEhpyDOThjIVTOnl9dDe4WM6/mLdqaW4EvtBlg1lgVae3LMtL6jBmpK6sD3I75v5Ai49+S6UJgVaebU0yKkkzSHNdqE0HGobvFiQX4nDRveStVUrexqdmyJ7sw/+3Cx7RJZ2sC6WPGEKrsWkF+4orihEW0ByXUktvl1WhB9WFmHx5ub6WBqGl24S3Z/rj/sHVuUMlteCDXKOZMYW5d4Q4Ao1T37bUC5ZVZlJlqjhSsRG+Zw5c0I+VugahOu7ylTAtuqzOZBXFFXiglf+RLnDE6Ie9jmcvHyOpN9efcI/MWtY6GjflJHZ7abGvv7LBrwzPz9sHS43UVS53rVPijgG9Dp93NfAhkNP50u4CZYpdgs2VUj6EI1Rg0EnE9vSgmqU/RQQ0KDKJfsNBzbUAeVlwuvbNr6llZjXH1Lsoysy1zVv68GXvYQyW3oXnXFbEJ+/narwjPolmA3y76MZ3sOyk7erVCDW0NO5EsuOY9bfUegzv9whWiN1rtDs61tdgjc/uBtDK7agwpqC/tVFWJM9SN4zs/zEF+AGDXI6dQlmx7iZMQOgoLpBesVSX4IbqCau5CTh57WleGXeBgzJTJK5hB0Z6OTi5ykiyRR3GupMS4x1KK7EdpCFis2FVQ5sLHOgwu6UTiChcMCGBXjh04dhczfgnz+9IZlawaDTisYBU2y5hmiiU+xYwL7LTLmlkyq47IlryInj+2JNSS1yU6xwur3Se7nSEchWU1xRiLaA5NBeiXjpxw3YWFrXlJnbEuO3rMRrH09DWkMd7pz9Cs4988FmPKExTacVA4/kR4Arevh0DP4EHL77Ds2MGq50qiXaxRdfHLLnn91ul/cUOoaWvfGY1soIGu/5nK+zPrtlqzEO5CmPzMSxz/4W0iB/6Nt/47RlP4hBfu3xt+C7EZPDXsPlU4a2ufF3ubx4fs66doWxOOgr7S4xyiNtlxXv6Gl84bh84cf1eGrmGjw7a63c8/nMFUXyvLjWKTWinGKrHW5sqnBgdVEN/trIthR1Ei1jaxh6I5l+GugvThX15qMvQi23DuGg9X9iVMnGpuddZZCTWozsW816JFsMkkJVbndLlH//YVm4eL/BTU43rVRgVG6K3MezQd7TuRKLjmM6imlcDM60SanJos3VKHe4wxrkjGJ89NbNYpBvTc7Gaec82mSQE362nqFxbgzU5+nA7BG9bMx4Rmbj2hs8+HNTlWTKHDwqpxlXuHnLSUoQo4QG+8RB6dhnSKZknvB+TO9kqR+0xZmDWHEldrhCbR12Cfl00VZ8t6IEq5gaG8YgP2H5HLz68X1ikP88aA/cc+jlzco6xHllYvmTUdZHrik0PNwearL70eD2yDpKbrYse0q2mJCRGNBkYDnIxEEZiiuKK9HHFasJny7cgqvfXoiFm6vDGuQHr/sDb79/pxjkf/cZKYFHDdquibYUDXKWM2lccbHmUUR26cSqx+ItVVHDlU4Z5W+88Qbq61vXjPG1N998syuuq0chXA/ntnoUcyAf/czP2FwTYmL3+3HfzBdx1pLv4dXpceOxN+HrUfuF/X6zjqm0ofuC0xHA3uPTf8tDaZhFpCUY2af36JQ9+/YogyIcehJfQk2wvF+6tQpPfrdaBN1okOZX1EtNjtPL2nHW6/hR3eASRWV6LDkx0aMZqBkPqF62I+a83dhn02K8+MmDeP+dWzGkfEuXnttq4uYpoC6fZjMjM9mCXqkWXHXQUNxxzJi4TU3vKHoSV2LZcUxOzlpZjBWFtW06ahnF+PCdf6J3XTnWZvbHKec+jvWZ/Zvetxh0gcgEHb8ev2SHMIumyuGSnuTMKKGuhMWow+jcZNkAzV5VIvNMSxFJzhucL7hmMkrIDRMNl6IaZ1w6iBVXYifIUl3vwsxVRahodMSGwyV/fopnvnwSJp8Xn42egktOvRv2xjRctl5iy0ym4TKjRGujqTmw6KTmGkkerSqubeXAIhRXmkNxJTq58uPqEqwttTdpBYXCaUtm4uUZD8DqcWLW0InSUUor72D2FR1XJoMOZr1OWqFxzaLDV+OKx0uu+FBBh7IzerjSIRO/pqZGLo43ep0SErbVhHm9Xnz99dfIyemaBuo9CeF6OIfrUcyBfPkbfyCovLY5dDqU2tKll+U/jr4en4+Z0ub3981ICFn7HZxSsrygMuLfYzWZcO0hwzGiV2tBkp6EnsaXlhOs5mDiRJtgdImIGyfBKn8g+iXp6zqdHMf2SdxMGPR6UbWkd5I1Pg30aEInLc52pE3O+r3/zngAFq8HPw6ZgE3pvbv0/JzMGVnsJaUpRvl34G/ef3i2clz1QK7EsuO4wuHC/A3l2FBqb9Mg32/jQuEUN02MYlx86j2tamIZ3U5JCAiyedkyga0Q/X4w6E5WMJWdRkxSgglDc5JEUZ3ibswcG5RhQ2Hjujiuf6q0VewJIomKK7EVZCm3OzF3TSm2VLahsO7349afXscV8z+Wp69OOAEPHHxJk3AVweG715B0fL+8RMSuyB2OaXFg+7h26uTGjCxG9bjG0oE1MDNRnONaSZTiSgCKK9HLlU0VoYVCBX4/rpz/kZR1EB/teghuPfIaeAzbzFm3H8iwmqStbpndjQaPS7jBtYQZlxzfNNitbDNrMYqRHS1cMXa01x//4XgbMWJEq/f5+rRp07ry+noEbGF6OIfrUbympBrry9tuoUFV2++H790ketAW+qYFlGyDjatf15fhnT/ype6Vogcm5nxEiJPG95EWaj0dPY0v4TI+aKSzZpxGqOb5ZJV4QIgJYMk424LRAKehTmEn9ifmsYEGR0wy2nEYVpaPNz64B0muevwycKyUenj1gTr27QX/FRJNeuzaJ1XS0TmBc4PASb4ntThrDz2NK7HqOK536SWKUVzjbNdJtjU1Bw6TBb8P2BVXnXBbSGG3epcPq4rqxMAIzA06qdPTMUvG55e5gIq3fdOtYpBrmWPUpbirwoES6cbgQ7rVjHSbGb1TDKhyuONaJFFxJXaCLMwG+2FlsUTV2gLXnkPXzpfHj0y5EC9OOqVJdV0D9/4/rCwV44LbMRoXXEukakQEEnVSKzs42yZOcYLrDHWAKFC1oczerLZdcUVxJdq4MmtlMQrb4YrB75P2zgR5Qr605AodUjTwmZkoXTkYCCJfdAHNIZ3PD4vFCFuCEf3SEzG2byrWldqjgisdMsoplsBJ4OCDD8bHH3+MjIyAIiRhNpsxcOBA9OnTp8svMt4RrodzuB7Fz36/qvVJ/H6cufg7iYo7GiPukRjkiUYdJg3Jajo3o+NfLS7EjEVbJYWQdVAUOahwtE0UDTRlzt1rYKQ/Pa7R3Xx5/vnn8fjjj6OoqAjjxo3Dc889h732at6zcUdnfPD3U7StrNbVLG2PD/WNhjk34wadHzo9k4v8Uj/qDCoY35EGeb/qYrz1/p1Ib6jFot4jcNlJd8JpDF3K0VHw95HKFKtj33V2JOiTloB6ty/uIhKxzhWFtpFoMki3hAV5lVJiEknWysaMvpKuviW1V7MoRjB8jYKN/Nsza4a0Jz8CzwM9ZckVrn/ausiN0V95lRJdZ5SDRnxtPVsmukSD4aTxfaV8yhanIomKK9HPFRrMKwtrRCuFDqz2QKXo88+4DxO2rMDnYw5s9b6JLQI9fnhFiSVQW07QOOf6SMODIoi9UhKacYVlU7NXFkuGVu9UK7JsFhj0gQ4G6YlmxRXFlW6FrTEgWVDlwLKCGnGytgcGTC4/6Q4csfY3zNj1kLB2CAM+TFmnbigfN/quJLWdGzMGH2nfDM22iRBctHClQ0b5lCmBNOiNGzdiwIABreqfFbqmh3NbaRIcSD+tKW9+Ar8f/5j7P1z92wc4afkcnH3WQxFH+iYOzsRRu+U2tR64/8uVWJRfiZoGj0z23OzwuliTEQlG9k7GoOyAl7ar+7DHGrqTL++//7705nzxxRcxadIkPP300zjiiCOwevXqHZauZQuR8UE9AiquQ8faN0bDAia2bOob+41zA+PTBaLlrDFnXRwFnxhBr2nwtlmDtz3IslfirffuRG5dBVZnDcCFp93bVL/XFUgw6WCzMHVfL5FAqlTToDhoVA7OnjQgriIS2wu1tkQvuC58s6RQHEs0fMPS0e/HTXPfwp/9xuDnIXvKS3kZfSP6Dhrj0rKGoo4BCwNmk16iErv2TUWGLaBwy2jK/I0V0jO2T5pV0tvdXr84DPgasXRLNa5oR7g0lqG4Er2Q9k1Li7C53IG8cgccUn4VGmn1Ndg7fym+HbmvPC9IycHnY0KvzUzHDQYdUUxZZ79ljnNLE1dSmrhCY3R9iR1ldpcQiy1GGUmngUFDpJwZbIorCt0I7v8HZ9kw4+8tKK6pDyvea3M6cNzKn/HeuCNkLHOfFs4gJ5qxTkdu+MX5y3WFPJFSD4Mew6RPuSWquNIp2bjZs2cjKSkJp512WrPXP/zwQzgcDlxwwQVddX09roezVsOtpUmM7pUEl8+P9/7IR4PLI7L89hbl39f/8o4Y5AQF3SIxyDmsDhmdg1uPGiXfTWOZ6up/bCyXFhsaN7jNYalfJPFKbqr+ecTIsIN2e/qwxzK6gy//+te/cOmll+Kiiy6S5zTOv/rqK7z22mu49dZbsTMyPgimAdFbmZwQiB4YvIG+4zS0m6JtfsBqCKSt1jnZSg+wWQxSOsH3GBXYEUrr9UYLClKyJR3qvNPvb1Xv2hlQxC5Qu+RHZlIC0hLNGNcvNeBw8HjFIcW+7KxbUmgNtbZEFzhnvzYvD+tLa6UbQjgaGnxe6fZxxtKZsJsScOBl/0VpUuSdCzgfcNPEPbM4gGUJ0SHZYhRxK4IbJ/aNrWvwIC0xUAfITTZF4Mw2s5TJONwerC2uFZ5pfc3jFYor0dvWtl+6FetKQ/cfJ/rUlODN9+/GkIqtuPLE2/DdyPCdcUKB6yEVpSmGSGQnm0XEinolGugQ31hulyg6o/e2RgdWaW2DtAscnmNrEhBWXFFc6Q5sKKtDfoVD7Jr6lp6nRmQ4qjH9w3sxrmgtklwOvLLXyegIKIbI+nGjzg+yJSXRhHSrSTKyNL5EE1c6pb7+8MMPIysrq9XrjMA99NBD2JFgSu6gQYNEsIERwD/++APxAhqmVx44FDccNgLXHDJcDJuX5q7Hv+esxyvz8vDWH1vww6qyZp+Z+uv7uP6Xd+Xx/Qf/H97Y87g2v4N7ndG5SXj9wgl4+bwJTcZwfrkdP64ubWaQdwQ876Qhmdh/RE4bm7uN+COvXAwWpoakWo1iwHEhC1bTjTfsbL64XC4sWLAAhx56aNNrTM/h899++y3kZ5xOp4iiBN86m/HBzA5mfBRW16OmsR85a0fZb1w20i0/1ygGx8wQ1gDRQ8mSCY5FGu47wiAn6G296LR7ccbZD6MkOXO7z0claW6OaJSz/QZTnXbvnyZtmij0lp2cIE4L9lEO7qSgEB1ri0Jz0FHLGru/8ipQWOlAdX1rMVDC4nZKT2Ua5Oz2Me2QyzpkkDd9XyPPWcJiMgbUctkXlmVU7L7A+WRLZb1knWQlNdet4GNGzVkiUlXvCilcGm9QXIlOkdMhmYkoq2sIRObCtAj8+H83Y1jFFhQlZ2J9Zr92z99yzfR6faIYTdB4KKhyCj8djUY6HVh0iNMRzH0WuUFnFx3fXJ/rXR5srWqQ9mmKK4or3QHu+V/5eYO0I6OBHK688KO3bhaDvNyagj/77dLh72EwiMK6/ApmYZbXulBa55KMrEDNeXRxpVOR8vz8fAwe3LpemfUZfC+eUnJ3NrQexXd8shRvz2/73/Ly+R/h5rn/k8cPH3ghXp14YsjJ/OL9Bsmg7JdmxWG79MKgzKRW0ew/8iokBTAS+4ef5HGMx8u+SAc59z3H7hIySi6bu9/z8demSjHAtsrGqnlqCNV0GT2MxzSqnc2XsrIyURbt1au52B6fr1q1Kuyi1RWCJ8EZH3/nV4qhzU00PZDsTc70VxqtOqos+7ZFyzkGJGJuZrScBvmOqSU3e9w4cs2v+Hz0ATJ4WT/OtMGuwOCsRAzvlYxf1pdjQEYi9h2aKc6QtjopKETH2qLQGhT7nLOKSs80jEO3w0xpqBOF9Umbl8FpMOGa42/B9yP26dT3abWxnBMMfiA3hcJwOqwurpMNE9smcsPELBrOKS3BbBSXxw29Th93fZZDQXEl+kROq+wuTF9TAoeor7XGnltW4LWPpiHVaceazAG44PRpKEzJbvf8LddCyTTz0ahguydhjmQfriisQYLZIKKqdGIx25IO4VAOrLI6J9KsJsUVxZWdDo7dh79eiXlry5rpBwVjVMlGvPHhPehVV4EtKTk4//T7sCECB1YokC9iqugAo1GHSnH0MlruRZ3THVVc6dQ30ABesmSJRKyDsXjxYmRmbn/EKZpScrsDywoq2zXIz/v7S9z24+vy+PH9z8NLk04NedzInETccfSYdo3dwpr6iGt3k8yB9A6pBfb7JW35ukNHYERu6BT0X9aXYfbqElkoOMDZ7oqeqJ6SRtVdfOkIbrvtNnF4aWCkvH//bf2EO2qYDzkwCX9tqsBLP62XzTIjXAVV9TJmUq0mOFxeuDxelprDKNUWAVlMjydQU74jDHK9z4unvnwCx6z+BUPLN+Op/c/tsnOzdGNAhk20GCgewo4FLQ3yUJ0UFGKPKz1l0/TDCqqsN8ARJoqRXVeBNz+4G6NL81BjTsSlp9yF+QN2277vbSQ+yz72H5EtvZkLqhtw+sQBsm4wcs9UQzqQzTZ9sw0UHc+8xWOf5VBQXIke0Mm6ZEslNpQ5wu6jDlk3H89/9igSPC781Xc0LjnlblRbO1e2J6JV/kZjQwfpnZyZZEZprQt/b6qU8Z9mNSMhRS9rrdZnWQOz11geRl0GxRXFlZ2NaV8sx+xVpWH3eZPyl+K/H9+PFJcDK7MH4YLTpnU6mzH4O7ieMAPZawwQZ2F+9HGlUzvDs846C9deey2Sk5NxwAEHyGs//fQTrrvuOpx55pnYEdBScmk8dCQllzcNnUnJ3dmgUXLLewvbPW5B3zGosKbgjfHH4vnJZ4Q9LjM5oZmxG05ojakakYK9/LJTLBKR4AbolD37hu1Jzu/7eMEW8TTRq2t3ecUgZyozI6daakimzRS30cOdzRemaRkMBhQXFzd7nc9zc3NDfsZiscitq8AxNWFgBv4cUCklCsNybFI3xAmSYm+sAzUZjDDq9SLoxsgCHTSuHRQhZwjuoe+eF4PcaTB2Kg2qLbBmielQew3KkBR1CjS2nNxDdVJQ6P61RaE1uEYs3FQW1iAnLlrwuRjkpbY0XHDafVjRa0hYnQXyo559aSIAoxUHjcxBps0iaevcFOWmJmBETjL+3FgpWTWMnDNVmE7eQITcK22nGF3nehSPGVctobgSPSiorMfGNgxyRv1emvEgjH4ffhg6EVef8E80mFq3CCREHLqlWFUYcC1lSdiUkdnCF64vFXanKEXPWlEiBjtLyYK5ImUhdpfswagrpLiiuLIzsWJrtWhkhVsNsusq8fqH98LqcWJ+v13E2VuTEFqDhwlTNLKrG9q3Hfh9FBAenGnDkJwkON2+qORKp4zy+++/H3l5eTjkkENgNAZOwSbt559//g6rz+jOlNydWWPx4k/rsaKk/XpTboCOuPh52RCFA+sj2NtVM3Y1oTXeV9a7YNDpxYA4dUJfjMhOiUhQy2wATpvYT9qo2SJQT2cKJNvXMKKu1xukhoPGC6+JwkHsCRjvaVQ7my9s9bHnnnti1qxZOPHEE5u+j8+vvvpqdEdXgU3ldtjMrCk3yd+dnkeWMHg9PjR4fJJG1Ci63PXw+3Hbj9Nx5pLvpeb12uNuwbzBe3TZ6RMMwKCsJAzNScLlBwxFXoVddBLa66SgEB1riwKaOWxrG9yYubIIiwvCC1URT+5/Hmyuerw64UTkp/cOexx5zdTzluVPGgOCOU9n3X7DspCVHFDELalxosHtRU19IH1em08I1s9S6MrlcUm7qN4pCaLFEs5BHG9QXOk+BAc3Egx6vPDjujb3TquyB4neT7LTjtuOvCasGK8Y5GxzJm1C296PkT8UQjxgeLZoLJAvNB5Yy04BK65HywtqRGh0Q6kDFQ6XrLuBelkD9huehclDW9dZxyMUV6KDLzUON276cFHYlHWCeiQPHnQxDshbiGuOuxlOU+hgEflhbjSc+VgTENbWl5ZIthhw8KgcKS0kWJIVjVzR+cnkTmLNmjWS/mG1WrHbbrtJfcaOQkFBAfr27Ytff/0V++yzrWbtlltuEY/X/PnzI4qUMyW3uroaKSnRtXDTUH76h7X4cklh2GNOW/K99H79K4IoH9sw7Tc8EykJZhGOY2SBhkI+23S4PBKVdDam+1GQ6sy9+sv3t9dTM81qxNuX7I1d+qVGRMT7vliBb5YVSnovoy5cNOiR4qijIZZo0oP7taN37Y27jt2WZs+/VWpqalT+rWKBL9RfoKLoSy+9JL3Jqb/wwQcfiAOrpWMrFLry359j+4M/N+ObZUXinNFaFzF6RhEnCtVwFm2863Jc9dsHuOXnN+XxzUddiw/HHt4l5+VIpTMpzWaSrACm5pNrzEoJ7jRA7nFiZ1YJDfId0Wkg3viyM7myvYiHf3ttvP6dX4GVBdUoqHGFPG5M8Qaszh4YccvNjoAGCdesPQZkSARjXXEdNlU4JBI4pneK8IZGOaE5l1nvziWDm6pTx/cPW0IVb3+vYCiu7FwEz+0swVtdXIuS2tZ80fl9sHhcTRFxPmcv8YAQT2touYqhclNCGRrZSWbsMzQTg7OShC9s6VRcSxVrL3brE8jGKqlzyrqUm2KRsjAKr7Ketl9aIi7ab1C7a1E8/L2CobjSfXxZsKlCdIaqQgmG+v1IdjlQa7E1e60trmh2hNZ/XD4ShisJRh0OG5OLIdnRz5XtCk2OGDFCbjsD0ZCSu6NA45W9LWctb8sgn4nHv3lW2s0cfdGz2JTeJ+yxuSlmTByUAdo+NAQYQXjp5w1ikHOQMfKQlGBCilUHt8eHwpoGvPfHZvESsc5D6yXdEkwzHtU7RVoKRAJ6xiigEEgF0cHtcwkJzEY9DDqdCH5V1rulT2BPSKPamXw544wzUFpairvvvhtFRUXYfffd8e2330ZkkHc1OJndcsQoGXs/ry0TR0y6zQy/X4eaeg88vkCi3o7465+z8Osmg/z+gy7ZboOc10ivLMcuo/4pViNyU63i2GI2gJaVotXVhyoVUYgurvR0aK2cVhXVSLSAXQ9C4YjVv+LZLx7DjF0OlmhfuA1TpGgZKec60SslQQydBZu4eXNLbfmeA9KRYNJLGQyj5BSSZJcSxa0AFFe6p+1Zpd2JBXmVrXqIa4KiT371L6TV1+Li0+6B22CCnyHwNhC+UKS1sWE16XHIqBz0SrWKkbFoc5VkjnDPNyA9EX3SEmRfx3WK2VqMCmrO4UmDM3eYczjaobjSPXz5bX2ZlHf4w2j93PvDy9gnfwlOO+fRba1p21hftC7NobKt5JyUKAp6cWy/1CaDPNq5ErFRThEopoDYbLZmglDhBNniNSV3R4Cbi59WF6E+TBHRSctm49FvnpXHH4w9DJvSmqcKmvSs87aJYcCaOqatF9e6mlJlOeBIDkbIaZDzda3Wla2b6BkqrXVieK8kDMlKxKaKejHWtUWCRyaYdBicnSSpUpHWw3LDRK0r9pllinqvZAsqHR4xzN3iNfZLesiEgelxl0bV3XwhyIto4QY3zMkWk6QbmYwBgSY6anjTsCOi5Dy7Dzo8v8/peHWvkzp9HmZ6UC2ekz05w9okCk/ZLEbpIEBetRRw0zopKEQ/V9hq8/HHHxcH1rhx4/Dcc89JhklPaeW0qcyOlYXhDfIzF32LB7//Dwx+HzLqa2DyecTQ2B6Q7+QTY+6cE0b2SpJ1Z/GWQC9yiiVyM8T1imDtIEtC2KnjiilJPZJb0cCVnsqX4LZndqcbv2+sDHmczenAS588iP02LYZLb8S4wjURZTe2hSblaK4/Rr04q7ivY2nU2uI6Ke9gORidxOwAkmI1i9OYfMm0mXHh5EFwuL09yoGluBIdfKFBTgHEUKDzShPf5T5t8qYl+HrUfhF/R9g9oz9gF9EwpyYJ92s19a6Y4ErERvnChQvhdrubHodDsLBRV4PEYkruhAkTmlJy7XZ7kxp7rNZZvD1/E/7KDy1Cd/yKH/HE109DDz/+t8fR0gM22IPER2ftNQC9UqxNqbI1DV4Rk9I8PCsKmY5YL4YxxQtonDM9g54hDliTwQAz2wTYXbhk/yF4+/dNIsrFiDnfp1p2r+QEDMyydage1mY2wmoywppmEIE3irpRIdTfmMJsd3rFKDtlz35xt0hEA1+6EuEEAiMFP8vI18RB6SioakBJrRNuX6AWaEfirT2OxtJeQ7G4d+e947zGQK2eT1LtyQlO6L1TrWKQs7UfJ3Ql4BabXOkJrTbb4iVT1lcX1YRu4+T346rfP2zKNnl37OG484ipXZK+bmbtrDzSIcFowNSDh0l930s/bUCGzST8atmehpGMeO7UEe1c6cl80dqeuTwezF1bHvKYLHslpn94L3YrXo86sxVXnHj7dhvkBEVyA1wJiIfuPTQTgzJsWFpQjc2VDjE6mGVCjSDNiaXxZX2pXR6Pyo3dFOjOQHElCoKNa0rCGuRJTgdenvEAJucvEefVDcfe1CGDvC3dKxrjUg/OrEyrGSNzU5Bf4YgJrkRslM+ZMyfk452JaErJ3V4wcv31kgJ8trgAeWHSOo5ZORdPffkviU68M+4I3H3YFa1SOvqmWvB/+w9Bv/TEkEYTv+fTv7dKfV41azmkToP/18Fg4GZILwYHBy8H8rj+adijfzo+WrBZFiC+xrpZepQ6msbBa+DAZ9ohU+M54AP9AX0w6nRItBiw/7As7BtnUfJo4cuOqKFjL1RuoPl3ZX1nW+Mh2JAvqmb9jgfpiRYZwhzFjIpRaIMeTaYSdVWkfGzhGuSn5TalQS3uM7LT52JUok+qRfhitRhEsTMn2Yy+6YHMFEbIaZArAbfY5UpPabUZCssLqvHnxgrUOFunabEG9q5Zr+DiBZ/L8+f2OQNPso1gG5vYlmmDbUGrBWQ2Vb/0BCkDIbgW0ckcarPMyCDbtMVrp45o50pP5gvH3KbyOizMrw65Vg2oLJQWgYOqClGWmIqLTr0XS3sP75LvZlYh4fPrhAOH75KLQ0f1ws9rS/HKvA0YkpmEtMTmPZZ7Ol8UV7oP3Pt9tCAff+ZVtqGwfg92KdkgzqvLTroDvw7avWu+W0rRA04sdiRgtygqrFM0NBa4EnNy19GUktvZlmefLt6KZ39YKwZLOBHCiZuX4ZkvHheD/IPdDsUdR0wNWZM0tn+aGOShUmW1eg6mJjLCR6LI18mg9UPnoyquT242rxEGfSC6zfPcetTo7a7ZC1bfZhubUblJEn2vbfCIcc5znjVpgDJkohjrS2vx0ZIKSdmjJzHRbJVMi+D6zlCGOccedRKWbq2G3e2BHjpsqWTLmFqJNFO8iQattMczG1DnDKivby92KVqHt967E4UpWTjnzAdRZkvv9LnINhoLNosJJTUNGN0nBSeP74dVhbXioGANOVPWg7NSFGILnWm1GS9YVVCDuz5dFtIgJx787nmcvfg7eTztkEsxfcIJYc9FIR1ZY9pQv239Gb2Uf3AOyEmxNpV+0OnHOYYphS3BLgYty0QUdh56Kl+4d1qypUoMcl8YAcQ3Prwb2fYq5Kf2wvmn34e8jL5hz8c0dHKkvW43GpjZSC0ei16HIVlJGJ2bIvsmOsdzkhJgNOhCOrEUX7oPPZUra4pq8fLc9fjk760h14H+VUV46/07MbCqCKWJabjwtHuxPHdYm1zxNQq6RQLuL1liSDqwFW8q09MtJiRnm2KCKxF/+8knnxzxSWfMmNHZ64lrzFpZjOdnr8WizaEn9mAs7j0Sc4ZORI0lEbceeU1IgzzRpMPxu4fuydpUK1hul5vT7Wn2nTSAApsov9T50lzX2sp0ZT0sDRUabi2VqONdbCRe+ML+jRV2H4Zl28RwpjOF44XP15Xapb6Tm4TgMah1ElhTXCtqlgI/pCUYx9vwnEDPSUbdWUvq5Y6DaeIR9mYNhyHlW/DGh/cgxeXASmsKas3bN3555Q4xWHQiRnjmXgOw//Bs6aGsRKbigyudabUZqqtHLIFrw/t/5ePxb1ehwhE+KvD98L1x0vIfceuRV+OzXQ5q85ypiSYpf/J62xds5PssW6IzmYZGWZ1LBEm10g8tu4o15MGbJ5Y9cQ7pyWUi3b2udJQvsc4VYk1xDV76cT0+WVgQdt/mY6qsx40VOYNxwWnTUJqUEfZ8vVLMqLa7JUDBXV17e0EyoHeKRcR5q+vdks2ojf/gbETFl+ZQXOmedYXlR5vKQ2f/Ek6DCXq/H5vScsV51ZZodabNKGLAhL4dw1x0Fyh0nWpFgtkAn9cnHIu1tSVio5xS78E/4JNPPpHXWN9N0CNUVVXVISL0NIP8zk+XyR8+EriMJlx14q3SV9kXon6Pda7j+qdjlz6hW5PRaFiYXykGeTHrd0NYO+KpZdqwgT3NzbJBonhIV9fq9UQl6njhy8YyO6yJNvy1qSpQeuD1iUgG66h7p1pa1XdyYn7n93ws3lwl44nRLm7A7Q2egOiaD9hcUY/0RJP0gQyMwUCEzdQ4HCKNHgSjT00J/vf+XchyVEsN+SWn3B22v2VbaKnmST2FnJQETBqc0VRmoQTcejZXHn74YUybNg2xguAyEgp6fvhnPr5cyvaEbX/ux6ETsf8Vr0SUbVIc1EJNOy2ndzp/W34N5wPW9VHqk2sTxUlP2XObc1nLrmJZCLNzmEnDKAbXzp5eJqK4snO1U5Zvrcadny5FmT1QmxwOq3IG45wzHkBeRp/mbZ1CjP3aeg8aIlzkdI315CydYqeallwJzkZUfGkOxZWdu6589OdmfL2sEGG0QptQkpyJc8+4Hw6TVXqSh4OevcTtng4FahgFZ6cOBlNYBkU7I3j8xwJXIjbKp0+f3vT4n//8J04//XSpj2CbMoIeoauuuiqm++ntyJR1RshZV9sWDtiwAJM3LcYjB14kdXttqdv2SbNK1C6cV4fibgs3V4pntbEtdEhwaWD0ksq3HIw7qp6ipxky8cIXlh3U1vrhbGyjZ0owSoYF2xZRzdJmMYjnkeBYpJDG7xsrJCWVSpaaN5L6BTTSWTZB9X1njVfOQ7FB1m3rqPbPDXwnDPJMe5UY5H1rS7E+ox8uOP0+1Fk6N9aCv55zc0ltA0b2TsERu+Z2+2Qdr+hOrnSm1SbTEYPVfBnR6N+/P6JZD4L33ECx7RmFQEOhd00pnvzqKdx25NVN0YtIDHL5K+laO9N0FNtpVMDVHAAUd2Omjdfnk9YzfVKtuOaQ4RjRKyVsdhXr/FSZSHSsKx3lS6xypbLeha0VDqwtDS1SRZz791dYlTOoScitvfpxyXX0c/0LvciFKvtgSSE5RD2gUFwhFF9CQ3Fl560r64prURGq/3iQPpbB78XnYw6U521FxzW0VQbV8j0GKRks4n1pnUvS1alXxfLY4PEfC1zpVPI8RQrmzZvXNLgJPuaAmjx5ssj/K2zDgvwKEdRpy97YN28RXv7kQSR4XNiQ0Q8fjGu7n/KIXuGV0EmU13/Jk01PJA5Zb+NB21NPsb3q3PGMWOYLjXKXTodeKZZtbfSMOnhNBmyurBcP9Ht/5IugBlOD0m0mVNW7pA1ecHqQ2xvQLmCqOj2p7HnPaBkPSbYYUdPA3pAdV3tLdtolZX1oxVZsTc4WD2xFYujskY72IuelWM1GHLNb76iYrHsCdjZXOtNq02KxyC3aoWmK5Jc7YHe5sbKwFvVhwhhDyzbjfx/chT61ZXjsm2dxxtmPRPw9Wg/llqm4PnLbpIffr4PH7xfnW2qCEXa3T9oJThyYjhP26Iv9hmW3OmdPzK6KhXWlo3yJRa5Qz4BKzdzch4TfjxvnvoVrf3sf1RYbjrj4eRSlRCZWyyVOyyDxhWoR2Nj6jDd2ymFtbGaiCQePzsFpew7AiNzQ65DiS9tQXNlx6wrbjNWG0SUhzvv7S0yb+RK8er3YNsvaqB8Phr9REDhU2rq25shejVpYFqPUkqfbzJg8NBOHjsmVzMZQ4z/audIpC8zj8UhNxMiRzVWN+RoHnUJzrCyqQRtjFnvnL8ErH98vBvnMYXvhk13brt9Ltxpw8+GjmwyFYIOYSupsaUYvUKRDjFGM4pp6HDqmd6fqKTqrzt1TENt88UNrxqKB6T5smUd9AI63AemJUhvOiDnF25jirqnFBo73oLzO1ZiVEXjNbDDIcxrrdU6PRNYZQXP5O2aYp9bXIq2+VtRuzz3zARSmtN7gdwSJJr2kP7kao/i79E7B6N6tPenKCRU/XIm3VpstNUUoUsgMlnARut0LVksbp/SGWsk0ueHYtnv6BkNKUvjA3xitoCiPL/AaDQ+7y4eUBBOGZFpFe4KcYdQv02ZCmd2FN37Nw7y1ZTh1z/6tDI62sqsU/7pvXYk3vjTnihMltWzfGXrDZvB58cB3z+OsJd/L81cnnoii5Mx2v4MZIlrHQa6BNCSYSdIyaEIBVK4/NDKYTpuTnIBDRueIscG0W6bk9m8U9u3p2YgdgeLKDuBKrVPWlrAGeZDzinhr3JGiudAe9I1riiYaKtkijc+DS66SzHr0TrdKa0DaHSyVPH3PfrCYDah0uPHXpgqM758Oo1EfU1zplFHOAXXJJZdg/fr1MtCI+fPn45FHHonZwbYjUVhZH/Y9qqy/9tE0WD1OzB4yAVNPuK3NtHUq1j566u4Y1SclpEHMVPmFm6vE00qxA/YCb8/GIQFMJkOn6ik0r1lH1bl7EmKZL4yA1/qM8vdNSgh4I5m67nB5YTMbkGgxyvjhhEjxjEWbq2S8VTvcSEgJeKUrGkVtGBGv8ASMcxr0HKPUNGAqq9WklxZ57F3ekSKiLWm5OOXcx5BRX4ONbajdRgKrMfA72I+cNEizmkW3oaWjSjmh4osr8dRqUwON8F/WlWLZ1uqw6upaydSLnz6ERLcTi3oPlzZOlR3INNHWFolacM0x6qUshSm3BumsYMSo3GThVa3TI9kwSQkGcd7Rscd7dmj4fUM5rjt0BA4Z3f6/ueJf964r8cYXOnf+zq/A6qLa8NFxRjLdTjz3xeM4fO3vovVz1+FX4p3dj2r3/BaDDp4W1jcdviY9nb8+4Y3bE7BATEYd0hLNYjAMyEhElcOFV+dtlPXU37gm7T04A2fv3Twtty0oB5biSldzZYOkfjvDZuK2dF49ud85eG7ymW220yT0oc7VyBXuDbm+ONxeaVE7PDcZuSlWybjcPSddHFqvzMtDXjm7Tfkk02RQpg0X7jsoonUlWrjSKaP8iSeekJqIJ598EoWFhfJa7969cfPNN+Omm25CrGBn/QGYAhwK47esxPSPpsmG6OdBe+DKk24XgbdwyEg04obDRkqPynAG8arCaqkj5+DloNShfaOcXtzjx/bp8IZG85rx+6moraUrawYaxRRCqXP3NMQyX1gX3ifRhqJqJyocLjS4PbC7vEixGpHKlkWNEW6Cf/+h2TbhVL3Ti/I6p6TfOdwemVi5AefOg1r/2vHcvDMFnumsFFUz63XiDa33+CSiFgp6nxdjSjY2pUEVJ2fJbXuh1xvEWcCr4/Xs1i9VNvotleWVEyr+uBLrrTY10Cn7xZICvPNHPhbkVbapVnv8ip/wxFdPwezzyPpzxUm3w2HunPKsvzE1lxkmXr8fOqqwS+sZSLSPaxYjF9UOlxjjVNRldgwNEfJ/fZkdj327Cv0zrK1qZoOh+Bcd60o88IX7FzqvPlqwGfM3VKDOFd55ldJQh1c+vg97bVkh6tHXHnczvhs5OaLvISeC92CSIebxQ28MZGMlco3UecTw+L/9h+CA4dkoq3Vh+q8bpOSEyw+zTchl8uf7FUUoqXPi+kOHtzvWlQMrAMWVLmrnvGgL/thY0Wa6Op1Xz37xOI5odF7defhVeHf3IyP6Dn+I5+KwMvhkXWH5FZMpdXo/eiUn4MQ9+orT95f1ZXjhx/UiHpzOFmgJRrg8PqwursHD3wSU7tszzKOFKzo/V8TtgCbbH+2CVdq1Un2xuroaJQ26HfIHcLm8+H5VkRgxOSkW7No7BQ98tQKzV5e1muR/fun/kNZQh3kDx4VUi04wAAMyE2E1GTGmTwou2HcQRuWmNi0oHITcjGgtpqhqTXE31kMxNYriWlS2DufNoilFe6p/uhWvXzwJAzLDq4aGwuYKB56auQZpiaaQPWVrG9xS137DYSM6nCoS/LeKhbEVb3zR/v0f//xvrK/e1hKNwmfLCmqQbTOjqt4tyuQTBqY3OWQ8Ph+WbqmWzXZRVUMgdd3uhFGvh9Prk+gZI+ycXCkwyOMZHKdqpkQK9IE6Oo5bpiC1gt+P+2e+gDMXf4cbjr0JX44+oNO/UZRtjQGnAid8OrLYRzTZYsCEwZm4dL8hzVJqW3KuZUsNOqEoGHLFlKE73QkVj3yJNa505789x+YHCzZj+rwN0jGhDfuiybH10du3YHzBanw++gDcdMwNbWZoaaASNI2MNs/dqDKdZjMjyWxEvwyrGB+byuwSiWSWDalD3tH5xfcY/WA08dixvfHIyWPDtvnsCv5Fw9+rq6G40jFwA84uIT+uKZH2Te1p79z643RcMf9j1JgTcekpd2H+gN3a/Q4GO2hPhOtywCHKzDOOVGaXUDSVbTfZ6eP1X/Okgwkjfto4Z5CFvOL5UqyBVN0rDxwWdqy3dmAZxYGlKU1H4sCKlr9XV0JxpXPdo56bvRZLtlS327Xj7EXf4KHvng84r46/Gd+NaN95JUO4nZZnBl1j2QdYQ27Crn1ThQdZNjO+WlooWkZcS/i/AFf0SDDq0ODxSZeq1y6YGDKVPdq4YtyeGo0ff/xR0kHOPvtsea2goEAuJikpYCRGK9aX1uKjJRVd7m3/3295+O/P6yWtg+m6aNz0M2rcEjUJSbj7sCtx2pKZuPSUO0O2b8pKtuD2Y3YRZ0HLKD6jkXQo8PppvCzdWoW8ModE+ji4A99OcR2d1BK2UvVsVCukAXLgqF7SM7ajYIYBHRr89wsFthuguuGOUnSPJcQqXw4Zk4PKJRXSk5xjjensksJe55IJkWMzeHPMevOsJAtOGt9XNhVzVpeg3OGG2+eXGlNOij5wY++T5xzTNMj1Oj8cbj88eh8yk8xynlD4x9z/4byFX8s5dJ3wJ2pTMnlJDyt7vtrMJoniMRrBeYD18fQKz1xRLJF8bS4I5lzwbyb4nK+3bBGn0HO40l3ghuI/s9fh6+VFaGivH00j2GaTjuCzFn+HF/Y+FX5d6M1KcAqu1r6QR/rbUsbVBTJNKOzWKzUB/dISMGtVKarrXeKAC2yuAg5jZt1wfbSZDKj2eCS6z+jlwBAOYsW/1lBc6Rxfnpq5FnPXlLRZ2hGMf+13LnrXlAlX2P6sLXDfL6OTY7SNNSpQIxtYF2lss1Z8ZWGNrDs19e7AR3U0wgMbOjeYkmuEz+9Dpd2FX9eX4/jd+4Yc6yqLsTUUVzqHH1YU46YPF4XNXGyJd8YdieFl+fh2xOR2nVfUICFZmDUlNpM//LEanVhqy2Bl//QE/Ly2XByydU439DqKipJP/kauMNU9sB6uKa7F35srsdfgzKjnSqeM8k2bNuHII49Efn6+NLs/7LDDkJycjEcffVSes+1ANGPWihJU2H0R/QEiTXGnQc40CUYBgkGD2OkJivhxVDV+5+djpkiUIlydBeuHclMTQk66mkHc4DZgyZYqcSZwMCZZDHLv9PilNzlrdQkeq3m4uCnicTz/bv3TcPakAZ0abPz3YIYBDZlQkXIaVtuj6B4viGW+DM1mC4mUbVklbv5N9TDo/RjXL1W8iBo47uhZZLSKypdUbF9TXIeyWqdEwlxuj9T/UGmdQ5EK7JwzDTq/bNA11XNG5P0+Pzh0g22MS+fPwNW/fSCP7zziKnwxZkqHfguZYDTQINBLlI71rqlWM7ZUOqTPJp1Io3qnNHlJWzrplBNqxyOWudJdBsarczfg+xUl7RrkjI4fsPFv6T9OsHb8P/ucHtH3MDpO/ngbOcrlIlyrTWbCJFtNwq0hWTZsKLXLZ7j7on6E2cTWNSxjgUTH2SKRKbysp+XmipH+UEa54l9zKK50HNzPvfXbJsxeVRRW+FDD4IqtyEvvLQ4rlhVed/zNEX5HwNDgdxEc++Ei8TyWBnlumhXjB6ZjfUmdZBhSLFWLkptINhotXr84s21mPWobvNhS5UCtM3T/dOXAag7Flc5hVVE1/vHR4nYN8gGVhShOyggEF3U6TDv08ojOr9kkniCu+MLY5qQB92wsh9q1T6qsK3yNnAi010UrriQ1ZmVSTLi0zhkTXGnbPR4G1113nagJVlZWwmrdtkCedNJJIvcf7eCiH8kfgBsepssxRfvZWWvlns/5ejAcDjce/251K4O85cAbVbJRUgZ71QalsocxyPkqI5G2MAYtX7cY9FhdVIPaBo9M4qyhqHR4ZIBqkQwOSKPeL5GOZLMBGTYTRvdOxqQhmTh94oCI6pLCgQ4KRkppiLWsgtAMtGE5gSh/T0as84Xj48oDh0oZwrWHDsftR4+WlHXpYc4NhM8n93Ro0UinYCAxc3mJbCz2G5YlIm9uX6CunGqnAdVmnbzOcR54hUa4H1U8r7P5InD64u9xx4+vyeNHp1wQkcCONskzhYmq6ox603vKiDidUMxoYfRu2dYaiY6P7ZsqziVG8XhPpx29p3TScYNlC3JChYJyQm0/Yp0rOxMck98sLcTvG8pQ144havG48Pxnj+L1j6bhnIVfd/i7JEre+JgGBqd7Mc4b03TpQJP2Nax/tZok82r3/mnCN2pRZCYFMmwCquyNmhKNIj5uj0/mBTqQ6TALB5viXzMornQc7/+Vj3f/3NSuQT5lwwJ89fq1uG3Otl7XkULrPND0nFxpHO8aTzQwZX10nxSpIydXKuvdsobSSBFtBrExdE1c4T6PyZDkkovGRkNoLmxzYBnDOrCYVdlTHFiKKx3HmuIaXPfuQilBbQvjClbj0//dJHXkFHjrCDSV9abn/sa2gI3q6o0xRVlXmIE5pncK9h6S2bSupCaaAkZ8o1J7S66IgnujgyxcpXa0caVTq9fcuXPx66+/Sh++YAwaNAhbt27tqmvbYXC28wegt51tzH5aXdpuijtrLe77cgVqwkyOGoaXbsLb792BzPoa3D5nerteV6b/sWYinEHL17OTEzB/Y4WMxpqG0GSgx8icYITVoseRY3Jx2C69JC3e1gXCdvwsa/D570GDjP9O/Pfj5kirxeiMonu8Idb50qqFRC4kg0OLnpMv3AwzQs6/N3lBvQG+x432xjKHTJqBNCNvII3dwEkyUB9HjmlRt6b+rd5A5JzR9EOXz8PD3/1b3n9xr5PxwqRTI79uRhoMBrkOGvp0WEnLNr9fROuWF9TIa3sMSJV68racdJoTinMAs2pa1rRqWQI93QnV07myMw2M//68od0U3CSnAy/PeACT85fAaTCivAPq6uFAw5zTOqMTGUkWpFgM2FzVIJulSYMz0TfdKvwoq2Mplw9mI7NSTKK+LiJXAY3IxnNRrZ0lLDqkJ5okuh4Kin/NobjSwQj5/Dw8+OXKNtvTEictm43HvnkGJp8Xo0rzYPK6I9JbCEZLYTeuaeQLM8X4CnlgNhpw4MhsDM5KasYVCqgWG5wS6WNmiUFvaOpuwN/B18k7ZqOEKo0kbCqLsRkUVyIHx9icVcW4dcbSNrsRaN07Xvj0YdjcDcitLYfNVS+luZ2FP4grXA84vpmCzszGCYMyRE292boCo7TlZbYJbR0pHQkEy0UQjqUfTmZimY0YnBH6umxRxpVOfQsjXV5v65lty5YtkhIS7bC08wfgAPhrY6DmXBO4qnS45HU+Z30to2es4b7rs2WyGWgLQ8s2451Gg3xx7nBppdEWaBr0y0iU3q3hDFq+PmFQOj5fvBXF1aHTMtA4wOk12r1fGi7Zf3CHxdzkHG2k8NMAo4OiLQOtpyPW+RIK/LsOOTAp7Ljga5w4KfLmdPvEo8moAEUImXrHVmicNet8viaDXDOJfcHROS9wQP4SGPw+vDv2cDxy4EXtttUIBnNGOGEzEp4Eo6QxMXqvRfs4ySeaneiTlthuSqxyQu14xCNXdgTe+HUjHvp6pZQptYUseyVe//Be7Fq8HrVmKy47+S78NnDsdn+/iCQadGJo90pJkIgd10eKu/VJ25aFxteYqs6WTnTqsf8yW9bQMc51iWfi+9Q+YZScGVzh9E0U/5pDcSUyrCqowQ0fLsTKwrp2j2WJlJaR9cmYA3HL0dd12CAPBbKUw5Ljn8aGzukR7mQlNecKBVFZzsHuJizpcnm8kklC0V5xWDcaGhlWi7RMC7WHJZQDqzkUVyLDmqJa3PzRYiymWG87OGH5HDzx9dPivNre7h2huJJoMYqT12BgCzR2nzKHXFeYhcUMS5ZJ0tlFjSLRjZMgUGBdGt4rCSmJscGVThnlhx9+OJ5++mm8/PLL8pw/oq6uDvfccw+OPvpoRDsGZ9mwvroh7B+Ak11JTYNE1xZsqpI0CXplOGFyYOSmWrCmqAZfLSmUWtQ2v6tiK95973ZkO6qwPGcIzj/9vnY9SYlmPW4+fGQz5edQoFBVo2hhmyivc6F/RkKnxNwiaRPQnoHW0xHrfIkoet4CrBGlUe5wekShnb+Zzh16NVnm0VSPyvYWjeI4WhoSh42WjsSx/dCxV2PVkF3xzW4HQt8QSEmKFNzEMDVWxOT0OuE0uxnw+RG75OKsSQPw3Kx1EXtJlRNqxyJeudKVeG3eOtz/5ep25/1+VUX43wd3YXBlIcoSU3HBadOwvLGN4PZAE3oTbQajQTY+NBp2H5AmHNJEIWkwi1usUdCK68awnIBwVWmtS6KAdJCRjykJZlnv2tM3UfzbBsWV9iFaP1+tgKMd55XO75NU9cv+/ESe/3fiiXjooIvbFUCMBNoZ2H88zWpCeqIZBdUNsJj0ou2jgW2c0q0mbCi3Y3BmooiqigPL7ZVsLq6f7EwyNMuGlEQzxg9ID2soKAdWcyiutA9m/f7jg0WojEDQ7ZI/P8Vds1+Rx5+NnoJ/HHN9lziv9C25YjNLZgij4GylKXu4FuvK6NxkWQPID65FNMzp0KLTl8rsOakJ2H94dsxwpdN9yimaMGbMGDQ0NIiS4dq1a5GVlYV3330X0Q5NUTrcH2DPgel46/dNTVG+pAR6bIyygWBLqOoGF4w6HTaW1TUJFITCwMoCvPvubcixV2Jl9iCcc+YDqLa2v2nok2bFyHYMci3tr2XtbShwPUq3WTo8qDrSE7YtA62nI9b50hloVaOkBzcVFHrjOOJkSSEolltozJFaVNabMmW9MSU2p6IYZSlZaNAZRGTq2z0Olc1MSpIfeWV2GdNtqUBzr+PzB9qsUWuBkTzW4TFFnd+1W780nD6xPwZm2DrsJVVOqB2HnsiVSMGOADd/tAifLAr02W0LbLn5MfVL6iqwObUXzjv9PuRl9O2S66BDi+VV5E2ixYBEkxFj+6XiiF1zZZP00V9bxWCmSjTFRPcbnoWSWmbNBNYRpiFSC2VLZT1sOiOG5iRh8pCsiNuRKv4FoLgSHtygv/1HHqZ9vkLWivbw0Lf/xllLvpfHDx54Mf476eQuuQ6uUVazTpxOew5KF6c0NYAykwPddrgHpTGudSOgc4uaJyy54j6QpVZsPRpwXukxMjdVIu3sUNKeoaAcWNuguNJOuvqaYlz/7kLUutrv3nHNL+/ipnlvy+PX9jwe9x/yf13ivNKF40qSBQePysHKghos3VoNh9sja86+wzIlvb7C4UbvVIsICJuNemmBxiwuloUwOESuxRJXOmWU9+/fH4sXL8b7778v9/Q4XXLJJTjnnHOaiSjEiqJ0yz8A0x1aRvkIHmO26eV4qY2THNzweOi7fyO3rgKrswbgnDMfRJU1fO+6xs4AsuGhdygSUQH219QUPtsCBXk40XcE0dYmIJYR63zpDERR2Uwe+bC+zC5c4ZhiZI2ggUyjV/q4atoHjf0x+pZtxTv/uwV/9x2F6467GV69WUpI9Do3xg9IE8dQWZ2rqYaIHlNJR2/cBHFipsIza4p4ThrknKipGt8nxYwDR2RLhFybaDvjJVVOqB2DnsiVtkDObKqw43+/5uHTRQWyAYkEzMZ6Y/yxOG7lzxIhL0lu3QqGEAGqRqG2CDveSFrhqeP74bx9BgrPbY1G8YayOny/jGVddajmBomRimwzTpvA6Dea1lumrtMZNnFQpjjAR/dO6bBRrfinuBKOK18vKcR3SwuxpLC5IG9bmDdoD5y8fDZuO/IazNj1kDaP5RoTWeNBBkNYtmVEksUk18ct49h+abKmUHD45Z82YOHmKjHIE4x6DM5Owvn7DERNvUe4QoOE6ipsSMjH3HtRPDdSQ0E5sAJQXGkNl8uL/83fhBkLNmNFUV27mVcafhm0O66c/xGem3xmQN+nDbFqDZGcO9UaEP0NxRU6e3/fUC7dBgIOKoPwYb/h2VhVWBvgis0se8EkS4ArFIaLRa7o/OEk6cLA7XZj1KhR+PLLLzF69GjEElo2dw9XK72p3I4r3/obdqdH2jq1jJ5Rtdnt8aKwxtnmYMupLccDM1/A7UdMRZktvdX7ojLYmKobKK/TiTr65CGZuOmIUe1uOmavKsbUt/8WhfW2kGDQ4Y1L9sKkIVmIFBTqotp8WqIpZFov1bapykhF7h2xOWr5t4pVxCpfOvvvr3Fq7tpS/OfH9fKck2iVwxUY69CJQS5VP34fGtgpoNGgpvOInQnef+uf6F9dLNklZ5z9CIzpFGEzSE9j8oTdA2gYLNlcLWJt/JyTBrpBLxG8zESzROXI5dQEo2SU0IA/ec9+OGV8P+kH23KiDS7ToNFAB1xHJvTuRjzwpadxpT1wTD4/ay2+X1kMewQRDK3tGXuQC/x+JHicaDAltDqORjg3Nh6/X7K+6AymWGm4NmdN59dBnLTPnb0HRvRKaXatT/+wVvrB0sDQwAjgiF7J0uWDDtzu3vAQiivxy5UfVpWgNsLe4y3Ru6YUhSnZrV7Xyqu4TtGxy7RztogK1+ZMA9clOnUnD83CqRP6ITtIYHfO6hLp6MPyRxFMNOilEwnTdgdmJuKCfQaJc5hcIU95Dcw229m8UVzpPuzIf3tqkvx79lqU1kXm5A1l24Rz9DJKTZ5oWggMYLa3rnA0ZyW1zxUGXHhuOqco3jYgDrnS4Ui5yWSS9I94QDhvO73/HCA0IhgpDqSv68W4YNSNz61GI4pCGOXBSp0ctJedfGfY75d2lo0noOFPg4IGw4jcQOSgPTANmNfF/rTBqcAtr4kphhTa6ghUT9iuQTzxpT1ohi3vlxfWoNrhks0+a+OYQh4QdvJLyQcnavYi13q4csymOGrw+nt3i0G+Mb03zjvjftitSUhk3bmfKUmB3sg89vYjR+P9vzZj5opi2J1u+HU+cR5RvZkGOMWmhucEjHeK5fC10/bsH9aBFC1e0p6MnsSV9kAO3frxEizMr2p386/htCXf46zF3+G80++H3ZIoTt5QBjmdwRzXrAn3+3zS+5VrXiQjnWvURfsNbmaQ0/H2zu/5WLy5SjZN5CHFFVkHS+ctX393fj7uOGZMj49udxUUV1pzZdHmqnY3/xr6Vpfg4W+fwy1HXYeilECwIpRBjkaDXASn9Bz/JuEKl4V2jXK9DoOyEjH14KHN+EIxLRoZrJHtnZIgIqTkSp0EOlzCwx9WFuOKKUPV+tMFUFxpjie/X40Xf1wv4miRIK2+Bs988QQeO+D8Jk2SUAa55rwiGNTQ7p2ethXcCe4TO8KV6nq37CERh1zpVCHA1KlT8eijj8LjiU+DzGY2SurDyF5J0naMqaysJWdkmOkVI3Js6J+RhJYK+YzyffvaNaJKGAl0QQMyO9kskblRvVOa+jwzWr2qqEbuQ6Wpc/NDTyyVa7VztTyKr/dKTsD/fstv1V+9vX8D1RO2axDvfAnWH2BttqZ+mZNikRSkgqp62cjQ2LU7vSL0xolVp9chobERpc3pwPQP78GI8nwUJmXivDMeQIUtXSZaHkvodYFI+NbKetQ43bjr2DF45JTdcPy4vuiTmiihDEYzWHKyx4B06TTAlCamvg/vldyuo0tz0o3KTZH7eJnkYwk9gSuR1I4/P2sN/o7UIPf7cfn8j/D4N89ifMFqnNlYGxsKrBBJTjDAxD6uPp/oNfDeZg5oLdBJFmrU0yBh27PTxvfD6Xv2b/be5koHft9YEah1lfVIL495z+d8/NuGCjlOoeuguBJwCL35y4YOGeQjS/Pw8Vv/wAF5C/Hwd8+FPY48SDbrJfLHpcDlRSuuhPoMl7QEo040F+4/frdWDqyPFmyWqF9uikWE2zSucC9HUVLWzK4trhUHsULXQHElgEV5FR0yyJk98uHb/8SUjX+LYc5MrHDrSkaiQQKZLMOgjhCNZuqKcI8XbivFly0GHYYprjShUxbVn3/+iVmzZuH777/HbrvtBputeZutGTNmIJYRLJE/JCtRUmRpTHCA0ZNJ7//YvqlikDY0kjy7rlLang2t2Iob5r2Db0fuC6exeU9EInhsZtiMMOj0UsdKRXhGyDWD/IUf17epeK4Z5TTkCdbA8xqDqcZFg84FtpkprnV2qAac/wZDsm34M69CHtMApyAJI/o9saXG9iDe+dJSf4Cp40xhzbBZpG1FXoVDouOBvuN62bSwlZNZz1QkA9yOOrz8yQPYvXAtKqwpEiHfktpLjud5pOa1cQfEiZjnWlZQg70GZ0pNEVOefllfhnf/yJeSE/Y5ZoScPO2JSrOxjHjnSlscyq+w49NFW/AmxTXrI0vBZQbJ7XNew6V/firPX5x0Cl6dcEL47/FDnFS8p94Ca/XqGliDZ5aUQLYr1Itzi+q1PMYgWVHk8fiB6Thnn4EBUcag0q+lW6plXWTKYXCpl1yfTidZWuV1TqmhHdiJlpwKodFTuaLVw369vBAvzFmH1SX2iD83cfMyvPrx/Uhx2kXr57Yjrgl7LEey3R3o9mHUB9avVlyBH95GgVJJQ6eQqA7on2HDP44YiVF9AkaGxhfu6bh20dDX9FWavo99mRN4Xg+q6l0qC7EL0dO58u2KIrz041osL4qcK8PK8vHmB3ejT22ZBEquPPG2baVRLcDxX+4IrFlurzfQTYd8cXqlVtztpVPLJ5nBfI9aQtJW06jHAMWV7TfK09LScMoppyBeoUnkryyqwaxVpWIIMAbNDUxVfWBypiKmFr3OtFfhnfduF4N8S0o2zj3zgZAGOaFtWbjhOWx0Lxw7ri+yguonKJbDiCM3MZz4uRmicTF/Yxm2Vjlw8X6DmwxzHr9H/3TxSDFtd00xFW/9siiwtoJpiYz4MbrP37SupE4GeyQphLyOijoX8ssdWF1UK2Il2UkWSQtmDbsydCJHvPNFm0DpXOJkKf1WWe7h8cHh8sHKdhWGAFcC+gk6eHR0IAX6sO5Stgnjt66G3WzF1efej/UZA+RY2d/70ZgGG5h0aSyQdgvyKnDhPoNk/PHGlhf8fq0unGrPPVVpNpYR71wJl2Xynznr8PXSQjREIhXdCKPXg0e/eQanNGZmPXDQxXhlr/Cq0aSTBBMbv4KOMeapkIkUlmKZEyN8jDjyxvRbGuTspbzPkIwmccSWbTKr7AFHNSPwCaZQm7YOydYoRIieyBWtzdm/Zq5BZYSihxoOX/Mbnvv8MVi8bvzZdwwuOfXuNtvTBnNFi8LrgrlC77LfD4ffK1zhfi3VasaEgWn4vwOGNEX9gvlSUteA9SXs2uNDQoNbjg8GndYuj1uywmwqC7HL0JO5IvXYde2nkAdj/NaVeO2jaUhrqMPazP644PRpKEjJCXt8sKwVKSPrh47Gtx/1LmaXGOBv8MOn464v4BDmujJ5SIbiSgt06Jf4fD48/vjjWLNmDVwuFw4++GDce++9caleyIgyo3NMj/DSw9MYIeYkzI1TvcslaePpjmq8/d4dGF6+GQXJWTjrrIclyhcOHKhmk0GM6HP3GYRd+6a1ijjSEKa8P40dponze5m6QbV1GtuszdOMEU05mv0s0xKpXmgWb5TT6xMhBEbYee0dqQEPboW2x4A0FFQ1oLTOKd/Bcxw0Kkf6ySpDp230FL601B+QfquJJuRXOKROjuPP7fE31plS9CMwMfPG91b2G4mrL3wEifBi46AxMNQ5A7XjjbXmhLQe1BTWdcDfmyrx6/oyiZRrUHXhsYuewpVgcL6fu64Uj3+7GisKa8TZFCkS3A34z6eP4OANf8Gj0+OWo69rpRrNiISWdhv2GhqNdbfPB4czwDOmnE8emimR8d5pVsni0sQRQ7XJLDLVS6uarVUNEtHguqOBa1e1wy09Z5nBorD96KlcYfnDK3PX470/NjczAiLBmYu+xYPf/wcGvw8zh03C1cffAqcp0JYsOAVX84mF0uZB42vkSr2L5rm/sU1ZMk7coy/6pic24wrRki803Asr61Fu98q+ioZFMF+ovcIbMyBVFuL2oydyRSuBevibFXjz9/ym8r9IcfC6P/D8Z4/C6nHi7z4jcfGp97TqHEXXKykY7sx8netZQNyXGY+0oYA+KVbsNThD1pZ9h2UprmyvUf7ggw/KgD700ENlUD/77LMoLS3Fa6+9hnjDlspAhDjJbJS6akbqWo5tc20N3n7/Towq24SipAycfeaD2JyW2+Z5/Y1tMli32tLzQ2Ni4eZK+e4SGiZenxgm/JSrPiAy98nCLdilbypO3L2vDGatv94Hf24WY55GPKMVvVISxCBnRLsjNeChWqH1S0+U309Val4jN210Wii0jZ7CF5vZCItBj5KaBhHiIF9YN86IAhXTtf4OZoNRsjdE7I3ZHY5quNIyRNri736j5T1udTj50jvajG6aQa4PKOAyU+XjBVskdT3Y6FatkmITPYUrGrgBefu3Tfhk0VZURdqLLAhZjmrsWrwe9UYLrjrxVswZOrHpvYxEI/qkJ2JQZiJ+Wl0q6YSkSLDRH2x0BN+P7p2E6w8bif2HZbdyZoVrk8l+ykOyk0R5fUuFQ1LUA4I8PtQyo8wPKaHiOqKw/eiJXKGQ4JzVxdhY3vHaUbPHjQv+/lIM8vfGHo47jpgKb1AaLoe5zaQHfVcel0+yR9oyYxgV58in43n3Aem4+qDhGJHbOkARii90UuWkWEXLgSUf1EcZkJEofGHWGMWDc1MScMqegf2dwvahp3GFmLWyGM/NWoPFW2o6nqPk9+PsRd+IQT57yARMPeFW1Ju3iYVST4HtlRlgoRNWC5yE+h4a7SaWdLC0Q6/HoCwrbj9mdMRri7+HcqVDRvmbb76J//znP7j88svl+Q8//IBjjjkGr7zyivyjxxM2lNkb67Q9kq4dKopx2tKZGFOyESW2dJx95kPIy+jb/okptGMxYvyA9FbeHfbgY11hucMFFxU+9ToxUDg43f5AhLHC4cG/Zq4W8awjd80Vo5y3W44YJSdfUVgtoglMWdc2TR2pAW+ZiiyXrNPJ+QCTGPzrS+0Rp8H3ZPQUvtS7A33DOW5YlkEHDlPUGR2jgc7JmXMmnTppNrMID57xzXQc+fMMXHb2A9g6eKSMd3KN/GBWBz3cLTvbcCGg95RCctRPoOYDoyeqTjX20VO4Etw+bP6GcnFcdQbMxmJKYaKrAQv6jZHXuPkZPyANfdISpe5V03Yg91o2PpUslcZ7RtSZ3ZJgMuKGQ0fhgBGB7JOWLUO5jrRcGwg+Zj/Zmnq3zAOVjV0X+A2ssR3XJ1kyq+Jp49Sd6Ilc+SuvEpVM5egEXEYTLjhtGk5c8SNeZnmHLmBU909PQO90KzISLVK3+tuGcsmADIVgJxadTTqDDnsPycRlU4bK/itUe91weylG9uqcHuEmBVCZFcmyQ5fHLwrT1xwyvJnglULn0ZO4ohnk075YgcIqR+eKhnQ6XHv8Lbj4r8/w4qRT4TEETMReyWZcf/hwzFlZJjXiv64rl8g3b8xq5L9kqOQVrjs0qgemWXDLkaMwZUROIOulwqG40hVGeX5+Po4++uim5/Q+8R+uoKAA/fr1QzyBGxBGl2mQh+vk/srEk2BzNeCrUfthQ2b7v5/pUTTuabQw5anlJoWR8Np6D5zSjzlgkHMwchHQepkzWs92ABRgo6HNKDkXBaNRj9Mn9sP0Xzwi6sZz07jhb+iI2JVqhdZ16Al84abpjV83yWNu7KmUKX2KdX5RSNfUaKlJIII5Oh1Omvsxzvkm4Kneq3AVZo7cBVWsb2XwQgckmvRwuWmUU0hnmzFOURD++3FypsgHjXglHhUf6AlcIbgh+XZpEVYX1UiJUUc2TkPKt6BfdTF+HrKnPF+ZM0TuAxxhBpZZjOCVhTWYMChd3uP+hpE9cjJcpJyfYRSbEZCc1EBKb8u6cYqN8n06qhkZbwmuL3sPzcSCTRVSK8jvZKeEsX3TWgmUKmwfeiJXXN5AGV9HouOTNy3Cj40ZJGzh9PKkQE2xWR/IVqTziro5Q7MCkTnut+igkhadYbhCrjHllgK6F+4b0PcJxRVmKQ7vlRRyL0Wu7N4/DWuKA511MpMsSEkwYmhOEk4d3z9k1F2hc+gpXCGYfTh93kZU2J0BPZ4IQbHQI9b8hm9HTJYFw2G24t+Tz5T3uHdLsxqxW780rC6wi76WZN+KsGGj8SyFHKFLPpKtJmkvfcfRY3DAyGzFla42ytlOICEhoVUPQLe7cw3ooxk0Pr2NLZaCwdZN7ENO7ysH8DP7nR3xOUXgwKCTlk1MjT9oZE4zI5mGh9YCikIIbCug9WXWIIa5149Uq0lSPYIV1bVUdm3Q03juqI/B+FcAANfeSURBVNiVLagVGtXdW0K1QotuvuTl5eH+++/H7NmzUVRUhD59+uDcc8/FHXfcAbM5tPhgZxGcckTtAU6ac+1lMDZ2WmT022AIOIcYm+DYP/iv73DRjKfl/beOvAjLTjgHF4/tjXlry8QplZNskZT3xZsrUefyNtUtUbmTsz4NC26e6K1ltFwhPhCva4sWQaMQGj3+vP2RVwEni2L9AdHQSEyN3QrX4vUP70Gi24mLz3sI9eMniPozHbTcZPbPsGJUbqqkqlPL4e/8SimRogaJx+sJKKZ7A5snQots0HhmuuDu/VJR0+CVeT1U3TjXA64p5Dg3WVSXbgl+1y69U0UQjplVPJfSdOh6xDtXtAgaI2LUKpDWSuJRiowtSU4HXvrkAey7aQluOvFmrD/k2Ha5Mrp3iuy/qk2BQEYzQ7xx+PI5xW73H5aFWqdX9kfhuMIsrjUltVLzGmovRWNjTO8UpFnNwhcaJoorXY945QpBTrDUlVm9RE1DY7aiDKHIuGLyuvH410/jxBU/4dkp52D2qZeF5ApFDbX5n85W4Qp7hbt9kh3J7Zn2bdoI5h5tt74pmDQ4C/sNz1JciRAdsqzoqbzwwgthsWwTyGhoaMAVV1zRrMVAPLQX4KaCg4/q0cEG+Rsf3oPqhCRcdeJtYRXWw8Fi0kvqLgdVKCV0Dka2lSmsapD0jGA0UayxhoOE6Z1qaXWe7RW7Cm4HR+IFpymqVmgdQ3fwZdWqVZL6/dJLL2HYsGFYtmwZLr30UtjtdjzxxBPoSrRMOWIbstQEo0TFOUa5uaFjKDPRLErPE5f8jHs+eVI++80hp+PvC65Gtk4vNUZ7DcoQA5+aCqxNpTOK/Su1bgINFPXw+pGWaBLDnamySjwqfhCPa4sWFeCYFr0PKUmCZEOxFInO1Uj2TvvmLcJLnzyIJFc9luQOwxUXH4599x6Dx75b3apcif+OAzMTZaNWXN0gEfC1JXWBlNvG85FPfMzOHnTujuuXiuJal8zrTAl86ecNrerGuTaxDSjn/2VbaxrXFH3ItWHCwIy43TBFA+KZK1xPyBPO+9QO2VJVDz+zPKSlZvtGBlvT0nm1S8kG1JmtOPvYCRh3wX7tcqWoKpBNyPRYavlwveIIDrQ5CxgdvJ6Jg9NRUtc+V7h34jpGhwJFqkb0ar2XYk3suP5pOGB46xpbha5BPHEl2GnFjMTZK4sxf2OFCGn6GbkGUMHSIdE8aJ8ria56vPjJQzggbyHcegMOPmpvXHVFaK4Q2vy/odSODJupkSvupna3hLackStDc2zivGWmFBFKj0RxZTuN8gsuuKDVa4zCxSOSLSYMSE9EeV21DDKrq0FaBEzYuhLVFhv6VRVjfVb/Vp+T9KcW0W2ChKGxQjVbGt6byu2tUsC50ZkwMB3LC2rgYe/LoP2aVOg11gbyMQ2ScKnk2yN2Fazozs0cDa7OpMErdA9fjjzySLlpGDJkCFavXo0XXnihy43ylqUObIVmMhpks85JmRkVXCRoTB9WvBy3ffgwjH4f/pxyHFbcdA/qy+uxW99tXs9BB9jw2HerJEVqaLYNizdXN3qB/bLQ0FCX3rFSV6TEo+IJ8bS2cPP0y/oyvPtHPspqnRJRoPosyzsYKWfWB41kX1C9d7gt1DEr5+KpL5+E2efBvIHj8OqNT+DVybvI5oyp5CN6JTeLLATq8JJl87OpwoHd+qWi1ukREUaf3ydp7FIK1VhHvseAVFQ43E3zemFNQ8i6cYK83rVPChbmV2HJ1mpx3qq1YecjXrnCciSOoUq7S7q9kDcOZyDLI5C6zmyrQI1qKAysLJC+ygOrilCamIZpVzyGZy86rUNc4feTI1UOGhyNJR8+SKSQugnc20XCFT5nmQcj8VwL1V6qexAvXAl2WnEs857zOoWos5LNkolIW4BZth4pBWybKxmOarz20b3YvXAt7KYEPHnpA7jz5qlhudJy/icvWM5EXtZQBLqxzFfLBmZ57iGjcpsydBlhV1zZAUb59OnT0VNAQ4FibEu2VMPoasCrH9+HSVuWo8aciPPOuL+ZQc50EW3syyYr6Ln2GgdbTpJFjA0aHaFSwKXf8ohsfPDXFth9TKHatlvTWgsw3ZCf5fMdlUreFWnwCtHDl+rqamRkUOU8PJxOp9w01NTUtHteW4tSh0ArNDNKaxtgtplFQZ2ROLNeh2O+egNmjwt/jDsA3153HwrL61tNtNzkUChKWxC4SWIqe3mds7FmySdGjdVkwbj+qUo8Ko4QLVzpis0T62DZc5wdNNwebyANMD1RMknYr5VlGowuMBrIzQ3XBrfHJ+rPwTj3769w38wXoYcfX4/aD29eeR8eOHOCvKf1cWWUgRuj4I0OecWWM2wbyKgf1zJ+h5SAsJOHxy8ONG58UhLMIqajzeurimra1BShU5kcZesnGi5qbdj5iDuuLCtCud0Jk16Hpe5AnSmzodKtJqwrrRNjXRSeyRVTo/BtC1WpXYrW4fUP70W2owqb0nJxw4UP45FbTu4wVzJtFvke3jPjjOsPRQvJ3+zkhA5xhUYFeXfMuN5YW1Sn9lLdgHjgyvrSWny0pEKcR7kpFmytdEg5FCPL1OjheOVY659uFUdWg9snWViJYbhCXZI3378LQyoLUGFNwc0XPoR/3n1eu1wJnv+HZNuwpbIe/grWnevFQGHt+aBsG47etQ92bcym1fZnkWhVKa4EoAqDQ9QyaYNpwuAMfPzLWjz38QOYnL8EtWYrLjj9PizpPaLZ5+lFZcSOnh4SJTjswSFpZDuAzESZ/Gm00BMULgWcrcxG9EqSFBESL8gul0WLGzsaP6y/qHS4uySVPNTvVz2f4wPr1q3Dc889126U/OGHH8a0adM6dO5QpQ6aWiaVn7nJ4STOzf99F92P0394G3NOuwypLoScaFtO3Bk2C/YekiElGiW1TmmDQc8vFTzP3WdAj5mkFWJr87SmqFYcTIyGN7BJuC7QzaNvulXm/5zkBGytcog31+kNCHlSqI1WuTeoV+wDM1+Qx1/tewI23PUwHtgjIEz0wo/rsWRrFTaW2KXUiecj77T2l1p9N+vwtPruRJNB1hEaOEw7ZIowoyss/+Dapc3rtgg0RShyddG+g0XoR60NCtvDFdbEcp/D6DQj5HRWmQxsP+uXUr/cFCu2VDlkv8PXKABKI5kp7Vp+YO+aUrz/7m1S3rEydwgemvokpp6yj4zP7eEKOZJg1KOopkH2WmwFO75/uojqErYI9XdG56bg0FG91F5KoVOYtaIEFXafpH3TxlhVXAuHM9CdidHyTeXsQJMoPbxzUxPkGPpfaYtQm4oWhGaYJ7gb8P7bt6JvbSkKUrNx39SncPa5h0bMlZbzv6aVQuFdRu013rSETXElYvR4ozycGiBTuDONPvxnxkPYZ9MiSfG48LRpWNiXrccC4NRMRxIjeg+cuJsY0v+evVYGFFOfGJmgYjS9RuP6pUmEnAZ5W6kYNrMRAzJs4vXaWOaQ1A22SmP4PcVqlBsJx+/gZmp7Uzra+v00elTbs+jArbfeikcffbTNY1auXIlRo7aNz61bt0oq+2mnnSZ15W3htttuw4033tgsUt6/f+vyjPZKHTg+h+fYsKygBub6BpgNNtn8HzFpOAae+hRuTrbIGGc9Hg0XRhu0iTfUxE3DfOIgs3QsYKslTvgX7zcIA5TiukIUbp7yy10orm2QjQpDGMyY4jrBccsUPkYDkq1GpLvN8nhzZb0Y5ZQuYe1qopElIHos3mUSZq/cD+WDR2DtFTfh1N0D7TY1oZw+qVapJSyqrkdJ4/dRpZZrS7j6bs71c1aVhp3rO6IpwshhT9ooKewYQ4McYWlFU3cAtlhq7EvMYAGDFBzTLF8qqm6QPRUds+SKje1idUBFeg7e3fMYjCtah39f/RguOHI3MVK2hysaX75aUtSML39urGziS0f0d7anpFChZ4MdZnpnpSOv3C6CuNwLkSsG1nLrAIfLKy2S+6YFugLQwKXmDrnidAeOSTDpYDEY4Dbb8MIBZ+H8v77A3Zc/itHjR8t3dJQrLed/cuWLxYVh1xbFlcjRo43yttQAaWgc4yvG7vnLUG9KwANXPoatvUYjiYSAX0RymJ5rMxvFa6T1Cz94ZA7+3lwpkUKSg6kmNK5ZQx5JKkbw4N1/eBbqnF6pryLpGOVgego9tnsNyuxUq5ngqDjrHZlmSS9wqN+vtVtT6H7cdNNNIljSFlg/roEtPw466CBMnjwZL7/8crvnpxBKsBjK9pY6nNXfhDP/cTXqzjgHDbfcir5Bkzh5R4GclhP4YbvkhJy4ec/sEEYs6NxSdeQK0YgNpXUot/ulzRKNDZYaaXrnfkYu3D6JQDBizqgG6/MGZ9rEqbuioAalZdUoqnPBazCgT3YSZt37HCwJJhRW1eP1X/KQYDI0E8phGxnO46y75SaMYjljeieLKE5Lx297a5021ytNEYWdZWgkWBPxZx5FPakZEuAIo28s62BtLB1ZZXYn0hJM0uKPUXVyZV2xHYXV9SivqJVOOFkpFiy88p9Yb/Qj0aPD7FUl28WVjvBFcUVhR8Pp8aLe5RFRN3KCDio6sTSNKRq1TFmnfg9tA2pXUfV84uBM/LGRae9OWLweFDi80Bv0KDz1HLx7wQUYbTHLOH121lrJENmjf5riShQgJozyHdHmKbidUyg1QA6cnzL64qebnkNJWRV+yhwJZwOb2PvkWJ1eJ3VHbDszpndq03mZ2rTX4Mxm39ORVIzgTdG6UrsMXnp9s5PMkgLJ/nxn7zUAk4dmdXgAt1Q4paOACyKVr7XIZPDvD263ptC9yM7OllskYIScBvmee+4pNVXBKsk7Ai1LHZIcteh70tHQbdoI6wdvAbfd1NRXhmPwtXl5kr6bkWhGls0ixos2gR88KkdN3Aoxua5U1rtRUuOVoU6jgIYFzXKJaughQoVMHbc5DCJsI1GIAem4YspQ+KprsPngo7DZmo45Nz+MZJulaU3ifLx4S5U4Ubm2aK8zi4RRjPUldonO02ihAChVaoMdv5GsdV3dWlMhvtDVXKEzdmuZQ4wNcoWlTlqhHg1zGh18zd7gkegd22Bm2BJw+oSB6J1swfxzr0LGoj/x8QP/RWLqtjGd4/dvF1c6yhfFFYUdzRfqf7A1IINyyRaj7N3ZFYrjVDoDNEabHU636FtZTAbs3j8d/7ffELlVPv1v+J56CtP+8R8MHjWoRdcMBHSzAn3UBIor3YuYMMp3RJunlu2cNOg9biSXFKJ3Rm9JqzLuPgE/LC9ErSO4ryG9uIyX+zEgM7HNmu7OpGKEG7yTBmd2evC29GYleQNtCJgqtnhLdVOKCprarSWEbNumEN2gQX7ggQdi4MCBwo3S0tKm93Jzc3fY9zaNc7sdOPk0YMkSfiHwww9AWlrTBP7O/Hz8lVchXl6OLeot0Dgfkp0o2SWri2pxwT6DMHOFmrgVYmtdoRHBDZPNwgJxwOv0wu8PRP7E5uBrbIXmZ2RQj8wkS8DJVF4Gz+FHYvCiv9HHmogNlQWoTNqW9cL5mLXo64rr5PPB4AYqfZBZRNc2ltulLrZl25hwa11bc73SFFHYkVwhJ8rsLhgNelFrtrvotAp0B9CGGJ1YJkNgfDJKJ+mtSSY4Lr4E+37whhwzbumvWLf/EV3Glc7wRXFFYUfyJSvZgj8LqiU7l8azVWeA2+eH2+MXjnCYMVhY7wbMRh9265eGI3bNDfDogQeQeffdcp4TF36PpWOuaHZunoclthQfZVo8I+aE4kr3ISaM8h3R5okDot7tEeOUatEUEknQ+XDmM7dj6JLf8cHDr6EodYCkJNY1BIQLpG9loEOG+HT5+srCauwIdOXgDeXNYtsDcig7OUA8Eis9Mb2JWOHarSlEN2bOnCnibrz16xcQhtIQaCuzfWgz84Pq7SefDPz2W8AQ/+47YOjQps/+ur4Mc1aVyHWk2cwS/WA9LWuXqJvAsckJ/LhxfXDlgUPVxK0QU+sK61+XltTKY47tJAvQ4ApYF9z86Brpx+yQfYY2OljrK4DDD4d5zRrUJqfh0wf/i8r+2wxyDSzf4AJEYZ30IOEdQte4WcuW7h6tM5siUb7t6taaCvGFruZKbiNXaGgY9ORKoLdyg7tRh4H9wXVsI2uQjBKWLB0xOBn6005F0uefw6fTY+a105oZ5F3Blc7yRXFFYUfxZY+B6fhhXQ3qXdSpCnTOkC4ezCZpTGOnkFuiUYcDRmTjsgOGYFhmInDNNcDzz8s5vj7hEqw48zIE3MXbwHPRKGeKfKA7xzYornQPYsIo72ybp7ZQWuvEpvJ6LNtaI2khPo8HD336BHZdOgcegxGu/C1wjeqLNSV1crxJHzDGaY2LwBujHpL6UYON5XUYmt31EbyuGryhvFkkI6M1JDWVE2mwB3vKdlS7NYUdC9adt1d7vkNEAbkInHce8P33QGIi8PXXwNixzYz5H1aUwOH2ioghN2IEx5jZppfxV8AU9USzTOBq4laItfaBR4/tjXmbqCbtRXJCoOtGAm0CHaMbTGHXIzXBgFuPHiWaIPqVK8QgR0EBPP0H4N83PAv3oGEItZKwjjDVapa6QfKiLaGclrBFqHzL4xQUdgZXpozMwW/5DlQ6GBzxiuI5a2F18Aai5VLu4RcDm+V1R/WzYMi5pwC//AJfQgKmX/0Qth5weJdzhbApvih0A1/CcWVkTjJG907BysIa2aMzI4trCSPoTBFnV5rqBg8OH9MLD5ywG4xeN3DmmcBHH8naU/nwE/hh0MFIc3uRzHz3IJBfTIkvbPBId6dgKK50D3ZssekObvN0+eWXt3kcBzgHdvBNa8fxzdIiMcap6Oz3+nD/l0/jaBrkegPuPvsuvJmxK6oaPNJWwGKkx0jf9I8l4gqN/cc56GhsRDO2ebOMzchIA4hpK1zEmDqmeco0MrIdwva2W1OID2jlD6z9Tks0SY0Q7/mcrxd8+Bnw4YeAyQR8+imwzz6tHEMU5+EiwpSrYHDTRMcQHWVM7bWpCVwhitcVtg9MTU1tumldCiYPycLBI7OlDQ3XBa4vLA9KtBhkw5JoNuCgUb0CBvnvvwH77y8GOXbZBfpffkHKuF1k3m2Z0cLnTN/dZ0iGKOyyTo9RQM7ZvG+vo4cmHhru3GquV9jZXNl7cCYOHtULaTaTBDhqnB64PH6kJpqkJNBqNmJQpg13HjsGVw5LwJCTjxaDXDKwvv0ODUcdt0O4Qii+KHQHX8Jxhfoj4wdkYEh2krSY5VrSK9kiQTbqMTjcPgxIT8TF+w6B0VEHHHVUwCDnXuy995B68w1hxzNBuyA72SK8UVzp4UY52zyJaFobN9ZmBKMjbZ7CDfJAOw6nGBXsSHnXF0/juIUz4dHrccspt+GbYZPkOAr1aOqGfMwSJYqQGAy6RpXQQPScgmnRDFuQN0sD/22H5tgkvYTGEH8neRcpGRV6DlqWP3BRoDgb7/mcr3/aayx8L7wIvPsucNhhrc4RiH5DUqHqGtytJnA6hmjEcKFRE7hCNK8rbB/IqId227x5s7zOufKqg4dhv2FZUi/OrCM6m2wmg8yzFMphbZ7MqdReqKsDJk8Gfv4Z+v79JOOE8244Q4KfZTvAXXqnYGtlPZZsqZJ7qri31SlDEw9t69xqru+Z6E6unL33AOw7NFM27TQq0m0mqSFnNJBrwC1HjsKUETnQ19UGnFd9+gS4MuWAHcYV7doUXxR2Nl/a4grH48BMG3olJyAn2QIPNRnqXLJ3ZynINYcMx4jcZKChAcjPB5KTgW++AU4/vd3xTCfYtYcMF24ornQ/dP6uKDTtJChCVV5e3uYxrMXQ1ArZ5okiVnvvvTdef/31dlWlQ6WD0DC/6rW5SExKwtLNVZj64b9w3O9fwKvT4/ZT/4nvdz1QDITxA9PF2Ph7U2WjMR4YgNrQ4j8aoyC8P25sbzxz5h5RO/BoVL3w43qJagYrJBLldQ34Y2OlZAIMyrQiwWSURbK7RbX4t6IjhZNTSkpKt11HT0Xwv3+1x4inZq4RJ1bLFCUKI1Z7ILoENxw2ImzKOXs08xxkztoSu6ju0mDR6sor7W5xdN134i7Yf3hkKvMK26D4svPWlfb+7ZlV8u3SIlHMdbg9SDQZMbZfqojvNJtTf/wR2GuvQLlHiBIR1vkx9S94PpZzL2s8t8sjUQ6mFx7Z8twh0N65ewoUV6KLKxyTvK+qd0Gv08uYPGXPvhjRK+hvM39+QDh04MCdwpVIzt8ToLjSfXzpNFc2bACqqoDx4yMez4TiSnRwxRjPbZ7C9V7moPE7vaiurEWfwjz4dDrcddLN+HHcwchONIkRSwVPfkOq1YQKhztgmDNqTnvWH6h3ImxmprUHxK+2pwa2o63TOoK2es+W292YOCgDR+6WKyksXf3dCrGPcGIeY798F7t8+xE+uu8lFHssbYoCamlOdAyN65eK9aV2KR2hiI9Rp4PFpMf+w7Kw79CsnfCLFOIZ3d0+kJuQqw4KIdL5n+cDWSQjRwYOPPDADgl8BnfQ4GvcOHEDtbygRtIE24tqKOVbhWjkSsgx+e03AWeVxpFJk3YqV9o7v0LPRHfyJex4XLQQmLUKOPvswIFDhnTo8xvK6hRXogjGntjmibXTG4pqUKs34brzH8DE/GWYO3QiXG4vnDU+pCeaRGyEdU3Hju2Nd/7YHOibSaXDpm6agXYdew7MgMcfMFx2iIBWF3mZVI9Ahc7CFkLMY8Scr3Dwc9OYaoPhMz/HhsPObLMWPNgxxNZno3KThE9MVaRxzgm8KbVXQSHG2wc2EypkMtqttwKPPQYMGAAsXtzUJrDdzzaio73GO3JuBYWo4Qrx5pvAxRcHjPI//gBGjeoWroQ7v4JCd/Gl1XicNQs48USgvh7o1Qs45JAOfV5xJfpg7IltnpxuP+qcXqQmGFHj1GHmgPHwujzSO5Mp6ewvSFGqyUOzcMzY3tLHm4YsI8si8AbIgGWK++Asm6Tu2jopTtWyfzijkTR+GFGkAROJlypSKG+WQmcQHOXmuB/858848rFbxCBfdNzZ+HTKqdgtAjGPlo4hLc1p0uDG9lDKMaQQR+0DBR4PcNllwPTpgedXX92mQR4Onek1rqAQU1zhedgu6pZbAs9POKFZS81Iobii0CP48sEHgY43Lhdw0EHAxIkdPoXiSvTB2BPbPFlMOhEgqK53i7o6vUWSWeJn2xodGjw+bKmsx8jcZPRPT8ThY3KxeHOF1HDUuT1INhsxNNsm6Sj0JLXVMqAtdKWXKlIob5ZCRxEc5fbPnYtjH7sGBq8HS6ccg5dPvR4ZSZaIxTyUY0ihJ7QPFDB6wdY0n39OEgGvvAJcdFGnTtXZXuMKCjHBFZ8PuPlm4F//Cjz/xz+ARx8N8KaDUFxRiHu+/PvfwLXXBhxZp54KvPUW63U7fBrFlehDTLZE216wR/ce/dNh0uthYP9Yg07Gtk6vk0FIgzjDZsLqolo5ngZJdopV3h9BoyInSdoQbK+6YEe8VAoK3Qka05enVOPqp26AyeXE0t33wxuX3oNd+6d3OJtDcwyNyk2Re2WQK8QdKLRzxBEBgzwhAfjkk04b5IQtRAeNYKh+sAoxC0b6zj9/m0H++OOBWydrcG2KKwrxChoqd90FXHNN4PFVV0nbs84Y5IRNcSXq0CP/pTnIWCPOvrGDsmyirM4W3YySs08yI9hM19UM4h1Vj628VAoxA78fA/5xDWCvQ8Pk/WB+6yNcl5qsotwKCqHAqN/cuUBqasAwP+CALi0hCXbiav1gO5uxpaDQrXj2WeDttwGjEXjttUBK7nZAcUUhbvHFF8ADDwQe33cfcOedjOB1+nSKK9GHHmmUsw58UXE93D4fMqwWacWkDUKmkuekJIgS+aZyR5NBvCPSbkMJaAVDeakUogbkyMcfS71fwquvYiSNDQUFhdCgqNumTYGI37hxO7SDBjdOqh+sQsyCabi//gqwh/NRR2336RRXFOIWxx0XiI6PHQtcfvl2n05xJfrQI629Q8bkYHNdCTaU2mE3emCzGKVXcl2DRxTX6TlqcPtaGcRdXY+tvFQKMQW22vjoo+6+CgWF6Ed6OvD99116StVBQyEuwZ7OM2Z06SkVVxTiErQRnn++S0+puBJd6JFG+dDsZEw9KAX3f7lCBqHL44PRoJcIOY1ktkTbHgG3SKG8VAoKCgoKkUIJJSooRAbFFQWFyKC4Ej3okUY5MSI3GXcdNxrPz1mP8jqnGMRMWW/oAgG3jkB5qRQUFBQUIoXqoKGgEBkUVxQUIoPiSnSgRxnlWn/Ampoauc+1AhdOzMGsFSXYWFaHtVXVMBsNGJZtw8GjM5CT4G86dkciJwE4Z3w2Cqqo6u5BosmIPuKl2jnfH43QfneX9XRU2C6uKEQ3FF+6D4orsQXFle6D4kpsQXGl+6C40jO50qOM8traQIuz/v37d/elKHTgb5aqRMV2OhRXYhOKLzsfiiuxCcWVnQ/FldiE4srOh+JKz+SKzt+DXGA+nw8FBQVITk5u1Rc81jwyJOrmzZuRkpKCeEHw7+LfiIO7T58+0HeyX6nCzuFKLI7HeLtmTuOKL9HDlVgcXy0Rr79BcaX7oLgSvVBciS4orvRMrvSoSDn/ofr164d4AQdDrA7qSH6X8szGFldicTzG0zUrvkQfV2JxfPWE36C40j1QXIl+KK5EBxRXeiZXlOtLQUFBQUFBQUFBQUFBQaGboIxyBQUFBQUFBQUFBQUFBYVugjLKYxAWiwX33HOP3McT4vV3xTti8e+mrllhRyIe/lbqNyjsDMTD30j9BoWdgXj4G6nf0DZ6lNCbgoKCgoKCgoKCgoKCgkI0QUXKFRQUFBQUFBQUFBQUFBS6CcooV1BQUFBQUFBQUFBQUFDoJiijXEFBQUFBQUFBQUFBQUGhm6CMcgUFBQUFBQUFBQUFBQWFboIyyqMUzz//PAYNGoSEhARMmjQJf/zxR5vHf/jhhxg1apQcv9tuu+Hrr79GNOHhhx/GxIkTkZycjJycHJx44olYvXp1m595/fXXodPpmt34+xS6D3l5ebjkkkswePBgWK1WDB06VFQoXS5Xm5878MADW/0tr7jiih16rbHGIcWR2EQscSLWORIMxZfYRKzyRXFFcWVnQ3Gl53FFGeVRiPfffx833nijkO/vv//GuHHjcMQRR6CkpCTk8b/++ivOOussIe/ChQtlEPG2bNkyRAt++uknTJ06Fb///jtmzpwJt9uNww8/HHa7vc3PpaSkoLCwsOm2adOmnXbNCq2xatUq+Hw+vPTSS1i+fDmeeuopvPjii7j99tvb/eyll17a7G/52GOP7bDrjEUOKY7EJmKFE/HAkWAovsQmYpEviiuKK90BxZUeyBW2RFOILuy1117+qVOnNj33er3+Pn36+B9++OGQx59++un+Y445ptlrkyZN8l9++eX+aEVJSQlb8fl/+umnsMdMnz7dn5qaulOvS6HjeOyxx/yDBw9u85gpU6b4r7vuup12TfHAIcWR2EU0ciIeORIMxZfYRbTzRXFFIVqguBLfXFGR8igD01IWLFiAQw89tOk1vV4vz3/77beQn+HrwccT9EyFOz4aUF1dLfcZGRltHldXV4eBAweif//+OOGEE8RbqBB9f8v2/o7E22+/jaysLOy666647bbb4HA4dsj1xAuHFEdiF9HGiXjlSDAUX2IX0cwXxRXFlWiC4kp8c8XYqU8p7DCUlZXB6/WiV69ezV7nc6ayhEJRUVHI4/l6NILpONdffz323XdfmTDCYeTIkXjttdcwduxYIcYTTzyByZMny2Dv16/fTr1mhdBYt24dnnvuOfnbtIWzzz5bJqw+ffpgyZIl+Oc//yl1OjNmzOjya4oHDimOxC6ikRPxyJFgKL7ELqKdL4oriivRAsWV+OeKMsoVdjpYr8F6kXnz5rV53D777CM3DRzko0ePlvqa+++/fydcac/BrbfeikcffbTNY1auXCliHBq2bt2KI488EqeddprUL7WFyy67rOkxhTx69+6NQw45BOvXrxfxEoXmUBzpfihOxA4UX7ofii+xAcWV7ofiSmxgajdwRRnlUQammxgMBhQXFzd7nc9zc3NDfoavd+T47sTVV1+NL7/8Ej///HOHPUgmkwl77LGHeAsVuhY33XQTLrzwwjaPGTJkSNPjgoICHHTQQTL5vPzyyx3+PipyEvxbdvUiEescUhyJDsQTJ+KNI8FQfIkOxCtfFFcCUFzpOiiubIPiSnOomvIog9lsxp577olZs2Y1S6Hg82BPTDD4evDxBFUDwx3fHfD7/TLIP/nkE8yePVtaPHQUTItZunSpeP0UuhbZ2dnilW3rxrGpeWzZcoPjdPr06VIz1FEsWrRI7nfE3zJWOaQ4El2IJ07EC0eCofgSXYhXviiuBKC40nVQXNkGxZUW6BK5OIUuxXvvvee3WCz+119/3b9ixQr/ZZdd5k9LS/MXFRXJ++edd57/1ltvbTr+l19+8RuNRv8TTzzhX7lypf+ee+7xm0wm/9KlS/3RgiuvvFLUCX/88Ud/YWFh083hcDQd0/J3TZs2zf/dd9/5169f71+wYIH/zDPP9CckJPx/e+cBHld1tOFvq3qXJffejQGDMS2hmd5C76GEQEjoIQRI6CQQQg+hJaGFQCDwUxIMpphqA8Y24N6bXCSrd2nr/Z9v7l55Ja+klSxpV9K8D4u33L17dnXOPWfOzHxjLF++PEbfQtm6dasxduxYY+bMmXI//G8ZfsyECROM+fPny+N169YZd999t7Fw4UJj48aNxjvvvGOMHj3aOOSQQ7qtnb1xDOkY6Z30ljHRF8ZIODpeeie9cbzoWNGxEgt0rPS/saJGeZzy+OOPG8OHDzfcbreUGPjmm2+alTu46KKLmh3/n//8xxg/frwcP2XKFGPWrFlGPMH9n0g3lhJo7Xtdd911Tb9Bfn6+cfzxxxvfffddjL6BQvj3au1vacGJgI8//fRTeVxQUCATQnZ2tlysOcnceOONRlVVVbe2tbeNIR0jvZPeNCZ6+xgJR8dL76S3jhcdKzpWehodK/1vrNhCjVAURVEURVEURVEUpYfRnHJFURRFURRFURRFiRFqlCuKoiiKoiiKoihKjFCjXFEURVEURVEURVFihBrliqIoiqIoiqIoihIj1ChXFEVRFEVRFEVRlBihRrmiKIqiKIqiKIqixAg1yhVFURRFURRFURQlRqhRriiKoiiKoiiKoigxQo1yRVEURVEURVEURYkRapT3MDabrc3bnXfeGdO2vf322zH7fEUJR8eKokSHjhVFiQ4dK4oSPTpeehZnD39ev6ewsLDp/muvvYbbb78dq1evbnouNTW1Q+fzer1wu91d2kZFiQd0rChKdOhYUZTo0LGiKNGj46VnUU95DzNw4MCmW0ZGhuz0WI/r6upw/vnnIz8/Xzr6fvvth48//rjZ+0eOHIl77rkHF154IdLT03H55ZfL83//+98xbNgwJCcn49RTT8XDDz+MzMzMZu995513sM8++yAxMRGjR4/GXXfdBb/f33RewveyTdZjRYkVOlYUJTp0rChKdOhYUZTo0fHSwxhKzHj++eeNjIyMpsc//PCD8fTTTxtLly411qxZY9x6661GYmKisXnz5qZjRowYYaSnpxsPPvigsW7dOrnNnTvXsNvtxgMPPGCsXr3aeOKJJ4zs7Oxm5/7iiy/kfS+88IKxfv1648MPPzRGjhxp3HnnnfJ6cXGxwe7ANhUWFspjRYkXdKwoSnToWFGU6NCxoijRo+Ol+1GjPI46eCSmTJliPP744806+CmnnNLsmLPPPts44YQTmj13/vnnNzv3zJkzjXvvvbfZMS+99JIxaNCgpsfs4G+99Vanv4+idBc6VhQlOnSsKEp06FhRlOjR8dL9aPh6HFFbW4vf/OY3mDRpkoRxMBxk5cqVKCgoaHbc9OnTmz1mfseMGTOaPdfy8eLFi3H33XfLOa3bZZddJvki9fX13fitFKXr0bGiKNGhY0VRokPHiqJEj46XrkeF3uIIdu6PPvoIDz74IMaOHYukpCScccYZIowQTkpKSqcGD/MxTjvttF1eY76GovQmdKwoSnToWFGU6NCxoijRo+Ol61GjPI6YN28eLr74YhEusDrlpk2b2n3fhAkTsGDBgmbPtXxMsQTuTnHgtIbL5UIgEOh0+xWlp9CxoijRoWNFUaJDx4qiRI+Ol65HjfI4Yty4cXjzzTdx0kkniZrgbbfdhmAw2O77rr76ahxyyCGiXsj3fvLJJ3j//fflHBYsY3DiiSdi+PDhspNlt9slPGTZsmX4wx/+IMdQvXDOnDk4+OCDkZCQgKysrG79vorSWXSsKEp06FhRlOjQsaIo0aPjpevRnPI4gh2Uneqggw6SjnrMMcfIblF7sEM+/fTT8v699toLs2fPxvXXX98sxIPnevfdd/Hhhx9K2YIDDjgAjzzyCEaMGNF0zEMPPSShKCxTMG3atG77noqyu+hYUZTo0LGiKNGhY0VRokfHS9djo9pbN5xXiTEURFi1ahW+/PLLWDdFUeIaHSuKEh06VhQlOnSsKEr06Hgx0fD1PgKFFo466igRVGAYyIsvvognn3wy1s1SlLhDx4qiRIeOFUWJDh0rihI9Ol4io57yPsJZZ52Fzz77DDU1NRg9erTkbFxxxRWxbpaixB06VhQlOnSsKEp06FhRlOjR8RIZNcoVRVEURVEURVEUJUao0JuiKIqiKIqiKIqixAg1yhVFURRFURRFURQlRqhRriiKoiiKoiiKoigxQo1yRVEURVEURVEURYkRapQriqIoiqIoiqIoSoxQo1xRFEVRFEVRFEVRYoQa5YqiKIqiKIqiKIoSI9QoVxRFURRFURRFUZQYoUa5oiiKoiiKoiiKosQINcoVRVEURVEURVEUJUaoUa4oiqIoiqIoiqIoMUKNckVRFEVRFEVRFEWJEWqUK4qiKIqiKIqiKEqMUKNcURRFURRFURRFUWKEGuWKoiiKoiiKoiiKEiPUKO9iNm7ciKuuugrjx49HcnKy3CZPnowrr7wSS5Ys6dC53nvvPdhsNgwePBjBYLDp+cMOO0yeb+925513Nr3H5/PhL3/5C/bbbz+kpaUhNTVV7vM5vtaSkSNHyjmOPPLIiG37+9//3vQ5Cxcu7ND3UpRY8OSTT0p/3X///WPdFEWJS1544YVd5pG8vDwcfvjheP/992PdPEWJO9avX49f/OIXGD16NBITE5Geno6DDz4Yjz32GBoaGmLdPEVRehHOWDegL/Huu+/i7LPPhtPpxPnnn4+99toLdrsdq1atwptvvomnnnpKjPYRI0ZEdb6XX35ZjONNmzbhk08+aTKQf//73+PnP/9503ELFiwQ4/p3v/sdJk2a1PT8nnvuKf/W1dXhhBNOwOeff44TTzwRF198sbRr9uzZuPbaa6Vts2bNQkpKSrPP5wTz6aefoqioCAMHDtylbXy9sbFxt34zRekprPH07bffYt26dRg7dmysm6Qoccndd9+NUaNGwTAM7NixQ4z1448/Hv/73/9kDlEUBbJuOvPMM5GQkIALL7wQe+yxB7xeL+bOnYsbb7wRy5cvx9/+9rdYN1NRlN6CoXQJ69atM1JSUoxJkyYZ27dv3+V1n89nPPbYY0ZBQUFU56utrZXz/eUvfzGmTZtmXHzxxa0e+/rrrxv8U3766acRX7/88svl9ccff3yX1/7617/Ka1dccUWz50eMGGHMnDnTSE9PNx599NFmr23ZssWw2+3G6aefLu9dsGBBVN9JUWLFhg0bpK+++eabxoABA4w777wz1k1SlLjj+eefj3hNLy8vN1wul3HeeefFrG2KEm9zSmpqqjFx4sSIa761a9fusnZSFEVpCw1f7yL+/Oc/i0f6+eefx6BBg3Z5nd7za665BsOGDYvqfG+99ZaEPnEX9pxzzhFvdme80lu3bsWzzz6LI444QsLqW8KweoYm/uMf/5Bjw6En/LTTTsMrr7zS7Pl///vfyMrKwjHHHNPh9ihKrLzk7LOMGDnjjDPksaIo0ZGZmYmkpCSZxxRFMdd8tbW1sr6KtOZjJBYjERVFUaJFjfIuDF3nRbir8lVpNNBYZtg4jfKamhoJHewozAMMBAISWtUafM3v90s4e0vOO+88Cfdl3pQFjXQaNi6Xq8PtUZRYwPHEDSa3241zzz0Xa9eulbQPRVF2paqqCqWlpSgpKZEQ3F/+8pdigFxwwQWxbpqixAVcjzGP/KCDDop1UxRF6SOoUd4FVFdXY/v27ZJP1JLKykpZ3Fi3aIQ/iouL8fHHH4sxToYPH44DDzywU969FStWyL/Mb28N67WVK1fu8ho97NwYoHfcOuaHH34QY11RegOLFi0SXQdrPP3oRz/C0KFD1VuuKK1A/ZIBAwaIyBvnNeaUP/fcczjqqKNi3TRFiYs137Zt2zB16tRYN0VRlD6EGuVddIEmVDRvCZXSubixbk888US753v11VdFiO30009veo7ePXq9KyoqOtQ2etgJFddbw3rN+h7hOBwOnHXWWU1GOQ0ZhuD/+Mc/7lA7FCVWsM/m5+dL5AmhojQFGTnOGEWiKEpzOE999NFHcvvXv/4lY4fiokyjUpT+jrVWamtdpSiK0lHUKO8CrAszw/ta8swzzzQtbKKFx86YMQNlZWWiEs3btGnTRNXz9ddf71TbLOO8M4Y7veL0uC9evFhC1+lxpGGjKPEOjW4a3zQqWPnAGk9MM6Gq9Jw5c2LdREWJOzj/0FvOGyuJUGWapT2pS8J5SFH6Myx71t66SlEUpaOoaksXkJGRIUIfy5Yt2+U1K8ecZc2iITzXddy4cRG9fpdffnnUbbNKpLFG+t577x3xGKt+OhddkeB3GDNmDK677joxbDR0XektsJRgYWGhGOa8RRpPRx99dEzapii9BUZucWOLtZc5R02ZMiXWTVKUmBrlgwcPjrjmUxRF6SxqlHcRVHWmgjlF0ehl6Cw0Eiig9tJLL0noeDisfcl65AUFBZJnHg3HHXecnIfna03s7Z///Keo6h577LGtnofh83/4wx/EyG/NuFeUeIPjiXmxkdJGGIrLKgdPP/20KEsritI6FANtLSJMUfobJ554otQg//rrr0XzR1EUZXdRo7yL+O1vfyuh3T/72c8kJJY5rOEYBsu/RmdEMF+bOa8t4YWfRjnzu2+66aaozsf870suuUQ2DJ566ilR0Q2HBgm9ib/4xS9E/Ko1mE9I476r1OUVpbuhqCINb5YVZLWAltDTwbH03//+N+J4UxTFxOfz4cMPP5TqBVb0laL09zUf12tcG3EN1XLNx4o1rMqjZdEURYkWNcq7CIaa0yinR3nChAmSh0dVcxrjDPnmawwBbMvwnT9/vuS7RqonToYMGYJ99tlHJoJojXLyyCOPiPr0r371Kyl7ZnnEP/jgA7zzzjs49NBD8dBDD7V5jhEjRuDOO++M+jMVJdbQ2GbO38knnxzx9QMOOEDEFzme1ChXlJ1QVJRzhlUNhPMXw9ZvvvnmpnxaRenPMKWP44JzBzeqGInISgXUXPjqq69E/+fiiy+OdTMVRelFqFHehfzkJz/B0qVLxcClV4ElZCiIRoOW4e1XXHFFm6XJrBJNJ510UqvH8DUax8wD33PPPaNqF1Xh6b1/8sknRUTuxhtvlM2CiRMn4tFHHxVjXWuOK30NjqfExMRWyzhxk4zjksdRVDEnJ6fH26go8cjtt9/edJ9jiHMFI60YUaUoigk3fLkWe+CBB8TBwTGSkJAgazOuAy+77LJYN1FRlF6EzYg2rlpRFEVRFEVRFEVRlC5FS6IpiqIoiqIoiqIoSoxQo1xRFEVRFEVRFEVRYoQa5YqiKIqiKIqiKIoSI9QoVxRFURRFURRFUZQYoUa5oiiKoiiKoiiKosQINcoVRVEURVEURVEUJUb0qzrlwWAQ27dvR1pamtQPV+IXVuqrqanB4MGDpZ600rPoWOld6HiJHTpWehc6VmKHjpXehY4VRelZ+pVRzslg2LBhsW6G0gG2bNmCoUOHxroZ/Q4dK70THS89j46V3omOlZ5Hx0rvRMeKovQM/coo5+6sdYFJT0+PdXMUAOtLajBnRTE2ltbB4w8gwenAqNwU7D8sCYdMm9T0N1N6lr40VlrrYzMn52HMgL7Rv6qrq2Wxq+Ol5+lLY6U/oGMlduhY6V3oWFGUnqVfGeVWuBQnA50QYs+64hq8saQc5XVBDMrNQrLbiXqvH+urGlFUXSHHaIhbbOgrY6WtPlaxpByXHJyOsXl9Z8Gh46Xn6Stjpb+hY6Xn0bHSO9Gxoig9Q78yypXYEQwa2FbZgDqvHyluJwalJ+KDZTtQXufFuLzUpot+WqILqQlOLN9cFOsmK32gz7XVx9YW1+LD5TswOjcVdrsuOhRFURRFUZTYoEa50iPeShpH60tq0egPINHpQG6qGxtK6zA8O3mXXVg+zk9PjFl7lb4BN4HY5wZlJEbsY3x+XXGtHDcsOzlm7VQUpRswDKCyEsjKinVLFCX+KS8HsrNj3QpF6deonKLS7Qb58/M2Ydn2KmQmu8QryX9XFFZjzY4aNPqCEd+X5HL0eFuVvgWjMrgJxJD1SCS5HZJjzuMUReljcCOOhkZJSaxboijxT0MDk/1j3QpF6deoUa70WPgww4Yddpv8O3ZAKvwBA6t3VEvZjZY0+AIxabPSd0hxOyUqgznkkWjwmqJvPE5RlD7ImDFARkasW6Eo8c+QIUB+fqxboSj9GjXKlZiED6cnueT5wspGVDf4mr1GI31HdWMPt1bpawzJTMKYAakorGrcZeOHj/n82LxUOU5RlD5AMAjcdBOwdu3O59zuWLZIUeKXBx8E5s7d+VjHiqLEFDXKlZiED9NInzAwDU6HDetKalHT6IM/GJR/KcCVlayTg9J6BMaW8nqsKqqWf/k4EhRvO2aPfGSnuKVPtexjfP7oKfkq8qYofQFuvF13HfDnPwOHHw7U18e6RYoSv/z1r8CNNwJHHw1s3hzr1iiKokJvSneSEhY+zJD1liS6HBifnyZ55qW1HvGOM5x46pAMHDg8CQ/FotFKrxMNpDecxnek0mZ87pKDRza9J7yP0SDvS+XQFKVfc9ddwOOPm7nk998PJKt4o6JE5OWXgauvNu//9rfAiBGxbpGiKGqUKz0RPkyRN5agCg9ht8KH9xmehct/PBqF1Y1N5dL4vtramlg2XYlj0UBqFDD1IdmdJBs+7F/bqxrE+G7NMB99WGqzknzsY+ohV5Q+wmOPmUY5oWF+/vmxbpGixCf/+x9w0UXm/WuuAe64I9YtUhQlhBrlSrdhhQ/TYGK4MA0pKl5TYIsGuRU+7HTatSSV0q01x/mc9jFF6YO8+KIZtk7uuQe48spYt0hR4pPPPgPOPBMIBIALLwQeecSMLFEUJS5Qo1zpVtoKHz5yUr7cZ25winov+4zx3B0e6a6uOd5d7VQUpQf54APg0kvN+7/+NfD738e6RYoSnyxfDpx8MuDxmP8++yx3q2PdKkVRwlCjXOl2IoUPN/j8+Gh59LnBSt/L9+6caGBkpXRGYHDDJ5qa493ZTkVRepDp04F99wWmTDGVpNXrpyiRGTsWOOoooKICeO01wKnLf0WJN3SbTOkRrPDhiQPT4fEH8OJXmyUXODPZJSHH/JePmTNMo0npnfne3fU3TemimuPd3U5FUXqQnBzgk0+Av/1NDfJO8MQTT2DkyJFITEzE/vvvj2+//bbVY1944QWJSgq/8X1KLyEhwTTGmVOufzdFiUvUKFdimhvMnGCH3Sb/8jGfZ25wa2WulP75N7VEA7dXNqCq3itq/fyXt5KaRvF68/W2ao7He9+LqtRbaSlQUBCL5vUa1NDoB2G4f//7zscpKer16wSvvfYafv3rX+OOO+7Ad999h7322gvHHHMMiouLW31Peno6CgsLm26btZRWfLNjB/CnP3FyMR9znHC8KIoSl+hMpnQJfn8Q322pQFmdFzkpbuwzLEsE3MKhkbFwczm+KyhHTkrCLucIzw3eXpnag61X4infu7Xc79w0txjlS7ZWgZ/i8QcRMAw4bBR8c2NMrgcbSmtbDUHvznbuLpFC6sdmJ+JEeymG7zURyM3dWcqGRgk9g0qrhsbTTz8tBvmjjz4qhsbq1auRl5fXqqHB1y1a9g0ljti40ayrvH074HIBF18c6xb1Wh5++GFcdtlluOSSS+Qxx8ysWbPw3HPP4eabb474Ho6NgQMH9nBLlU5RWQkccwyweDFQXQ3ce2+sW6QoSjuoUa7sNnNW7sAL8zZhU1kdfIEgXA47Ruak4OKDR2LmpPxmRsd3BRVYvr0aGUkubK1IwJi8FGSHGehWbnC9r/3cYCU+6Mp873BDfGVRNRZuLEdJjUc2e8R7zPO57OIp9wYM2G02pCQ4MSYvWcrqMQS9tdJoXd3OrsIKqfcUFWO/wlUYtWYJBq74HgPXLEOipwE7Hn0S+df+0jz44IOBL77o0fb1JtTQ6MMUFgJHHmka5HvsYYpVKZ3C6/Vi0aJFuOWWW5qes9vtOPLII/H111+3+r7a2lqMGDECwWAQ++yzD+69915MYT6/El/U1wMnnmga5Pn5wM9+FusWKYoSBWqUK7ttkN/3/irUNPrEQ26VPFtTXCPPkxE5yU31pbNTXGKQM2y4uKYRNR4f9h6W2WSYW7nByS7tmr2FlLB8b4aCdzbfO3zz5vstFVizowb+gIGBGYnwB4LwBoKwwYZqr182fgamJyDBZUedN4B6bxD7Dk/HupK6VkujdWU7u0rVnccvevtTXHPH1cgv2jUsvT45FWvXbMWAoGGeh8JW//d/nW5fX0YNjT5Mebnp9duwARg9GvjwQyA7O9at6rWUlpYiEAggnwZbGHy8apU5b7dkwoQJsrm15557oqqqCg8++CAOOuggLF++HEOHDo34Ho/HIzeLanpsle7F6wVOPx2YNw/IzDTHCkXeFEWJe9TyUXYrZP35uRtRWe9FflqCGEoOm5mjm+J2oKCiQTzoM0ZmNeXxkq0VjZIHnJXsQkW9D5sKK5E1xgwtZf1ylksb3EZusBJfWPneFEtjzfDw8F/DMJr+pm3le4d7jMtqPaio88JltyMzyY6tFfXST5x2mxjn/iBA+5RRGQxb52eyf9V6Am2GoEdqJ9tX0+gX8UG+Z8bI7Hbb2SlVd3cA+OYbgMYhbzNnAjfdJJ+5zJaGs0MGedmw0SicvDcKJ++Dwkl7Y1PecFQ2BjAiBiH1vQ01NPoodXXACScAS5cCgwYBH31k/qv0KAceeKDcLDhOJk2ahGeeeQb3sD58BO677z7cddddPdjKfg7rj//0p8Ds2UByMjBrFrDnnrFulaIoUaJGudJp3l68DYu3VoJyVFsrGuB02JDkciI75DGn53xdSY3k/47NT20y1sbmpaLW4xdDy+20I23dKuSvmoe5+x0l7z16Sj7sdhV66y3Qg0vDc3tVA9YWmznbVsQEDfKdf1NbVCJsA9MTsamsHi6nHTtqvNJPfAFDbjwFe4ZhAI3+IIxGnxjU/Dx60qmk3loIest2MgyeRnFpLQ16P5JdphHdWl56W15wa0OB7ef3T7U5MPaDt5Cz9DukbVgGbFnf8mRilPNcZcnpeO1PL6Bs7CR40jObHZYUDGJHrbfHQ+r7C2poxDl+P3DqqeaGVlaW6fWjp1zZLXJzc+FwOLCDQmBh8HG0qRwulwvTpk3DunXrWj2GUSvUeAjfwBo2bNhutFxpk6uuAv7zH1Nv4c03eUGLdYsURekAapQrnQ5bf3zOWgkddtrMMFF/0AZfwCfGEQ0rGkrF1QZqvD4kh4UE00hjyDo9mmV1HnyXMwqjK72Ylu3CEdPNfGD1PvUu+DdjLvfspUVYuq1KNAGYgrDn0Awcs8fAdut/h4uwUcCt3uNHgy8gxrJY4CGsu5ZhTk+3l8Y5F4l2W7sh6FY7X/mmAJ+uLpbPYE76qNwUDM5IlE2ESHnpbXnBRycYWP7PtzFsazFyjj/J3HwKBnH0Cw8hsXZnPzbGjoWNBiAXSj/6kTzHdvJcqydP77aQ+v6CGhp9EKpFM6qE0SXvv2/mkiu7jdvtxr777os5c+bglFNOkeeYvsHHV9GwiwJGpSxduhTHH398q8ckJCTITekhDjuMJSWAl14y0z0URelV6EpP6TBrdlTjL3PWorrRL8rX4i0MhRMHDdNzWF7vRXqCEy6nDWlu1y55vOOLNmBCwI/FQ0ejvM6HQ849B9NHZLfpTVV6AfzzWX/CkFc7GiwRtiRXopQ5Y99if6LRLX0iVB7MOp/8axhNwoI7Q+U97YbKM988O9WN4TnJchyN3rTEneHs9KKH56U384KnJ2BwWTFyFi1CzuJFSNmwDLaCtfhJMIiK/KF44YSQ+JTdjmXHnQnDbsf6sXtixfDJuOyMA6IKqe9M6L+ihkaf5aabgAsv1JD1LoYbSxdddBGmT5+OGTNmSKWCurq6JpHECy+8EEOGDJHIEHL33XfjgAMOwNixY1FZWYkHHnhASqL9/Oc/j/E3UZo4+2zgxz8GBg+OdUsURekEapQrncgj3ySlqTKTnKiTfFzxW0pocSBkPNV7fGj0BTBpYDr2G5mFFUU1TUbHkKULcfLtVyDodGHNbc9i3332UIO8lxNuuNKAZGREnceHBZvKsaKwGufNGI6DxuS2+jdOcTvF4/3NhjJU1HtlE4d9STzjrXQLbxBwGAYS3Xa4HXasL63DiJyUiKHy4aHn1Q0+rC8265q39E63LI02JMku3n/mtfN7XXDbzzF6yfxd2lKWOwjFk/aC3edF0OWW57687Lfyrz8YRFlpXVQh9Z0J/Vd2ooZGH4CDniX/zjsPSAtFq6hB3uWcffbZKCkpwe23346ioiLsvffemD17dpMmQ0FBgUTAWVRUVEhlAx6blZUlG2BfffUVJk+eHMNvoeC118yqHJYGhhrkitJrUaNc6ZDh9dqCLfho5Q4xbKoafDADh03PZSDkxmzwUSnbwJBMl5RFo/p6UY1HjI5DV3+DU/98A1xeD9ZOmAZX/gA1Ono54fngFPOjYUuxNpa+q6jzoNYbwKaSWhw3dTD2Hp6JAWkJu+Rk13n82FbRgB01jchIdImquscXgDew0z1u9ZCWdrrbDlHznzI4A2dOH7pLqHzL0HOPLyjl1aaPzGpulBsG0ndsw7jl3yH1uwXIvXcNjHVr8OHd/0UdHNK+A9MGYqjTjcKxk1Gyxz7YMHYqFgyaiOqsXPk+aczla0G0IfVWG5kTz+PpIefYaC/0X9mJGhp9AG6Y/P73wLPPmgrSEcaU0jUwgqS1KJLPPvus2eNHHnlEbkqcGeTnngsMHw4sWAAMGBDrFimKshvYDMZI9hOY+5eRkSEqu+np6bFuTq9iTVEN/jR7JVZtr0F5XSM8gV2No/COxLD2a2aOxbVHTmgyjDY/+CQOe+j3cAQDWLbvIZj3hycwc58REY0O/VvFlo78/jRwH/lojYis0cjdWFqH+RvKUOPxS/SEZDcYQGqiS4T9GMKdm5rQlJPt9xu47Z1lWFdSC5+fKRCG1CNnjjgV1a1+xb7mcrAomgnV2CkGx/PsOzILvz16IpzOnQZXc0V3L9IlRB1i+C/fVi0h6/Te77d0LiZ/9DYGr/geKeUlu3y/S6/4C0qnTJO2J1ZVohROOJOTRRchPcmJjSW1yEtPxI5qT9OmhIUVDk8D+/Ifj5Za6q2VS2spJDcoPbHN4zv791K6Fv3tu5CnngJ+9Svz/sMPA9df3+UfoX+v2KG/fRdChfWTTjLFEK+4AnjySYZ6delH6N9LUXqWXuMpZ7jhm2++KaVtkpKSRCX3/vvvl5I2SvfnkN/y5lKsLKxB0AjCF2ye22sLGeFM7aW3PBA0jafaxoAYGjQkxv7zGYx94GZ5T9VZ5yHj8adwWW6aesj7AFY+eLI7STzk89aVorrRB5rHpqPbkD7jDRrISnZLmHpGklPyqL/dVIYt5Q0orDLV++02AwHmivsN+ELnt7oIjXB6sw2baZiLsW+zIT89AWdNH7aLQc6+N3tZkdQ7p9e9uHA7xq5fipmbl2PzjJ9gW1oePl9djIM3rMO4uR/KewIOJ7aMGI+qvfeTkmQfZIzCVkcGkmRzwQZvZhbSDEOiAujVnpCfikSXEzMn5ctntRaCPmFgGp75YkPkcmmhTSmOBSvnnJsJ7R2vKH2KV14BrrzSvH/bbd1ikCtKn2DuXOC000yD/JxzgL/+tcsNckVReolRTjXb3/zmNyKgU1xcLN6glmI5Xc3nn3+OK6+8Evvttx/8fj9+97vf4eijj8aKFSuQkpLS5Z+noMk4+Osn68WwobvTabfD2+Lvy79+KK1cDHJbyFias6oYh0wYgB/PmwXceKN58A03IOPPf0ZGWAhpTxCLPttfSAkpiDOH/LvNlZLaYIMBp9MhfYHaAvy5/UFTKZ0543zsdtjw5aYK+IKGhKAnOO1o8AZDgoE7z8/SZaxPTqOdYuw0trkJ5DMAe9AQ9fRd8Hqx5L+fwvbS/3Dp+qXYc8tKDK7e6QVfMWgc/m9yHnbUePCfAXsAP70ORVP2wfcDRiMtKx3H7jEQH363DZlJLuQU1aC4phHuFLv0a95SE50or/Vgg8OG/Ufl4OAxuWKMRwpBp0H+yaripnJp3Lxgzjw3JZhLHknpPby8WnvHxys65pSoYT3liy4y88kZTt3PSs7pWFGi5ocfgBNPBBoagOOOA158EXA4Yt0qRVFiZZRffPHFkpt32223YdCgQc3CNbsL5gWG88ILLyAvLw+LFi3CIYcc0u2f359zhbdV1ovolhVWTFEt1ohuCZ9iebSUBBpjNvGW/vvbAgw+9FiMOeAAs97sb03xq54mFn22v2ApiM/fWIbtVfWyoExwmQa59BnDDEW3h7zq7kYbvt9SiYLyetT7AuLx9sCGxnq/GO4t82nqvEHQCZ7mdiLBZcBps0kfa/QFkZOaIJsAr7+7EOfsPwKjppg1jAtffh17/+wC7B12Hr/NjtV5o7B42CQU5g+TTQBuCCzLGIrtg0dj8qB0TMxPkzxutoMe6sEJSRiTl4Iaj0+MZBrjVHvn96ps8GF0XmqTJgIN5dGHpe4Sgk6Pd3i+PWGYP4UPWyq9R8rPb+v4eEbHnBIVX3wBnHGG6fW74ALgscf6nddPx4oSFWvXmqXOqqpMlfU33mDZiVi3SlGUWBrlc+fOxZdffikiOrGCOS4kOzu71WM8Ho/cLLT2dXTQMKDa9PyN5Zi3vlS8oDRSJKeXVjc7TtA0wsOhtzMj2S3HptoCSE5yi4DXB5tqccVnn8OeELvJIx76bF/FUhBfuLkc9d6ArKetOuK+kPof0xkIa5BXNfhhs3ngCwTgsI7z72qMh8MIDA8NeqcdThgYsHY19t66EjOKVmPqlpXIL92O+ZdcixH/MIWIZqeOwukpGfh+8AQsGTYZCwdPwIohE9CQkAR/wJD2MOojEAxg9IAUMaDP3X94UxUA5smz39NDnZ2SIPnj64vrpNQf+zQ3GnJS3KIqH+61Dg9BJzyPVX+95UK7pdI73xderz2a4+MZHXNKVGRlAZmZwH77Ac89J+UE+xs6VpSoYFQoxdyosP6//wHJ8T0HKIrSA0b5sGHDdgmv6klYe/a6667DwQcfjD322KPNPPS7+lkY3O7C0NlX5hfg6/WlEoJb0+gXL6UvYOaMO1k32mYT4yjgtbTXTZITnGKQZ3jr8cgrd2Ld1P2w4tJrTSOizo9hMTTKY91n+zo0TI+anI+Fm8rhpcK5nx5wm6ii00SnQekPBJoU+pOcdpT6mT8eMuDbOT9fT6gow+P//TP2KlyDZN/OzTYSZGTGus2So85PnFvnwld//QALN1fCbxjw+oIiCidl1G0IbR5QHMHAlrI6uJwO6ac0yiPVD6dhnjXSLdEf9GKzJOA+w7NwwKicqPPtI8Hcc44zq1xaR4+PZ3TMKVExdSrwzTdAXl6/VVrXsaJEBY1xRpYwqiQjI9atURSli+nUljRrv958883YtGkTYgFzy5ctW4ZXX321zeNuueUW8ahbty1btvRYG3urQf7ox2vx3tJCbK9slFxgesMb/KG88SDzgyn0FpSO42qRxsQQ90GNVfjbczdi2sbFOOnjVzGgtlwMtFgbEbHus305qoLe4FVF1eJxZrkzp8Mhxq8Vus61Jo1gKvbLe4wgtlU1Nhno4UtRezCAicUbcf737+GhWQ/jN1/8s+m1iqR07Fm4Vgzy6oQUfD5qHzz8o/Px07PuwbRrX8WVP/45fvfmUtzy5jIs3lKJ9aX1piicYZO0C/ZP1gxnXjvbxbx3h8OGak9AlNOf/Gw9/jBrhYwDy/tPkTaGjNc0+lBa68HSrVVYuKkCxTUebCitk9B0Ht8aKaF8e3rcI9GyXFpHj49ndMwprVJQYIpVWYwYASRF3ojqD+hYUVqFEZ7vvrvzMaNDuYGlKEqfw9nZWrD19fUYM2YMkpOT4Wqxu11eXo7ugjU13333XXzxxRcYOnRom8cmJCTITWkfS6maRge94zS8Waqq5d69eDb9BoIhpXUa5zR4aIQNLNuOZ/59G4aVb0dtRjbevu9ZlKblIKHe16oR0bIMVFtln3aHWPbZvkLLv1WDz4+PlheH1f8OoLrRzAtnTjmPp0AbN3OsfsQodnrNxTAOmpGqh6xfhGlbV2Kfbauwd+FqpHkbmj5zffYQPHjIhXI/YHfgqp/chC0Z+VifMxSGrcWeYgBiXDOKg21huTJ2JZ9BITmbqL+zTdwkCPnvTW++DchIccm/c9eWysbTz340sln98O+3VIjYIUPfB2UmYkJ+OhJddizZWoEftlTgwDG52GNIOvYZltVMBb6lx71luTSqs1MMjsd15vh4RsecEpHiYuCoo0zD/L//Ne/3c3SsKBGhmNvJJ5ve8b//Hbj00li3SFGUeDPKuavb03BBevXVV+Ott97CZ599hlGjRvV4G/oyNLaWbK1EZb1HPOSWFzMSNGrodaS5kJTAkGAbJhRvxDMv34qcmnIU5QzCv+/5O4wxY1EYqtEcyYigh9FSq25Z9ikvsWu/Xyz6bF+i5d+KRnVJjQfpiS6MzUtBSsCBhZsrJGfcwaLkCKU4SD8J6RHYgxhdtg1DywvxxfgZsDlsMq5/N+dZjC8raPqsWncSfhg0Ht8Nnojvhkxq1o5Px+zXZjvrvAHpv/SEF5Q3YFB6grTVsAFc5jaGvPVmzruViuFATmqibBDQE01hQ0tMjYb5yENS8OcPVst5xw5IRXqSS4xl1mNfUViN0lovvt5QJuXeRuak4OKDR0qJNGJ53Kma3lq5NEsorjPHxzM65pRdoBYMharWrAGGDwcmTox1i+ICHSvKLvh8wFlnsfQQkJYGTJsW6xYpihKPRvlFLF0Sg5D1V155Be+88w7S0tJQVFQkz2dkZEjdcmX3oPeTubI0atoyyAlfpk1ARWiqYO+5aRnuf+H3SG2sw6bBo3HjpfcjiEwM2FGLnNTIRkR7ZZ/O2LN1Ab/e0mf7Ci3/VkmuRHyzoQxFVY2oavBJuTAqoJfVsdSZGV3hNILi8Z5WsAr7bDNF2fbctgoZjbVocCZgv9/8Bz67U0rpzZ54MJZWjQ0Z4ROxOncEgvbOl3ihiBuNcm/AwNbKRkmzsNI1w7UJ2c+5iZAYckpRVb3O8ItxHS6mVljdKKHr4/PTpM8TGuT0qjM1I5FK8zDEc76muAb3vb9KjrEM83CPe8tyaRwbLcubdfT4eEXHnNKM+nrgpJPMkk4Mv/3oIyZTx7pVcYGOFaUZDCO75BIzbD0x0fx3n31i3SpFUbqZTicmsm7m22+/jZUrV8rjKVOm4OSTT4ajm+olPvXUU/LvYYcd1uz5559/XsqJKLtHitsZyrmN7ngf1bBZzopq06VbxSBfMmIP/P5nf0RNUhoC1R7sOyILZ00ftosREU3Zp09WFnf5d+zpPtsXMP9Wxc3+VjTAqULO/Oyt5R4zND1oIECvs50bNjb8fvZTOP+7WbC3EC9qdCVgyaBxSKqpQl1qtnjQHzvkfFmDdJXMkblpZAao87430Fw8g68wVJ11z9k85otvLg8iO9kt70tjDXLZoIosvkahye8LGBUQQHqiGWJOLzqNc9Y1p4f+6c/XIT8jARmJbokSCS+Xxs+r9filvBqNbf7GLTetIpVX667Uju5Ex5wieL3AmWcCX35pClR98AEwfnysWxVX6FhRBE5K11wDvPwy4HSaZc+07K+i9As6ZZSvW7cOxx9/PLZt24YJEyY0KZ1TQXTWrFmSF9XVqDJp90GjYGNprQh2dQR6IoemuLBo5qm4PyMDn4+ZjkBiEiYNSBEj5ZRpQ5oM8vB8ZBp19L62VfZpQ0lFl37HWPTZvsD2CCW6Smo9qC+rwqQtq7DX1pXYexu94atw4sWPoTB9AFx2AztSs8UgZ/43vd8/DDFD0dcNHAUPHOIhJ6ZB37Vt9sjJzQ+wW0a63VzrMLJevoXNDBVHyFtOHYV6T0AM5QWbKiTCIzmkZJgSEl9jKTTCcoEVdV4kuRxyDikXKLnpNjkXr1XLt1XjnndXYEhGclNKBscCDflPV5VETNlouXnVsrxab0PHnCIEAnQFA++9Z4q5zZoFaOmvZuhYUZq44w7giSfMMiEvvgiccEKsW6QoSjwb5ddcc41MEt98801TnfCysjJccMEF8honEaV3lUCbvawQZXW+qN931uIP8enYGShNciHB6cR3+81EqmGIh5HK1MOzkpGW4IqYj+zxBVFQVodJg9PFiHE77OKdtIw+5tCyrFZXon22c9T7dnqJ89csxeQP3sTJPyzEiK3rJEQ9HBrms9IHSBTFK3seg9f2OAolqVnNT9jDe2tSMz1kiNMwpwJCMEDBN7M2OhXi2SSGu/NA9jtuUBVVOfH83I04/8ARkluemezCl2tKEDAMVDb4RE3eMIKw211Siz0lwSmvMdTc6rtZSW55n5WSccTEPHyyqrjVlA2GrPeW0PRo0DGnNBnlvFG87M03gYMPjnWL4g4dK4rAycoTKvdJw/y882LdIkVR4t0o//zzz5tNHiQnJwd/+tOfpHa40jugsfzc3E1YsKkclfVRGuSGgd9+8SJ+9c0bWDJwLC665CGUux0Y7DI9qTROCisbpd4zw20j5Y6v3VGNoupG7KhpRGayG8lup+Txjs1LFSErilpRfKsr0T7bOZJdO0t0ZWzfgr3/90rTa4WpOVg0ZBK+HzJR/l2RN7rptfLk+KihalUIYOkzqr3RMPczrJ1ihTTIW2wSsA8zJJ355fM2lMETCEpuODeUuNnkE+vd3Fto8BnwBrySdpGV7EJFnU8MdJaECyIoqRhWSgaV21/4apN43cfnR07ZsMTleluIemvomFMEtxv497+BRYuAGTNi3Zq4RMeKInBeuP9+4JRTgAMPjHVrFEXpDUY5y4zV1Oxam7e2thZuTsBK3GPldVNp2u9nPfJdy5+1xBEM4I8fPIFzlnwoj9+fcDBqDTuMRh+q3U7J4G3w+uG02ySfnLTMHef9bRTfctrF+A4Egkh02lFS0yh5tnsNzRDBsLEDUrr0+2qf7RyDw0p0bZuyD+adcD4+yhiNL3PHYX1S14rxdResUMYtHhrY9lDddOZ/01segAGfPyjGu8MOMZDz0kwl9kZvAFsrGvDkp+vEIKfqOo1uD6MHbCHvOj3ugSBqG/2o9fjgsjO6ICjh7wPTEyRVgyHrTOdYXVSN/UZkS3g7w+W9gZ1RItywCheX6wvomOvnzJkDHH64GaLCvGg1yFtFx0rH6alyqj3C3LnA9OmmqBtRg1xR+iUtCv1Gx4knnojLL78c8+fPN9WWDUN2ea+44goRJlHiH05m9P5R3KrGFxBjoy0S/F48+fZ9YpAHbHbcdOzVePqAMxGEDXWeAAoq6kwRK09AvIzJbkfTZ1j5yOwnNDxooAzJSJJjqkLGCcN8acB8u6lcvI5HTMrr0u8biz7L2rLnn38+0tPTkZmZiUsvvVQWWW3R2NgolQboJUlNTcXpp5+OHTt2NDumoKAAJ5xwgtSzzcvLw4033gi/38x3JiwZyN+75c2qWNARrBJdjGD4PpiCF8+6Dm+OPQgbe4lBTiheWOczJI+dom8Mr/cGKFIIpLkpzW4a7hlJLuSlukVFnX3YbxhIcNqlzzLMPTvZhVwa2xlJyE9PkJB4BvCzz28uq0dVgx8VDX44HXbZyFhUUIXP1hRj9rIi6ddltV75950ftsvz8zeWSSm1hZsqZEzQeLfE5foCOk/0Y1hT+cgjAYqwcvcrRkYbdVJWFVXLv3wcr+hY6RiMwHvqs/V45KM1+MuctfIvH/P5Xtd3Pv4YmDkTOO44oK4uYjtWbK/CtxvLsKKwqsPt6U3jQFH6O53ylP/lL3+REh4HHnggXMwT48LX75fJ47HHHuvqNirdgKUo7bLbUNPga9NLnuqpx9/fvAcHFiyFx+HCNSffiA/GHySv0Za32WiwJEgIenWjT0KF31taiMMm5DVTraZ3sKLei9REF9wOG3JSEyQHt5qGuT8oathsz/FTB2HMgIQu/b6x6LM0yAsLC/HRRx/B5/PhkksukYUXS/u1xvXXXy/5g6+//rqU+7vqqqtw2mmnYd68eU0KvTTIBw4ciK+++krOf+GFF8p3uvfee5uda/Xq1bIhYEEDvjNYJbqe+HQdPl1VjFpPoKu12bqVSG2l7cvfkoYwX3eGRNoKKlh+zEzDoGHOEPcGX0AMbZZXkxx0g97yoJQFtPayLGk5euHZt+lhFyObv5VhwG23w4Og5KMzIoQpG9ysYp9nSbmyOo94yFPcnS6IEXfoPNFPef114Be/MO8PGmR6ynuYljom4YKKeSFnZDyhYyV62iunurvaHG31nUjCtSnteOnbPHb+fDNUndUJcnJ2esrD2vH9lgoUlNXLPES9neHZyZg2LCuiOGhnvouiKPFDp1aA9PqxXvjatWuxapVZk3fSpEkYO3ZsV7dP6SZS3E4kOOxYWVgdUqtunfvff0wM8hp3Ei47/TZ8M3zPZq9zyUXhK7vdh4wkd1MI+qLNFfIZnDCZO0uPuJ83O1Ba45dJimXY+H4aQSNykuEPGMhN61qDPBZ9lmVtZs+ejQULFmA6w9IAPP7446Kw++CDD2Lw4MG7vKeqqgrPPvusGO1HHHFEU8k/tpNekwMOOAAffvghVqxYgY8//hj5+fnYe++9cc899+Cmm27CnXfe2SzUkUY4v3dXQMNyfXGtGKfDshJRWNUIb5xa5mYxtLbh69LtAzTIIZtB/I5enx91Hkj/ZT9MrHFIH2XIekqiS0qmmSHpQfmgBIdpmOelJkg1gpoGL6oazdeTXHYEgkGJCGnwBqUMG8/ldNrkeeo4DM5MlMiQgooG5PuDGJQehxZDJ9F5oh/ywQcwzj8fNsNAxQUXo/a3t2NIhJJ/sTTaztgz/qJ8dKxERzTlVHdHmyMag59EY+j6/UH8d8l2fL66GBX1PpkHuBnbdGzx5p3e8aOOMkughcrfWe0oKK+X1D7OF0xz4mYwvd38t70NiO7evFAUpevZLbfMuHHj5Kb0PrhbS4/26h1th1OT+w67BCMrCvHb467B8oERFgmhOs0sJ0WDnB5wt9OO4upGDEhLwJaKBpkw3SHPIw06Tq6MomLIMEOj6T1cXVQT5i3snjDenuqzX3/9tSy0LIOcHHnkkbDb7RKieOqpp+7ynkWLFolHncdZTJw4EcOHD5fz0Sjnv1OnThWD3OKYY47BL3/5SyxfvhzTpk1rep4Gu8fjwR577CEGe1uCQTyON4vq6uqm+/xbvbFwG0prvRiamYQEl0MM0MLqncf3FuxhVru1p8B+2MCY9tBLXMtxrceNpvWltfKYCzyWPKNRLfZ4aL3HtzHEnf2cnowajw9evwF/wI8GL0Q7Iegxa6K7KF4YYH45ReAcaPD5UePxS047BQ85ZgqrG/tMTrmFzhO9i856AbN+WIgBp50Gu8+H7w84Gv84+pdwf7RGxsb0UdmYNDC92/N+ozHaPllZjHhFx0rbtEyJi1ROtTVtjvb6dTR959/zC2SuYMRfa4YuNwT+s2gLXpy3CZvK6mSzl1FXWUkuTBiUJsc2rF6L6+76GZwVFcABB5hVCRISmrWD6U407Omo4JqK7UlNMCvc+INBlNV6Wt2A6O7NC0VRYmyU//rXvxaPXEpKitxvi4cffrgr2qZ0A9bEtLKoGou3VLbqUUzx1KMuwZzUtmYOxAkXP7bTEglD9nVtFMmyi/HCyYcwzGpHdVAWY3XeEpkE8tPcMsnQ2KEhQ+MuJyVB/nU5bM28hfX17W8WxHOfZf52y3Bxp9Mp6rqt5XbzeXq6W3q3aYBb7+G/4Qa59br1Ghk0aBCefvpp2RCgof2Pf/wDhx12mGwG7LPPPhE/mzVx77rrrjYXQjQaaWRaOY/8S8ejs7wtL7nULDcd5M2es95jlUdz223weAPS5bmQ8QUCqG30yeKGY8gKVWffZ5QH31PJfHK7HV6ePWT0U6uBpdNsNrtEivB5/kPjncc2ePwYnJUsUSL0wPf2nHKdJ+JTtKqt84e/VlLjkXlhQ0ldu+Gu4aGxORtW4bo/XA57Qz0W73EAZt14PzJgx6qiGsxbXyYeQ57nwNE5OHaPgd3moYvGaNtQUoF4QMdK59PurJS4lpjrjsZdrqPRhHG313co3Pn1hnIMSGM0YGaTTg7nAUY7ba2ox8vfbEZlnQ8frdohQrY8S4LLLuK35fU+fLe5EsflGLjo7svgLC5C46TJKH35DQxOTmkSeGI72F5GVnGTlt+Jn8MUPzo16NyoqPNiaFZSqxsQu7N5oShKLzDKv//+e/HiWfeV+CbSImxdSY14PFmSbMm2qlbrkk/fuhzPvPlH/Pb4azFn7P7mky0v7KF/XYz9DSlbM0SLebSASyakBKdDvCOjc1NkQlyyrVKOo+HOBSFF5jhh8T1Urw73FmZ0QWptd/TZm2++GfezZEk7oeuxZMKECXKzOOigg7B+/Xo88sgjeOmllyK+55Zbbmm2MKSnfNiwYXJf0gyMoGykcGHAGz28tni1yttAItZbWO1GhLB3KW0mauwuWRTR202PCD3l1vtp0zjsNmQmOcVzQhV2isTx92E/Nr3rpsedSu4IK8FG7Ss/gnA47DI+eDxDElPaySmPd8VhnSc6TnfnfbZ1fmK9VlrrkXBZG2wYPSDFjKay2yKGu7YMjZ3cWAa3pwGLR0zB3RfdhSGeIFYWVok3j55CjqeV26tRXNUohvp1R47rFsM8GqPNK3NU7NGx0nFS3DtLdHKztCXWuoPHdSSMmx5jKXtZ2yieZBrBLY1ZVqipavBiQqikJc/HcxdXe+Ta7wsG8UNBpUyJ9G7TEOe1mZuwQcOsMsPPLVi+EYk11diSPRj3XHwvAl9sx5iV1Thj+hCMz08Xh8lySSsMorTGI1FWhoiz2aTCDf+z2W0YKN/FEXEjt+U4aFnxI8ltrrt6+yawovQ1ojZ9Pv3004j3lfgj0iKMCyN6QMrqveKdC0Xr7sLh6xfgqbfvQ6Lfi0sW/hdzxswQg1zyYUMGBcs+SSguvYGGIaWkggFDDA+PLyATAEPUpw7JaDIaRh+Wii/WlsgkQFE45knRiKcxQ49hXnpiM29hVxjl3dFnb7jhBlxMReE2GD16tAixFRc3D5OkcA8V2flaJPi81+tFZWVlM2851det9/Dfb7/9ttn7LHX21s5LZsyYgbksu9JGSR7eIpHCOvJJbll8MJ+NEztzpHuZPd4uoSAP8XpzOUaDhBoIVfVBSc1IdLklTaPOu7NaQQLD0h0OVNT7ZbHDhQ4XUdzAoAHAEEQupXhGGuIiKmc397ho/JTXefDDlkoRSTxwTI6Ml94sXqXzRPyJVrV2fi7+CTea6AVkv6LOAaNCKDy4IdWNQelJGD0gWQz21xduxU/2HixGy+ylRc1CY5fsexjm/fJhFA4bi0qbG9s3lctGKw0TRkIlOFnxICjjg/PQK/MLcOsJkyN661N2Y7MpGqPNzbkrDtCx0nGGhJXoZD8MN5xbrjtahoLnp7tFK4Q3erbH5CZj6fZqPD5nHZJcNmwqq5eIvnU7asVBMDE/DcNzkps+g0YtL+XsV9xsmruuFOX1XthCYrdMS2JaF49m5B+92jSmuRHL6YKbtbz/ZfpInH3+fWhwJaKsLgEJWyuxdFslvtlQijOnD5NqHBTfpcOC36m2MWAK6oZtHPPGyh35aQn4eMUOFFU1yubu0CzT611Z70VlnRer/dUyJnaE1lucz6gLk+J2ICvF3aeERRWlL9CpEfmzn/1MFEHT0povFurq6nD11Vfjueee66r2Kbu5CEtyJcqif/7GctnpbYtTl32CB957FE4jiE9GT8evTrm5yUPOxVUgNOHQq5dChSvWUfWY3kNOfjyUC6vSOq9MikdPyW9aWPFfTqZ5qYlS/mxkTvIutZp5rp3ewq7dwe2qPjtgwAC5tQdVdGlcM0983333lec++eQTBINB7L9/KPqgBTyOyrtz5syRUmiWgjpLoPF81nn/+Mc/isFvhcdT3Z0q65MnT261PT/88IOEtXcG/i1pNJbXccFuesrZk7hRwy7VVwqs8LvQELcbZvm0ZAe93qxkbkNeGkulOeW70ygvqmoQFXouwhq8ftNTwjfZeCw1FRyo8/hDau1clJm/EocD73EjKom10g0DRdWN8rlHTs5r1RDpjeJVOk+0TVfnfbY0bJkG1Nr5uSj/YPkOWeUfMzkfWysazfzXoIFEakaEopcKAvXSv5JddizfXo3VO2pkw2lLeQP2TfYhvaQGNXmD5Tr+w8ipcm331XhkA49zRlKSS64TnHsCoXNzY2v+hjIJ9x2ek9KlkQLRGG1jB6Qg3tCx0rESneyTHB+yxhEhzYD8balPE77u4Higevn2ygYs3FxuOg14/XXYxXPNfsmNKGt4SboRIP13Q0mthIgfNCYH2SkJ4kAwS7d68Q1LXNZ4Q04Jlhw1vePWEivQQjzX7fdhRGUh1uYOl8crckzBOIc3gHpfUARx1zbW4LGP12J4dpK0YXtlo8wvkdKsCAV6t1Q04q+frEN6olOESScOTJNjqM/DDfRGPwVGbXC77BickSSGODVMtlY2yHfn76YoSvzQqVolL774IhoaGnZ5ns/985//7Ip2KV2wyKOhMG9dKb6NwiC/dMHbeGTWw2KQvznlcFx+2q1odJnuN5Z4otFMDx/vS05uKJzKNCxMg4YCWGt21ErIFRdfrS2YOHmS9CTWfU6Qf4ksmPJS2/QWdpae7rNUzj322GNx2WWXiWebJc1Y3uycc85pUl7ftm2bCLlZnm+WQGMtc4aR03NCg55l1GiIU+SNHH300WJ8//SnP8XixYvxwQcf4NZbb5Xa5pan+9FHHxUl33Xr1mHZsmW47rrrZEOAx3Qa0QuwIdXtEAVyLmLivdyp5VmIFunDAdMgJzRMqDDPBVdFnZmaYYbimjnjlpr69qpGMZBpADDs95DxA3DA6GwRuKLXnO/nuemgEwVel1OMdi7/+H4qt/PYJJczqnFNo4oLQf7Lx3w+HsWrdJ5om5Z5nzQaGSlErzQ3LOm9tvI+O1O3+c8frBaDZGB6opyP5+X5xfvmoffN7H98jfWPmWbBPs9jaj1BEXZkRBPL+20sq5dj89MTZJOppqQMF9zzK5x+zTnAqlVi7FDokIY7DXbaEp6AgZJaL4prPFIKkK8XVXlCm1qNWFtcg7lrS/DwR2vw7aYyZCQ5ZQOChg+Nam5C8Xt1pM6yZbTROKPRVtPoE1Es/svHfP6ISZ0rDdmd6FiJHvaR4/YYiPy0RGxj3wxFeNBD3jKyhNVllm0za3vTGKUBLxVhPKZ+goipccMoYKZYWD2LEU00iDeU1uON77Zi1pLtSE9wYnBmEj5fW4qSak9oDWQa8jSQW6ZFWTiCATz2vwfw5ks3YMaWZc1e43v4+XU+Rhka4tBYtaMGVQ2+ZgZ5m+lYklJloKLOg/eXFWH2sh0y3gamu2XukY3kRr9sJHMc0PkxINUt666PV+7QuuWK0ls95cwztUSeampqkBhWU5E1f997771O10JWunaRx7AqGuNbORm1ddE1DPzmy5dw1df/kYfPTv8J/nDEpTAkYdiEkwMXUtxdZiguz9fY6DeNnlBerSVocuj4ARL6RQObi6qLDhwpE6HlvTlqSl7Uu9xdQSz77MsvvyyG+MyZM0V1nd5v1qO1YD4hPeH19fVNzzHv2zqWIm1UVn/yySebXnc4HHj33XdFbZ3GOkWCWN/27rvvbjqGIfAMs6fRn5ycjD333FNKqB1++OGd7ldc9Ow3MgvrS+pQ460VYT/2C0tFPx6ndasXdaRt4ccyF5BdMS3BKQZLTXmDaaj7DXmexgP3nkbkpEourmHYMGVwunhVyLThmRKGWO3xw+sLYEhWkuQ7cnODCzkaKVyQ7TsySwzr1vL7epN4FdF5IjrC8z7N/NRa8cZZIaY0Utlf2sv7XLOjGk98ul5CatkXRuWkhAzkSqmusbmsTvoyQ2yZakEtj+xUt1z72f+Wba80j6Fh0uLcVrlMHhes8+Cb9WVI8PvwwL/uwIQtq1GRlI5FG0uxoTYZO2ioRNBr4GYt73HMMKqkzms+/8dZK2WM1noDokzNccVNWc4D4WrX9O6xHGNFg082wrixe8a+wzB+YGQvOo0yGmeW953CX/wdabRxfslLjJ+rlY6VjhEeVcE+zg7E1LeZk/Jx8JjcXdTUF2wql4gle0iQkz2PaXZ87Aubt9ryFzf6DKwvrceWCl7jzYobTbTTlWxGEPfNfhzHrfkKHocTzkDrY9k6bX0Ha40GQxtrrOgh4zQYhNdLjRLzNf5G/Kea4ffwYPKgNIzJSxVtHxV7U5RebJQzz5WLQN7Gjx+/y+t8vjUFZ6XnFnkNXrt4yOmhYPhSe2Q1mLmFfz7kQjx5wJkRVdYZVm7NP/SWs96mHaaxztBFhjSOHpAqF3f2A3rWvyuowO/fWir3+W7mJXPBdMTEPKwqrIm4YOpq8Z9Y9lkqrbPmeGuMHDlSFmPhcFH2xBNPyK01RowYIYu11vjtb38rt67uV/RQpCe6JKyVAn9WzdT4WeI2Z3dz3mlgMASXBgKVc7mQY2SI02Z6XDi2/EEaxUnSbz9fU4IFGyuw17AM2bRgbVkKuXHxQ8M+wUUjy9zsctvorfQjPz3RzLttIU7U8vdn+bTUgFO8nVa6h2Wgx5N4FdF5IjpSQvnP2yuZy1onBmtqoguuRKds2tCrzD7HaySPjZRvvaaoBne/uwJrJKzcgcLKRuSlJ0gEEr3R5bVeUWpmhEaS24m0BEh+KTdGy2vN+WFzefueeMtA31Zai2feuQ8HbF6CGncSLjn7LmxIHwxPnbdVT6GFRFSF5cUypJhjY1BmIhLdTvHKc0zsPSxTDPMklx2frCqWsFwaF5Le5A9gZWGNpGNdM3OcGGO7fE7QkN/i8IkDsN+oLNGDSEtwNf1u4eUeY42OlehpmcIzOJTCww392cuK5Lnw9QONTW42cYOLEU7sddzwotgsN6A6Om91ONLbMPD7T57FWUs/RsBmx9Un34SvRu6NrobN4vcprzcNfo6v8gaf/GumZJkRJGY0Y1A2MbhxzPuRlOoVReklRjlDamlEHHHEEfi///s/MTosWMqJxoIVmqv0PCluJ7y+IOZtLUFxjTcqg5wG+G1H/RKzxx+EL0dFLpdFws9ET3nQ44fbaYZc0jbggm+PwRlNhgLzE2l484KfQ0GRBCdqGhhC6ZUFIT3oJ7sHd7uKtPbZ3SclTDyJIW+c1LdV1MsiuUXqXJ9BbGfDzO/hok8UcC0jOMEpeXo2BGG3QxZ+EwelSy7g6qJaEQDiGpAGBw0kLhaZN07jiOV06M3gxgaN6dG5ySiq9jQTJ2oJwyw3lzVIaghbwEUmc/wtr2I8iVcRHXPRwb83xZlYLowhqLxOWtdPt8Psg/Rw/+OLDWJk05iw8q0ZccS818fmrJXwXP7eDrvpESysapAoFj4XclKjzmOGl1c12CUFhWGsHXTIidfvz+89iplrvoHH4cJlp9+GH/LHAY0ds1aaLhmGAU8gIJsDjlRTHJH5ujS+po/IEqOKHkCOMY42GteyKejxST76gx+sxpCsREwcmNF07rby0+OpSoGFjpWu01/4YFkR3HvZUe8LyJzFspPs8+zvdd5gSMTQjPTrCa76+jX8fOE7cv+3x12LD8ebujDdjXw7mX/MKBXRNAmptnNTYkNpnUThFFZ5ZA6vqvfK7xuP40NR+hsdMsoPPfRQ+Xfjxo0YPnz4LqGUSmyp85p5c9urPG3mkKd66nHZt2/h8YPOht/hRNDuaNMgD4dGipVTzgUjQ9c5KaYmMizX9AIyjHL+hnKZEOnVy5AwX4fkSbHMB2Eu0xWHjun2iUD77O4TLp7EBRHzn5nfydzTvoglZkjDm2HropwbMMNvRQjOboOXBrvk1tuwrqROjG5GjXDRMz4/UwSs6CmnUUEjOjfFje+3VEp+Lr2W3NygEbalomEXUcRwaGS8v7RIzhsIBMVryCFkeRX3GpohasLxJF6lYy46+Pfee3gm/u+7rWYd4lC5SGqBcNOGaSwBIyDiahSlSkt0y3X3s9XF+GB5oURC8bbzUt/6NV881FycB4Ioq+9EDIlh4PY5f8dpyz+F32YXEdBvhu/Z6e9OLFu+1O9HRT1TYljJwC5htgzFpTYJc2Wp88BcdqpbF9Y0mmkfAUM2fm97ezn+eMpUCWXvbiX77kDHSnRYKTzUWWgpEMvfjFEVs5YUSgQFfeCM5BuenSzXSKZHUFywobWSM93AT797F7/58l9y/66Zl+H/ps5ETyKKPzY77DYzRaUpIM9vYHVhNTYW18LHmud2G+7873IcOCYX5+0/PO7Gh6L0Nzqlvk7RqNTUVJx55pnNnn/99dclP5Y5rkrPYgr9bEB1o69N4Y6cukq88PodmLpjPXLrK/D7Y67q0OcYocWkLZSPyEUU/+VEWVLrkUlyRWG1LIZYs5kmjstuFy+IO4UK3l7U+/xYu6OmR3OZtM92jeItw2SZP93oY+1yxCXsdtb6i0tcS5QumuZKuTKwtqyBhpDKPOG/co6A6eVmP+dCh8YyP0OUd6UCgU2M5DF5aRKaTmOLG2VjBqbjJ/sMwVvfbcPy7VXi5aRYEPPSueHRlneIecYzRmXhhy1V4jWniCIXofQqfrupXLyKR0zKQbyhY659uMnCayDFmCjOxPxXbgZx04aRFRQYpJH+7aYKM/dY0ipMYSoKqXWE3RmvKd4GHFCwVO7/5oTrMWds5AoSnYVtM8W2ArIRNn9jhRhXCaGoEBrk3PjyhYwxboZxjDPX/K+frsVVR4zFR8uLo1Kyj0d0rLQNI+qYusOUB44TS3eBfSM31Y0l23hNbTTTe5yMYbJhyZZKMcg9PlbH6Lm2MqLkiPUL5P5jB52L56f/BLGADhCr2ocFp0VPaJylJTlls4uRVh+t2CEbfNcdOU4Nc0Xpberr9913H3Jzc3d5noIk9957b1e0S+kA1uK9pKpBJqDW9oOHVu3A6y//Vgzy0uQM/HuvYzv8WaZwT0jcyzBzbGnAcAKgoc0cYy4mxRAKmvmu9DoSLpQYgkgDvrKhdWGr7kD77O5hiScxN3pjaR0aqJITh1AIyqwBHorqEO+2GcoXDfRCM7yR+bMtv6EZOm6en0q+zFNkaTOOBfZlPmapKRro9OqYqR2mEBsf09iiB4cKvvuPypZ82BmjcppEESnYFa4yTWGhcIE3htDTG8+FKWvq0qPIsX/81EEYMyD+FlI65tonxe2U0PRJg9Jx4OgcTBiYjuQEp2zY8O/PayWvrVJyjx50D41W5sX27PirS0jG2ef9Cb/6yc14e0rnBCOjwSr7RLVoU5DL9J7T2Ob3d9nN6BVRp/YHUe/1YdGmCvzt8w2yMd2WGGK0SvaxoL+OlWiV9bkZWVBWZ2qYsFwlVdSddmytqJOoOz5PTzg3RKnFQAOdaUHcQKXcRk+OForksnrNDcdfj0d+dF4PfnKLdoQ2u8IX+WbNHMDptElqR2aSW9LRqBNEfQquI1WNXVF6maecdZNHjRq1y/PMf+JrSs/ChcbcdcWyW1zfirE0vmQT/vmf2zGwthxb0/Pw07PvwcbsIZ36PCsUirl+6UlOqV/ttFGlNCBGBEWnaLgnumyi9Bu+SOICy+unaJa9VWGr7kD77O5DLxO1A6xca87uNHqZxhA307jUBDfbRehRpkdldzaArNJqNO5FlAmmcUwVdX+QxrjpRedn2m0BOYZ5vTWNaeLx5MYURbc+XlEsXu+9hmbKea0wzPy0BAmBv+fdlRLmTi0IGvhcdNJgT3ClSt4wPRpDM5PkszjGGI1Cg41GSjyiY679muLM7aZRXlBeJx4/6hPUewKo9fpDiulm36LBYQmk9SRDK4uwNXOg3K9OTMV7E3/UI5/r4CaazSabEKW1ZqoGxx9/F3NDbOcmGiuNsBTU4IxECcO1NsPC4Ri0RK0yem7aifuxQkHRBx54AEVFRdhrr73w+OOPY8aMGa0eT8/9bbfdhk2bNmHcuHG4//77cfzxx3fqs6OpTy9Ge0U9Xl+4FZUNNLCDkjNuD21SsrSZFZYu40Pyp5sPFKMnx0pGvvRbn8PV4yHrrcGhkMCKH35T/4dVclJcFAcNyuYWHSuMKKnx+LFkW6WqsStKb/OUc/d2yZIluzzPusk5OfEXRtnXeW1BgYQ3UswkEvtsXYnXX75JDPLVucNx+gV/7rRBHu7N4MTIxRHDdEfkpojxw4UPn8tIcovX0Axh3wknAt66qx55a2if3X04WW8qrYMR8kZL+HYcGeTJTsBNIzy0IGe7qILOOs3J0brKI8Ae7HLazZxv+bKmUcA8cxpO1jHMiaWQEHPt6dkprm2U12hMM+SYhjo9djTMF26qwNcbyjB/Yxk+X1sinqLVRTWSL8tIE3r1vlpfhhXbq/Hxih2oqveJqFsCQ9fdDmQku5GVkiBRKos2V8SldyNWY46GBisbsJLB/vvvj2+//bbN42loTJw4UY6fOnVqm5UNuoLwmuJ//XQdNpTWyubLl2vLRI+jqsEjf++mlAkrfQI9y9Frvsanf/8FLl743x79XHMDzC5fmmrrWytolPtkXFHI1OrqHI4MZedw58bUhrI6fLpqh9Q+X7qtUnLOqxq8YqRzDLZV4aA/jpXXXnsNv/71r3HHHXfgu+++E6OcJTiLi4sjHv/VV1/h3HPPxaWXXorvv/8ep5xyityWLWteezsa1peY+f/M92cKT6T69NY4+d2bS8Ubzr5gagyYG1Q0KMM3JGMxRiymFq7F+89fjTvm/E3C1+MNbvJa5Ws5ZripTCE81nlnOlpxTSPqPea8xU2SeJxPFKU/0KkZihfma665BmlpaTjkkEPkuc8//xzXXnstzjnnnK5uo9IGqwqr8eJXG5uMg5Yk+hrxzFt/RIanDosGT8TPzrgDVUmRQ11pP7M8U0MUkto8grmt9Nyx5iVzu6huygUmjSCW3aFxwbBDhqybHvKAhJTx9dP3HdKjap/aZ3eflYXVstCVhTHiD+YNBkILIq7pufigN5ueNEtgsKNICLydYfGmwBujQZiWwVUhQ/5oPFCUih49GtRUubU8mt9vrkBmokvKqdEY54YV37805PVmrmsgSK+66cHj+6jHYAkYsXbzmuJaGUPpiQ5kJLlkUcWFKdtF7yHLSTFUkyHt8UYsxpxlaDz99NNikD/66KNiaKxevTpivWfL0GD48IknniglDGlo0EjZY489urx9rYmR0cBgPiyvkbyWx3p8HbTpBzz+3/vhCgYwZccGcweuh0TIOHZYbpEkuZk/TvX4kJJ8yBgXtRKbqf1Ag0OKJQSB7VWN2FbZKMdwI43RJvydmbt/4Ohc2Qiura1BvBGLsfLwww/jsssuwyWXXCKPOWZmzZqF5557DjfffPMuxz/22GM49thjceONN8rje+65Bx999BH++te/yns7wpwVzP8Ptpr//8r8ArlWcpxwo4obKxQ7FPV0il4GDfjiZB4aU7oFL75+B9K8DZhYsgmuQADeUMpePCD2dWj4MimLEVqWze0LBhHw8TlzE5Abzf/+tgDLt1VLxEJeYqxbryj9i04Z5bwYM3xp5syZcDrNUwSDQVx44YV9Ov8pnsIeuYin9++W/1uMGk/rU1OjKxHXnfQbXPjdu7juxN+gwR35KmuG3lI8x2jKzQ1PW2wZOpmW4JB641Q4JbzQU2SOpc9O3msIPlhRJO9ieBnDorx+L7x+A4PSE3H1zHEYn5+OnkT77O4bE7OWFoohGA8LoUiwv1ptYzoFDXLJu2ZpqA402spFtxYurDUuolNOh6mS7Q8iJcElHpuUBIeY4Vwkhqd2sI47PeKfrirBPiOzJH/8zUVbsaqoRjx+NLw5jrnw5E3E4gzIRhbzi7lQ5WelJzpF/IueDW54sQ0i9BU0ZKxNGJQoIfAUT4w3YjHmYmloRHPtZj1llvOiccjHNQ0+Ea5ix7G8frz2xtJRtdf21fj7m39AQsCP2eMPxM3HXd1jBrmFNVyZP5/ssst4os6DvBZKjOXvt8vvFHrM5wM+MyqrppEVSRpx9OSBcVv2qafHitfrxaJFi3DLLbc0PUe1/yOPPBJff/11xPfweW54hcMNr7fffrvVz/F4PHKzsGrEU5dkUG5WxPx/Kqx/s6FMqnxkJbmxo8Yj19ragBklYeZJ79ykiSVDqorx0n9uQ3ZDNRYPHIefn3YbvE4X4gleT7ihS6dJ+N4050j++hwj1p4b15SD05OaKhacsefOEn2KosSpUc76mfRIcCJheFVSUpKE/TH/Sek+wnOwGrx+UcJeX1rfqsp6WYqZuzpv5N5yawtOdqIgHXpsGeSWMR6+9uEm8KHjB2BETgrK6zxYX1yHsjqGXTLENgFLtlaKwc465WwzF51cC9GjfsY+w6R8TU+jfXb3hQQbvaxNb49Jbms0hjRVd+lJYV+j19wfNI3daO0J63uZuePmA9PLYFYaqPeaRjfF2qYOTcfiLVWy0eQNBJqUomkgS355aIFJY4I54weOysF/f9guYoiWMCKPa/lb0kCvbjB/Z3qJKFTEz+T3oYdIIlScDiQlOsVTT/Vp5v8lu+IvLLenx1xPGRqd5av1pXhvaaH87WmUcMPIG5KF5nNhVYtixriSzXjh9TuR4mvE3BF74dqTbkTA3vnUj66A9dlNJYfwGuftRxM0jWUwnzaINxZtxf6jcjAwDtNle3qslJaWIhAIID8/v9nzfLxq1aqI72HeeaTj+XxrMALlrrvu2uV5hqLzOhoJRopwLcEIh2WF1WZ0UsgYt4gHgzy3rgIvvXYrBteUYm3OMFx85p0iiBhv8HrCaBxGQbLCQfhvSCcMn+LY4ia2Q5RSIREMjFj4ZGXkVAZFUbqH3VrJjR8/Xm5K9xMe9ujzBzB/QxlqIuWQGwZu+PJfOP+H93Hmefdjfe6wqD8jklyUZdTQMDDzyIGJg9LlQr6lvE5q6NJw4JEULBqfn4rlhdUorG7ERQeNwMl7DxavforbKd6hWHsqtM92vkYsRcvi1NFkbhwZTMGwiTK19ZhrDPFeh0Je2/NAWjXKm7wHsoAMlaIKBpHstsvvwIU+Q8wZsu7zBk1BrtD4EPV31jOHTcIxN5fX45uNZRK+zvBAGtdsh+URtZpkGR0ltQy/pYicIToNkl4bEv2i2nteWoK0gZ70gooG5PuDkhISr/TUmOspQ6M171+kaKaU0HWPUQ6vfFsg6tAZIo7plwiIYMDM9YyHFE4KVdHrl9VYg+8HTRAFaY/THdM20W5z2Myw5ZalnaKB4yg90SWbZUwTeeO7LfjVQZ3XU+lu+tr8xA2y8E0vjpVhw4ZJxA8NRYash2OEtDeYxrG9shF1jT657sbB8GhGemOtCOeOrthuCueedQ8qkjNi3axdcITWdWaax06niiVOitA8xDnPqpLDsWJVLNhQUhHbL6Ao/YyojXJeWLmLm5KSsotnIVIIYbyohfYlT6XU+Pb4MXddacSas/ZgAPd89BTO/2G2PD548w8dMsojIfaMsfNCzjCo3xw9Hsu2VYvXh23KTHIhOzVBlFMpRmXVZqba9BWHjomZIR4vfba3Q+OC6rhc3DKaIh4xQrv+kbz44pGOwr1vvcxwd+uxtZDh27NTWFM8BetK6kWojWPC+kwuMrmQ5JHMY6U+Q1KCabRTwO2NhVvlPAkhg58LITlvqF2WYSbl1TwUpbJL2R8qDTOP3LBZZQgNSQehgi6P49jjYoo1nOOB/jDmWvP+taYoPXpACsprvWKEZyY6UdXgl0gnI9R3YukZD+eYtd80iYHS61fv7jkhztaxydiwcxJC89Db1n43a7ZpGr+hjTKOV0aWxIv+QizHCsuvORwO7Nixo9nzfDxwoKm23xI+35HjSUJCgtxaMio3BeurGmXT0gph51qC44djh2kL3PTnH86gsmiYVkc8sN/W5ZhQshklKZm44Ox7UJS+azm7WGJ6vkVpAXbDgMvugGxtGEFZw3Fzl5siTJmhwB7TqTjX8J28Tygoas5piqLEnVFOtU2fz9d0vzVa5gjFUsSnr3kqvX4/vlxXGtGr4vb78Mi7D+KE1fMQsNlx69G/wr/37ngd8pbQuLCU1mkIUNBtVG6q3JZurcL4/DR5jl5D62/fsi5srMprxEOf7QukuJ1iXPgDpphZvCyMWmLlc0d8LkrDnEjualhIX5LTLvmN9HKvLa4TI9gTSjynn6fWxxrSfrOmspPibzZRgR+QmtBUHm3Z9mrsPTRdjhHVaKcZkMs2iWgRPaYhI4Khtvxcq/QPDX6rwizfy5x0PjcwIxEjc5JNFeI4ySmP5ZjrKUOjNe8fFaXfWFK+i4jbgk3lKCirx97DMiU1YXMFPYHxkRMbzrP7nYIGVwI+HjOjVTHQnobjguMjfGxL9Es777PqMXODjZtgtpAwKceXjhUzXH7ffffFnDlzRNjQymHn46uuuiriew488EB5/brrrmt6jvoLfL6jzJych4ol5bJ5z7HCeeW7zRWS6sYyqplJhqiC+0OqmvEQSRLOnLH741c/uRkFWQOxaTcq2XTF+iykidgMVr1hf2cUIzd46RhhVE6i2xwDMkc57aY4Kb3odnMeolOFazlCMVK3zD2KosSdUf7pp59GvN+TdFTEp6/A0hVrdlRLjnakySnFU4+/vfUHHLx5CTwOp+QBzp5wcJd8tuTH0lPHPPWUBAzJSpILOWH+0dCsZLnAtyS8LmysiIc+2xdg+C2jIOZvKG0SAoxHWmof7PJalE0P944n2G1S7o+1XOlhY+4v+zarDpTWeZGU6IAn0CiGPEeJ2+FAWpILWUm8tBoorvbKoqiq3oPGgBn+3uCzi7FAzx0/g+PLFjTgstngZY6fCFxxQWQurChyxM8cnJkkx3PhOnVIBkbkJIvwXqMvGDc55bEccz1laLTm/WtNUZrjh9ESDJ/mgpd/z3gxyJO8jVLikIKg5JW9j0NcYYm6hY1djguGNAdaceKF7cNJfjLHCL2G3FhkZImOFRNuLF100UWYPn26RBvSyVFXV9e0vqLI3JAhQyQyhFAJ/tBDD8VDDz2EE044Aa+++ioWLlyIv/3tbx3+7DED0nDJwekSVULvOKtOUCx2dG6KlEvlWNlURqOcR8fHnMNIxDRPfdOG1QcTDopNO0L/WmmF4aKkxO0w07h4nZHKIbwfDMrmOjd7LVV7EUA1TJHeOltAUqImD0prEhnl32DsgJSYfEdF6a/Ex+zUTSI+fYE1RTX4y5y1WL69JuLUlNlQLblNexatQ607CZeddiu+HrFXq+eTvNqwf9uFYbguc6d1bF5KqP642W0SW8kLI/FeF1aJHv7tWR5l4eZySaWIpzDC9gh2wvMgnhl6D0K5eHyK3rYGn2kcs2+nJbhkXEwcmIYROUlYuLlCfhR6xxPcdhRWeaQaARc9dDYw7H/JlioZE2kJQdR6TfEiS6uBpdUkKsVnqsQlOhyw0QtCL5/N9GpwY4D5fhRIokeDcOFEA50GuxJbQ6M1RWm5DiY4pRZwkssp5fX8cTCCGF3FcpkJfi9+fsbtqEmIzwW4NUYsmNbhsjtFKI9jsq1f0tREMSNSWBoxK8WtYyXE2WefjZKSEtx+++2SDrj33ntj9uzZTRoLBQUFssayOOigg6Rk4K233orf/e53GDdunAgidrZ04Ni8NIw+LFXmlWc+Xy+b/oz+YdWKoqpGM9WntZ2XnsYw8IcPn8L+W5bip2ffg+3pPReZaW9R4lOqNLBPhzRMwvPFSXKCU8LT2Wb2e24YM9Jr72EZWFVUi2oPxUODUpGEaSCUQ+Xb+XubRrpP5hXOMUdMUvV1RelJoraYTjvttKhP+uabbyIeRHzaE+SJZ2gUvLawAM98vkFCH1tbeDQ63XIrS0rHxWfehaWDxrV6TreoSptCWMEoJgLusLI2aG5aopnDFzRkF5ueH0LvKUtnhOeFEWuXlcaCdWwsiHWf7UtwAXXU5HwRGOTfN1LIXN/AXMDTsG7wMizdkIU/UzfoWWAwH8PKt1WaY3JDSR0ykl0ScsnFEl8rqmmUOstcMLG+uM1mFwO9uMYjBgUXP6lusyas5KVzPPI3DRiS3zc4K1nK16QlOsRYp1eDmwKsY03PHxeuNFMY+smF09FT8mG3x97Ii4cxF0tDozVFaXrHuVmzrqRW/s7c2PE0+GPu9WO60yGbvke9KwEjKgqxbOBYxBNiUJtpsc02kSmU6HQ4ZaMjYPiaSqWlus3qB6HKcgKNGEaucEPLOme8EOuxQhhB0loUyWeffbbLc2eeeabcunLDlx7aBJcDeSGxSlZzoTeX4pX1pXUR9XN6mps+fxHnLZ4NJkLsUbS+R41yXlLsdoeEpKe4HWj0B8Xo9rEeur/5hhX7NxXWfzQmW64z60vqZP5gRCOFeJNdDXDSoHc4wIAR5pdnJLpknJTUerFocwUmD0qXtRvnlbzEOPjxFaUfEbVRnpGxU1mSi/K33npLnqNHgtCLXVlZ2aGJJpaCPPFGuGJvSY0H/7dwi9SFbs/4Ydjhz0+/Hdn1Ve3mNvFczTVsW8cWyntl/l69J4C0JFNF2DQAzKUNvaesZWnlhVleRGuXNfzYWNAb+2w8908ak6zZzTrZqS4b6jzxp4rbFd/T7mAOYyjHW7zkNLbMXDz2b35/hgdyQUODizndloGdleRCrdcvXvRUyc2zSbpHVrJL3sv7PC/Hit3G+uIB8QTSk86IkwPH5kg0yg9bKkUMLDXRjqwUl9QvN0MVTSE5ioVZCydumMTLhmM8jLlYGRqtKUoTKq7TsCyt8YrxHlMMA/d+8ITojzDd6fJTb407g7xJqI1VB0LzUZLTEv2yySYVj+BvbhiMOjErFdCAS3MyOsVhpn+EIkwoRMr61xX1vrgReouHsRIPpIQ0Szh2eI1jRAOvscXVnqhTjrqTK755A7+c/4bc/90xV+LD8R3Poe8slogoS81Sm4fLKfZ9buDyOsL9RdEyCXnROcdwc/j7LZWYMTIbR07Kx4SBaZL6uGRbJUrrPMhJdSMz2YwY4WahlUNO7ZPyOh/O3X84po/IlrVbvMwritJfiNoof/7555vu33TTTTjrrLMkp5vCOoRe7F/96ldIT0/vloZ2RsSnNUGeeMNS7OW/NMw3ldbJrmVr89E+21bigIKlePLAs+RxdWKq3NojXJW2redZ/5gXeT7f6DeQmmjDj8fmysWaBoAF719y8MgmtWHmkHMCCTcWYkms+2xfgf1y9tIiUdun8cgbF0um+jh6LdxwaumFoblEQRzaTdZLzOGW0L4gvXBBCTNnrjcjRGhkc6HE34RGQXGtR1S1OX4o5hUwKNpmF68PF1MMYWa5NBfrvdtsSEl0Ii3BKXmv+4/OQV6a6S2iKBiFEhnKaZVQO2TCAFlkMRQxJU5KDLakP4+5thSlN5fVi6FR542xUKJh4HefPodzlnwogqDXnPRbzB01DfEEo7KsVOJgWAUQKd9kt4m3kGONPzHHVi4rflARe1Q2vt1Yhon56RJxUusJyHhl2C8ND/7+nFvjReitP4+VSJoljLrj5iXLoJVI6dfYay+c88Ns3Pz5C3L/3sMuwatdIJ7bEdivqWPiCwZlM4kbwKJJwYgbF73n3Nw1xUVl48plR0W9X0REz54xDDNG5sgccfiEPHyxtgT/mLsBo3NSZXy0TLNhpAINeil9GmfziqL0FzqV8Ethtblz5zZNHoT3aQAzHJAly+JBxKc1QZ54rD/OEPU6r0/CYSvbCG08dMMiPPX2vUj2ebA1Ix//nXxo9B/WilUuOa2h13hxZ05SGkMsAwaGZiXi2iPH48djB0S8UFt5YS3r8sbbRT0WfbYvYClKb62ohycQxPDsJCm/RXGYONZ8i4pI7Tf9cM1z0TkeqZptViEAXKJEHxR1YBrM5gaFTbzffEzhNXrBuebhomlAmkteYwi8L+iSKJKLDxolxjW96VTI/ff8gqYQW3rNeL5RuckY4k9sOufPDh6FETnxmfcbif425tpSlKbAWKDO3MAJr03f0/zqm9dx+YK35P7Nx14VM7GqtnJnYZXhdNjM1I7QHMUN4swkc5wRhuTmpScg1W3mlx86fgAKKxtlw4spCulJO9MUSANLCTodcSP01p/HSiTNEkbdrS6qljQfrj3CiYWOyQkrv5SIEvLkAWfgb/ufjljBjSXOC9xcKqvzyoaTlDIL1Ra3YHg95xyGtss8FFqH8V9ufOSlJsq4iqTorzpAihJ7OjX6/H6/5HFPmDCh2fN8joZyrER8emv98c1ldTIRFVc3tmmQn7ziMzw06xG4ggF8NmpffDR2/459XmhW43WchkT4vMdr9PCsZEwZkiFeQRpezJM9dMIA2T2lGMs+w7LgbDEJWBf81sqehYflp8TQYI9Vn+3tWIrS/Lttq2iQXXT+9by+Olkki6HaCUG1tuipBZjRAQV36/ux60qeuTcgY4Y53zSg2YdouLPEK41vy4MRCAQlP5zhmabBYUNWklsMcv6WKW4nxg9Iw4KNFeIpYqj8hpJ6CeGkYi5FwThWfzQuF8OyYlNasLP0tzHXlqI0Q9rp6WJfYf+JhVGeVV+Fny94W+7fc/ileH3PoxFrwkWsuClFAURuePH3oYaJVdrMuiZwHqEhwogDeg13VNFLbpPxwfnJGkdt6ZzEo9BbfxsrkTb3j5iYJ5tY/Lu3tUnaEziCAVw779+ww8DLex+LPx9yUY9+PstwellhgOkb0o1tyM9IxOjcZBEVXdNY22REW92cfZzRWJx/LCdLaxEJ8aoDpCj9nU4Z5TSCL730Uqxfv16MYzJ//nz86U9/6lYDuT0Rn97Glop6zFtXIp4V7n625Xm8aNH/cNfHz8j9dyYdit+ccB18jl1zF9szcKxJTrx2AUOMDKfNjrRkp4i4WWUyGEbLzYJHPlojwiL0oNNov/zQ0Thqcus1fCOF5TO0vdEfEMOEkwJ3xXs6tD1Wfba3YylKizfYYfYZeqIYNuoPBqRkDQ1RW9AM/e4K4sUBb+0diYJ6yMMpqaxBCu3YxGvB34HfnwYCW05DnL9VMBBEYoJLfhx6TMvqPGatd8OQTS56xhl5YI2JiYPSsLKoGp+vKZXPpXicG05U1VPB3Qy7/XjVDkwamB6XkSiR6I9jrjVF6R+2Vko/oH0VKxOrIjkDZ533JxyxfgGenXEqYg17cHKCQ4xxRoOw3KLdZs5JHGvWfOgIGe001nj9YV54WoJDVKfrvGZECje1N5XXRalzEi9XmP49Vlpu3jPvOTvVjZxaF8rrfWKQ8m8veeU9/CcL2B04/5w/4qLv/oeHf3S+ZRm3C/suD5U+HOj4nMh5htFT3Hgqr/XKPDM8OxkHjs41N8RtNkwcmI4NpfUS1s5NXCkRaJi55swrp0GeleyWzcDWIhLiVQdIUfo7nTLKH3zwQcnjZhmZwsJCeW7QoEG48cYbccMNN6A7aUvEpzdNQF+tL8WzczdiYUGF5J62imHg+rkv49qvXpWHz+97Eu6eeRkMkaVt3xiPdGYaFrYA811NA9zuMGSBQ2/O0VMGYkNpLV6Zvxk1noAIWrG9Hl8AS7ZV4ab/WyrlSn564MiowvKZU8mLf7I7SYRcuEvLSYG56D1pmMeyz/ZmLEVpe2iiL6lplEmfBiX7EfuXlVfOY1qWL4pHwtvZllfeWprw+zaF0lo1zOkxDxpIdJn1YCn0lui2g0oM4uUzgDqGy7KcoM0m3vJkt5lfXtHglRSR/PQEUdHlmGA0CccaN78Ive4UqaLImxEEVhXV4KEPVosyLsdNLDa2Okp/HXMtFaWpC7ChuE6MDCNGtcgb3KZWwbrc4XKLNezlKW7qNBjSz7nxyzmIhjcNj2SpfhCQ8ZGSYFYs4BiSKAODx9FoN0S0it49bmp/uHwHrjh0TLs6J/EoXtVfx4oFr3/8ew3JSEJZjUf+vkz76OkUqfCxUpKahQcPuTDq93JFlup2iFHNflvr8aG8Pnr9As4prChAI5sbt/zqyS4HJg/KQEayWQKT0EgfmZMkqY6MGOE8ROOdc42LJ7HZRJ+E6R0tiXcdIEXp79gMznC7gTXB9QYxEraV6qZVVVUxay+N1Ze/2YwPV+xASXUjvO24TaZtW4W3/vUbuf/Qj87H4wed0+6uranYaRNDoa1JjZMId1YzU9ySl8ddau6+bimvlwmFxgRvNMp4Pi6aOFFSCfT5i/bDxMGRf0MutJ76bL0YG+PyUncJk+IuLScBLqBa25Xtzr9Vb+qzscL6/X/13JfIz82SDRtusHyzoUwmciqDRxJ5i/ca5i4ufBLNHFRTzXxXsbdwaJBLJQIxyk1DnN+Raa3s16kJLhGTolHB8mcsR5PodiA90SWGAkv7WP2eiy2rVBpPyhD3oZlJ2GNIOtbsqMWmsjoRseLPSqEeyVEX1zwrIdhl/O05NEPyCenVCN/YiodrW38dc5F+e15DGWVEhf7vt1SIUU5Vfl6Pe3KMzNiyDE+8/Sdcc/Jv8fWIPREvMAyXBnZlvVdCabmBwTFSWuuVfk5DnRt/nHtYCopCioxGCQTN6BIa48wbP2RcrhgsrK1Mo/36o8ZLKlVbaVM6VmJHa7/9qqJq/GXOWozKScH3BZUSRcjoIjoseA1mX+HAsZT429rgssYXRc94n2uaaHQcRpZvw6v/vgV/PvQivLnHzHa/S6LTXBvVe7l5YBORuv1HZUt/ZNj7x6tKpJKO6T23NW06WWuycLcKN6isPHpe602h0CBG5CbjyIn5u+SAbymvk7mY6zP+IIww4UYAb+MHpuG6I8e1amBzbFAjZkNpXZNAJVOjIq3F4n2sKEpfw7k7OVAsL8Nwq/POO0+e2759uwzc1NT2lcD7IzTIH/5wDT5fUyI7nNHw/ZCJuOeIn8PjdONf045v93iWjeG1PZodZubyWXWTWfKs3uPD9ioPaht9cDhCYbhB1mkOwGE3Q3W5gOJC6sVvNuGPp0yNeCG3dr3pIW85mfAxn6eyNI9rLRe9O9A+u3uK0lx0sL/Y2lAxj0eD3BaW984FvhUeS9obJ3ydHmwufGwMrW2KQGEECaNOaDgwr89MDDG9G04cODpH3s9QWy7MVu+okvxipgDQGGcuOg12LowshXWWOaOxzQ0QGuMUkuMibkROsryHx7mdDozLSJKNLXoGR+emxnW4YX8dc1b+5rebysRAZ4+hyn4VN4N6qA1TitbhH2/cjXRvPS74fla3GeUd2WSgjBnnmh+NzcHm8gaMysnHsVPzJbKAXsGnP1uPOauKkZvqlo0z8RjKfGZGc9Fgcbto8kDSAvg+wg0sbhbSCG9P5yRe6a9jhaSEyqJxrTEmLwU1HlNlnE4AqfZhBg2Kc4AOBBramclO1DSyzKRfOmEgrGa3GUJukyiLISKO5pNrsRUdhRZ9dmB1Kf712q0YWFuOSxb+F+9MPkxC2NsKM2ffY5/k7DI0KwmHjsuV8c3Na7Y5I5HODDt2VHuQlkhxUMj3MlOc2J9Nzzg3mmjI08hv8AVlzuV2QmWDV8pjtoTv5XHH7jFI5uRl26tlnHAe2nNIZqtRVFaE5scriqX8Gdd/SS5nzFIKFUXpIqN88+bNOPbYY1FQUACPx4OjjjoKaWlpuP/+++Uxy3oou14Qn/h0HT5dXSwX1LZI8dQjye9BaUqWPH52P1NtPhq4o2yG1pqGSKSyT02fQ5X1JJd49ThDefwG0ll3uZ4ThxmyS2ODEwwnS6d9Z2jVhpLWjWoujJhDzpD1SLRcQPUE2md3X1E6NcFcNNFr7HXYpY49jVL2j3Da6nPdDZdRXGxIWgb/DVDF2Kx3LLl2KQmy2LPBNI7aC2FvErILWvVg6bExSwby8aCMJPldmJPHxRi95FSEtvL/mHfOmuP0bnNRRrO9zuBYYkkbu3jZmQ9rliE06zCL9yO0sOQ9LiZzUmziBWFubSw3tjpCfx5zVv7mgs3lshljpiUYPTY2RpdtxYuv3yEG+fxhe+DXJ+wsDdqV8FtZ2p/tlUfkYiMj2fSKMyeWlQQuOLB5mc2f/XgUVhbViNBoZpJTvIVMA6FRzk0xjkYaZxxXYwakNG369nbl6P48VlqKkDG6jiUh1xfXhWpne1DvC4oiP8PDB2UmocbDCAiKZ/qR6OMmJyQyiWsY6ZOha29eWoJsaHLNUuvgNdwuJS3pEvH6gpJmRAFEGuRDq0uwPnsILj7zrogGuTVP8BWujRj1xM2BrBQ3fnf8JBGqs6IzmOL32oItMk+U15WgwUdPtnkCZh7Kdd6OUGkyiPgnI2kCQbMf7zsiS+qLf7KquNX87/P2Hy6bstEI6dIh9Mr8Any6qhj1voBssrNGeVKmI2YphYqi7EqnZrBrr71WFNAXL16MnBzTI0ROPfVUXHbZZZ05ZZ/ni7XFeG/pdnjasUOz66vw/Ot3whX04+zz/oSahI6VQOIk47YEqqwQ9dBkwIs1FzeMiBUxqUSX5B3lpyXIQoi5UJaqNPPNqbPNU3FBSUOGu8J8nvlLXAy1ZlSnhHa9mUNOr19LYrGA0j67+4rS3xVUoIIh2eKlcGFAaqLs2nNCZ+ioFSLI/mI3jB6pYS7qzawTbnm+Q3l47Ll8KuAIyoYYM/ToYeHCJtHpQnmDT0rGWNBYai3E0YycNGuP56YmiVFQUuuRSgQ0pBlmK0aD3SaebC6gOE5YgmnZtiqUsnY5WMfcJhEo5gZYQLzjPCf/dXCx6HSg0cewerOmMttDA6be4xcV9iFZSbLQjNXGVkfp72OOC9y9h2Zg3tpS2biScnoOm1yfeQ3m9bStSA1LXNBMZzChwBkNgZYlo8IZXF2Ml167Dbn1VViaPwaXnn47PC6zNCgNA4aGc+PHitai9zGRY8Npl/HNc/MabyHjKJS2wfbQAOIYl/HC+cBhjgO7zxwHbFq4ZoOkgFAMEjY4nWaUyOTB6Thr+rBdjIDx+em4ZuY4CWVmhAnPy9BgborRUOI5uQnFNA6mUfUV5ej+PlYiiZDtPTwTQ2qS5Dl6gQ8em4PtFaxS0yDrFc45jCKiMc/r6I7qBny1vlyuiZmJTlnbcNOYm6V0JtgoaBvyXjMKI+gAkupqZfNqbPlWbE/LxU/PvgflKZni5aZjgU4OHs/+To82xzGvyZJmZECU/G84ejyOnGyKDVsbpCkcTy4HMpKc0kZGy8h454tB06jnxoEROse+wzNRVO2RDYhfHDoa00dky2/C97aX/93epiwN8ufmbsLCTeUyVoZlJcn1h/MSrwF7Dd2pyRDvkVeK0tfplFX05Zdf4quvvpLa4eGMHDkS27Zt66q29QloEHy5thjXvvp9uwa5uZi6HWPKt6I8KR1DqoqxKm9Uhz8z3BgSxQBZFNlkRzc9wYGtVRTrssukNzInRS7InLxcDicMl7lwtPLRrZxaik1xwUWDmhPNwPTEVo3qeCy9oX22axSlH/pwNbZWNGBwxs4deeZFW6HcEqkBLj5Ms7g7nYLmhpGZX2j1MHZJ0wvgRmWjWT6pSvJWXVLuLzfFjdU7apCV5MIOn6epBrJ4pcOM8vAQRxrINOhZN5z9uqTWK0YxQ8s5dghF8A4YnSv1qBlySbV0UYymgcMFmJ054aZAnoyl0FigQc5xxlz1IWmJMvZkEUmPuBhDNMCCyHHa5bN7k2ewv485Xvu56GXKBP/WSSKYaIr58TH/ziLSZDNDuivqdk4Q7HfsI6ZRahq6fJKl9Li4Z+h3pLGVU1cpBvmQGnr9huKis+5GbUKyXMep6M8KGvQ4b6/0IDs1QQwOswqHIcYyc2T3GpaB46YOQkWdT3K3GU67sawO//thOxZuqjA9bW6zfBmNd3rtONFsKqs3a4AbBhwOO7KSnVLZgxtR7LXMCc9JTcCMUTm48egJEctrkpmT8iXH9Y1FW8QY4bhhO5MSHKiu98nGl1n9IdhnlKP7+1iJJELm8ZtG6MFjcpuMUEsrgJUqZi0ulA0qXuN5PR6YwXVHivRDrndKaxulr7Df85pbXsfSlHbR0GGEUoK3EX998x7sWbQOZUnpYpAXZ+TJMUEj2BQdZV2H2Q85t7BKTXqSW/49fd8hspHU1hqIax2O2WqmBdptEv1h4xhh2qBEfJjX9VqPH/uOyG4yyMPn3s6WlbXK7m6rrJc5jt+d41wqGqS45RrEFKoJ+alxH3mlKP2BTq3oWDczENg1J3rr1q0ScqXs3KF84pN1+N+S7WYppTYYW1ogi6lBtWXYljYAF559N9bnDOvU54bnTZlibubFPz89US78XHjxddYh52RAA4BGA8tr1HkCElbIcmic8MQDEsqB4ns5YTF8bHx+WqtGdTyW3tA+u3vwb8XFwl5DM7GlvAHeQACJdvPyIZ6DBOY8B2XDhv2NhiYXS/ReeHyhnMDQubpK6Mpo8S/X+OzTXPiX1nnFGKYRTi8zFzs0aKobzNzC/IwkaR+/C4emRI+EzkFDg2Hp7LMsaZWb6pLSS6b30Cb54kdOyhe1W5aMIyw/Y6ndWgsoftY/vtiAsjqK5PngC9LzsrP9stgLNZ4LvqFZiRicmSyLo4o6j7zOdAEaOnsMTjeNn17kGezvY479oLTGIwbm1soG2cRhygehIczNHi6Ux+SlYb8RmfhwZXGT8BlfY7rDoAzTG0x9AS6mmfrEBT5TH1heT6JAwkSvrpj/BsaUb8PW9AG4gF6/5AyJlGKqEiOjmFbBfk/vM9OWxualyPtpMFCzYGhmMi750a5hrCNzU3HouDzMW1+KV74twKrt1eIt5Jji96IBTwMoL80tbRRxLRrTSaYBzRB0jrHhOSk4c/rQVg1yC4pV3XzcpF2MEVYG6YvK0f19rFi0Z4RaWgG88Zrbsi9wQ2d8fiq+3Vguz3Me4kYpqyDwes0+znUIr6WHL3oP+xcsRY07CZecdTeKB4/EwSOysL6kTqqMuJw2+Ww6MDg+OItNHJiGc2eMwKRBbZemDF8DceOWbeJ32l7ZiHqveW0fmp6IqUMzZI3FdVJr66Ld0Uew9H04L0qFD1rjIUSoNNFp5sCzwg7Xf3EceaUo/YFOGeVHH300Hn30Ufztb3+Tx7LLV1uLO+64A8cf374YWX8xyO98Zxnmri9v91gqrD//xp3IbKzF2pxh+OlZ96AoPXe3Pp9rHi6KuOjj7iwNJy6UmGPF0GN68Ji3xws+jQ8usLhwZJ7RtOFZGJyZiAUbK8QooBHAa3lOslsMctbJbM+ojrfSG9pndx/+vc/YdxjmbyyXvjMwneHaZvg1N254nwtvLsw5wTOsNTc1URZBNBuYB8jjAvQWh8qStbdZFU1UiNULJbLDYRcPBvO6p4/MlgUZa4LTW0noIWEqhivRKZ4VduGtlY0yTlySs22GvdPzPWlwuvThtvL2uIHVEmsBRUVhegmpwF1Y3RiKIjBpuUnBxVK9JyDCPfuNzJI85OKaBny3uVIWTjJme5lnsL+POfYXRjkwIokecVNN2uzwpkAUQ8kdGJOXiqzURMwYlY25a0vFqGV/ddhNtWZ627nhc+mPR8lmEZWTP1pRhEHpSVi8tQoF5SyNZJ6XytGJfh+en34yijMHINlhl00qisz9/JDREjae4naKONZHy4tDHkkz6mL/UTltXpvZ1348boDcv++9VfI+RoVwQ5fzBfsuN245dmjE0JvI+aM2JNjGcXnlYWOjvvZHMkZ213MYr/T3sdIZI7StvnDExPxmzw9KT8QzX2zANxvL4PcHUdHgw0cHnYxBteVYPG4ayodNxbBEp6Q+JTjMqhrU15FRauOmVIpsAtDA5qYpN2Xb63Mt10A5KW5kJrklFJ8bxlyDceOWuendtS6y9H1yU8zym5yrOdYtOO9wzHK+iffIK0XpD3S6TjlFSSZPnozGxkZRCl27di1yc3Px73//G/0Zei42l9fhhtd+wOJt7ddDPXDzEjz7f3ch2efB94Mm4JIz70BlUnrX1GIO5TBOG5aJwVlJshDkxZeLtMMnDMC3GytCu8lmjjAXgPSe8D2TB2eIZ2Xh5gpZWDJcmWGM9JBHO3nE0wJK+2zXQA9WeM6nqCE77RiQnoABhuk1G5DmRkE588xN9Vh69bg4p0HMGz1zTpdZo5gmsOSqRvHZkVRzzfJ/pkFOTx376Bn7DsVBY3JNDYWgIZtLViqFRIVIHrchZc3ofZwyKE2Mpso6n3gf3XYb9huVLR69aPP2IpES0lbgb8IwXq8RMHPgQ84Ka0OCQnE0sjeX12NodpJ4dbhJQG/mviOzkZeaIMYPBeF6k2ewv4+5lNDfn0JTB4zOlsV8cbUHPu6WSq616aniRigZlWsqbP9QUInyelPBmZswE/LTcNFBI8ULSJifys0a1ro/anI+CnZUYe6mSunrvqADfzrxShkkEwekyHigkVxW6xGDnBuqFmMHpHXq2kzv+IicJNGUoEffHYrEohdSRA3pVTSYH54qoffcROKcc+XhY2T+2F16o7J6e/T3sdLVfSHS8+K5rqxHRXUDhmZniLNi6WW/Rl2jH4emuHHs1IGyRuImLiNUmIPO+crq3xJV6LR3KMy7tTUQ6Yl1kXUN4nelt7y4phHuFFMslNBIZ247xy435eI58kpR+gOdMsqHDRsmgiSvvfaa/Msd3UsvvRTnn38+kpL636DmYoh1NeetK8WnK4vx7cYyVHmiK3m2OWsgqhJSsWDoFPzylFtQ34pieUehyjQvuNzd5YLI2gndc2imqHqu3F6NTaW1qGr0iREyZXA6zp0xHKuLapt5tvncXsMykZuW0KnJI14WUNpnuw7J+cxOwhsLt+3c1ElyY1x+Go6cnCdlVj5ZtQMvfrVJ+hgtTOaEuhysu03VNEO8FTTWJfw2ylh2UX1vcbCIvAVN0cKDxubI/SVbq8Qoj5RKMTA9QULst1U0yOs00Gna03tPrzYVeelBP3XakN02ejlWBqQlSmRBXrpbjBMaWk11am1miTaOLRraq4pqJMydXsVw4ztahd14o7+PuZaK0vuNzJbrMBf6jGSiKBXXxtyUsaBhPjwrCQs2V4hux7n7D8f04dnNwr2bnTc3GT/7x92YGXDhubOuR9BOtWevRERZG1Os4Z3ocu7iBevstZnn4Rinty8rcWcONIXXqJq9Ynu1bCDRAMhKNtvRGzaRYkl/Hys9AfvfDV+9guq58/HUr+5FjcMdWhPt3OS0optSE5l7ves1tjMCm62Ns55YF4VfK0YPSJaSbLw+cDOQ6VhMO2FYP4+L98grRekPdNgo9/l8mDhxIt59912ZMHjrz0ipiW8K8OnqHZKfaqlAR8v29DycecGfsSM1Gz7HrkrlqW6zrrI3aMBumP+2F/LLyyoXfsxlvOeUqZJPaC3oGbb4lznrsGZHTVMIJSldW4rCag+uOWIcTnYP7nUGQFton+16KG5z83GRPW0cE9zcEYEml0P6L+9Ts4DevSynXcLfqX5uqTO3Z5g3laOxm0Y4H9Oop2FA0qW0DMMO7Vi7o6aZJyM8jPD7LRVSN1Zq1kp1MwNVDV7xVDN8PSnFKQbMS99s3u0SMZKHPzILs5cVyuYDQyPtCVTxNUXx6HWh3gLTShjWP2VQuhhhzPsN/z1JPGxsdQQdc5G1NZITHLB5IRs03Bwl60rqdtHdsPpspP7XdN7Keuz74O3Y84tZmGx34J19j8XGYeMl6olecR7XHfoDbQl50ivPjah9R2bhlGlDkJbg6hNzSHeiY6WHePRRZD90P7IB3HjFRpQefeIu19l4rByzO7TMbefmIPPaWT2EOg/cXPvx2FyZd3TTTFFiT4evLC6XS8KrFNMgf/Tjtfhmfal4uKJKjzUMXDfvFawcMAofTDhIntqaYYYltoQOFIa+8sLpgpkL5G0w1Z7bgoYKRd0YZjxx0M5wRRoGf3h3BRZvqRSDIC0Uqs5QXnpT+PxrCwrw+xMm96lFlPbZ7iGSByBc7ZVe4KxkM+eaYa709bFeN5+nUBxLfdHAZh83JdR2DWOng1A2pQJAgDnZocf0eHOzqbTWizqPDwVl9eLBYBka9uuVhdXN2ibKvZMhm1FDs5JEbXb59moJ2/P6DZTV+jAyNxlTh2RKbiyNqK4oEUNBIIb80ztR76uXRR2/Pz0x2ckuOTe/lxU+GK6825vRMRedtgbpjO6GeP2+eAnZc95A0GbDMz+/E+uHjpeNJS68ubHDa3p36A+0J+RJxfZI5c6UyOhY6QFeeAG4/nrz/h/+gNyLz0NuL6kc09XXIF4PqEjPccuoN6rb94U5R1H6Ap3a7rvyyitx//334x//+Aeczt6xY9jV0Ph4b8l2fLWuBBX1/qjUpO3BAO76+Bn89Pv34HE4ccTAv2FbRl7EY5nvyhI6FKWiV41huy6HKQBU7zXLKLVUseZjqvvuOSQD9/xkKiYObp6bzhD7bzaWi1eOoiPWhMM6tSyPQQ/i1xvK5bhIAla9Ge2zPcMuaq+hmsiEi3Z61Ytr/NJXPX6zBqzU+half7MMWH3Ig85w9XF5KaCGFfNomavOAjU0cJkLztJs9LZb1QZY9oa56/ycVxcUYPSAlCbDgOP1oxU7JIJkn+GmkBpL56QluSS3lwYMDXoa5BwXXLB0RYkYLt6mDcvC0m1VGJ6dhGXbq+HzB8WjyM2zkhpvnw0f1DEXnbZGp3Q3HnwQ2Y89KHcrH3wMM8+7CHvWeGRjdUNJnZTk6079gXgT8uzt6FjpRt56C7j0UvP+DTcAv/tdq4fGY+WYriCe9H0URWmdTl39FyxYgDlz5uDDDz/E1KlTkZLS3IB788030VdhLuyignL88+uNmLW0OOr3uf0+PDzrYZy46kup4XzPzMtbNcgJSyfRcGCILUtzUDCn3gukJTrkNclLpJhbKDeVubH0EDI3/ObjJjbVzrTqevJCvHRrlYhvUagnfAeY8DF3TykIxDJPfc0o7899tidpTe2VixqGrDOEnQsB5tGy3jH7taUGS8OcRjcj0nnjYojGt8fjE694dnKCKLjz/g5LzTx0LMcJa8lS3ZDGNY34D5YVyUKEn2dtFnCRxb4ugnOGgfQEl2wa0EBmSDvHHL2MFOeqqK8Tjwnp7AImfJHHzQRumPWX8EEdc9Hlb3c4t/sf/wBuvNG8f999yP711RKSO3EgxOvVUwtvXeh3HTpWuomPPwbOOccsRfOznwEPPGCWpOmHG07xou+jKEoXG+WZmZk4/fTT0d+Ys3IHnvx0nXgjOpI7nuxtwDNv/hE/3vwDvHYnrj/xBsya9ONmx7T0evO+lWdLj6Kpph6E12+X8mXwGKIUzQNpkLNUzmHjBzRb3DO83ppYaChV1nnFI0jDnkbHrnRF9ej4pL/22Z4mpRW1VxqkloHOyA+ukWhcsy9XN/qlD9M45o1GMXP6KHhGwSiGEToSbVKyLz8tATAcKKndGfLOYcDxQWPbsNnMTaygIYJvlqfb2ixIDgkpigp72KaBVRqGxnp5nadJrIrpHB8lJ0hII43rzizI+mv4oI65bmDLFrpVzfu//S1w880xXXjrQr9r0LHSDTQ0AD/9KeD1AvxtWW6uHYPcQjecFEWJe6M8GAzigQcewJo1a+D1enHEEUfgzjvv7PPqoFzg/3vBZjz8wRqUUyCqA+/Nqq+SGuR7F65FnSsRvzj195g7alqzY5Jddglp9bVxYoarW8aHJdCWm+IWZfTDJuTh4LG5IuxmTRo0yJ+ft0mMIREYciehyNUgYbTbKhulfFRymFgJ86Wq6n1S15mK7X2F/tpnY0UktVdLrdZlt4lhzHBxlphJdDtENT0z2ay/TfV2bhrRY02vNz3nNJJZIUA2qYIUZfNJ+TJWDPAEjabQdfb7BIddwuVp8POYep9fPpfj16wHG0Ax66tnJMrnh28aSGkYO2uF+7G2uAYltV7JPZ8yKENC4vl96O3urPhbf1rk6ZjrRoYNA157zfQA/ulPsW6NspvoWOlG+Bu+8w7w8MPAiy8CjkiOiNbRDSdFUeLaKP/jH/8oE8aRRx4pk8Zf/vIXlJSU4LnnnkNfhcbtXz9ei1nLCuGLSsmtOecu/kAM8vKkdFxyxh1YPHhCM2M82c1w9CAa/ZE95uHP8cYc80S3E2PyUnDtkePx47EDdlnYW2JbNMgp+mOFqg/OTMLoAakidrW13MwbpxHDz69p8Inhv//oHAzN6jsTUX/ss/Gm9srcvNJaD7ywiUd6eE4y9hicjvUl9SipaRS1aPZBplWwJvP2qnqsKKyRMHRuKOWmJSI90RSu+q6gQs5LP7nDbkj/pWeeeelmCRubhIVzAyvZ5ZRa6nNWFMs43lLRgJWFNRiRnYyx+akyhrhpwJQNCs7RWN9cVicGOWtHTx6UYaaFOOzird9d8bf+ssjTMdcNmKUCzPunnGLelF6PjpVuHiszZgCvvhrrFimKokTFzuKnUfDPf/4TTz75JD744AO8/fbb+N///oeXX35Zdnv7IlzI3/PuCsxeUdQpg5w8dcAZ+Pt+p+DM8+5vMsjTE524+bgJOGryQMwYnYPUROaw2s3c2JARHgkqUdNIYC3YP522Fw4dnycLfamTXl4vNTb579aK+mb5sxa8zzrlrH9LI4SKzwzVZR4tc3fpdT9v/+F9ynvX3/psPGCFa+8xOEN6c05KgoSk0xg+fMIAHDJuAHJSEzE2L1XEDCl2xg0hGt1frS/F1+vLsb2yQcLaWT6MXu2sFDeG56RIigYN5NREM9KD3nemYnBcsH9LaLxhiIE+JDMR7y8tEi83309lc55rQ1kdvt1YLp53bhqw7zNsntEilod82vAsCTO3aCn+prSOjrkuZskS4IADgE2bYt0SpYvRsdLFFBaaY2XBgli3RFEUpcPYDK5EoyQhIQHr1q3DMIbQhUhMTJTnhg4dininuroaGRkZqKqqQnp6c2XyltDQfeKTtXjh682obmQ+bPSfM75kEzZmD9ml7jiF2WgU7DEkQ8LHaUDTMFleWI2qepZ28ovxb5nELf8wrMtMw+Dm4ybh6CkDI+aN02tIr+KG0loxwE3vYXMYsrtoczlyUxPldXrr9xyS2emc2Vj/rfpyn+3Nv78lMkhj++3vt6OgvA7j89OabRTRS/3tJtNA9vqD8i+NYeZ3s1/yOQq+cSMqOyVBDOd560pRUF4vOemMBuHZqGBOahoDUoHg4DE5GJiRJIq54dEiPJ5jZjOV1xOdmDwoXfr8nsMy5DOZQ86QdRr5LaHBT1Xrq1lqcGDn+2Q8j5euoL+NuW797detA370I2DHDuDMM4H//Kdrz98P0bHSR3/78nLg0EOBZcuAvfcGFi1ieFLXfkY/I57GiqL0BzoUvu73+2XCaFlj0+fzobcTrlKe4naKt23BpgrJQ+2I3/jHG7/D02/di0/G7Ic7zvotstJSJJSqVgTWnGIoD85Mxo5qhtL6xbvNaYPePubV2mHmyVoGuT10nwbKqNwUjB2QIrWPW8sbp0AWDXQa/LmpbgzL3jU/nGHBNDwoCkcPZl/Ob+3LfTbeCQ/Xdjvt0ldblplhKPr04VkSvl5Y3YixA1Ilj5yebBrdqQmmIb2+pE7KiNG4njAwTdTLs1NcslFVVOVBTYNf1NTZt4+cmIdT9xmKN7/btku0CA3+/UZmize8vM4nY8CqDc4xQ1E35pAzZL0lbC9F4VLCtBiUXdEx10Vs2wYcdZRpkO+1lylUpfQpdKx0EbW1wPHHmwb5oEGUq1eDXFGUXkeHVpf0Ul188cWyu2vR2NiIK664olkJj95WviPc29zQVKbJjm1VDbLQp1XMy3t7AWUnrvwCD7/7MNxBP/L9dfjq2kNQbDjw3NxN2FhWK+WQ7KGJgmrpI3KSpaYs6zEz15aGN0N2g5aadCg9iq8PzkwUo2T8wHQxoFvLG2dZNH4OPYTLtlWHjG17s78hX2N5D8sY6cvEqs+Wl5fj6quvlnBE/v5U1n3ssceQmpra6nvYrhtuuAGvvvoqPB4PjjnmGAltzM/Pbzrmmmuuwbx587Bs2TJMmjQJP/zwwy7nWbJkidS9ZZmdAQMGSDt+S6XmGG5yMQ+7tTIzU4dm4K3vtokXnf2Xomz0VLPkGcdhaqLpEQ8vV8ZjOR6Wb6sSz7jN7kCq24kZo7Nx+Y/HgNXLw9XWw+FYyUtPFHV3ns8aA+EidQyRDzfmw8cNj1P63zzRo5SVAUcfbYasjx0LfPABJbpj3Sqli9Gx0gV4PMCppwLz5wPZ2cBHHwGjRsW6VYqiKN1rlF900UW7PHfBBRegt0LDYd76Uvz72wIJHacXraLOK144qjzXNvrFg8e1ORf+jW3UQbvgu1m4+6OnxdM9a/KPkfDyS0jMToetvB7VjT5Z7Icbx1zwM2yWxgbVplMTTONDlKK9ATHG+Wk0yOltHJieJAJZrJNpefUi5Y0Tfg6FtL4vqMSSbVXy2ZZnkoYFv6d1nr5OrPrs+eefj8LCQnz00Ufi9bjkkktw+eWX45VXXmn1Pddffz1mzZqF119/XULGrrrqKpx22mlihIfzs5/9DPPnzxfjO1K42dFHHy3CQU8//TSWLl0qx7PkDj+/J4xwiquxbCA3nKyUCquk2C8PG7OLAvma4ppmBrTkkCe7RQTOneKWDSuOT3rQLeOY+ek0qgekJ4jnnMY8UzFYC/3FrzfhuD0GyucycoSvReP15ng4akqetIeCchxbFJ9r9AX73bjZHfraPNHj1NQAxx0HrFgBDBliGhlhG3NK30HHym7i9wPnnWdWI+AmxnvvAVOmxLpViqIo3W+UP//88+gr0Ds+e2kR3ltaiOJajxi/Xr8hxmtOqhtZSS6sLak181wNwGGj1441w1ucyDBw3bxXcN28f8vDl/c9AYFHHsUFew4Xw5let/J6jyzwW8JF/j4jsvDd5goxQsrrvSKMlZrIzzQk75yibDRcWC6KBoGV892y7nJLBmUmobTWKyHvlfW+Zp7J8PP0dWLRZ1euXInZs2eLp3r69Ony3OOPP47jjz8eDz74IAYPHrzLe5iz9eyzz4rRzrI4VtvpDf/mm29wAMVrAFHnJVTojWSUUySIpXWo3ut2uzFlyhTxpj/88MPdZpSHR5pQZZ39nob0HkPSxUNOw7itkmIpodrmlgFtblilSo43N60Y+s7nOBYZ/p6V7JINq8oGH/YamtlsU4oGPY/hpsDoASlYvr06aq83v8dHy4tlA6C42iN554xe4abYPsOz+tW42R360jwRE66/3hSqyskBPvwQGDky1i1SugkdK7vJI4+Yoeput1n+bP/9Y90iRVGUTtMvkyPXl9TgjSXlWF1UIyHqZh1jU2SqwecQw5xG8qD0JPj8daj3sV4ykOC0wW03RIzN8pnf9PmL+OX8N+T+C0ddhMEP3YfR+al46rP1YqTQ0F5fXCc5r5MHZzRTdCbMgaXYFHNbaTzQEKHHPMXthBE0sKm8Xo6jcc065BZ8vT1PYG5qAi45eJQoS/f12sjxxNdffy2eacsgJ/RcM4KBHu5TGWrXgkWLFolHncdZTJw4EcOHD5fzWUZ5NJ99yCGHiEFuwTD4+++/HxUVFcjKykJXEq5rMDA9QVTTmX7BOuM0jpkXToG2tkqKRQob5zihuFu4KBvLAdKQ3nNoRsR88XCVdOagn7rPEDG+W+axR/J6h3+P4dnJUpqNHn9uJKS4nThykhrkSg9x773A2rXAgw8CkyfHujWKEr9ceSUwdy5w8cXAzJmxbo2iKMpu0S+NctYtXlVUj40ldRKiznU5Sy8xutzjD2BbRYPksqYlOZGbliBibyzb5PEbcixLkzlYgolG0LjpuPi7/+EfJ/4C5RddhmEhQStLfI031gDfWtkAjz/YrNRSW/ndkVTVrRBgGgfR5r/SkFcjvGcpKipCXl5es+ecTieys7PltdbeQ0Oaxnw4zCdv7T2tnWdUi3w6Kyedr7VmlDOHnbfwMPj2aKlrwJxveq9ZfoyRJy0F2sJLioXX6w6vbR5uQLP2eEaSC/uNysYJUweJwGGkcPeW8L2MDGHoeWt57OFe79b0GRhtwtrlbNPHK3eI917HktLt8Nrx2Wc7ay0rShfTGc2Tww47DJ9//nmz537xi19ImlTMSE4G3n5bx4qiKH2CfmmUL95agc1lARF1czpsYlxT3M0qDkfjmV6y/HQqmjtxyLhcrCqsQoLL9GTTTV5R54HD6YBr5uF4/PAZaMgdIIbwX+asFfGoacN2htVOHpwuxj5z1VcUVmH/Udlt5qm2pqreMgQ4kiHTH/PGe4qbb75ZPM7tha73Ru677z7cddddHXoPjetwXQPmfNOb7Uo0N4laCrRZxjKjNlqrbd7SgGa1gpZh4ylRRIlY+eI0/kcflrpLHnv4uGj5PcJpazNBUboETjy/+Y2ZC/uzn5nPqZGhxJnmCbnssstw9913Nz1OplHc0zz5JLB9O3DPPeY40bGiKEofoVcY5Zs2bcI999yDTz75RLx9zMmlGMrvf//7ZmG6UZ+vtB6NPifSEpxo9AXECCdcpzP0lp5mLviZiz0kK0nyY4fnpOHaI8fBUVaKhnMvwPM/+SVypu0TEm/LhCu0tlqytUoM/XAYvksP+Yrt1ZKrurKwGlnJCRHzu9tSVW8ZAtyaIdPf8sZ7CiqjUym3LUaPHo2BAweiuLh4l9I39E7wtUjweeaCV1ZWNvOW79ixo9X3tHYevicc63Fb57nlllvw61//upmnPLx2biRa6hq4HfYw1XRbM4G2aEqKsb+2Z0B3RiU9vDRbNN+jJW1tJijxQ6/1/tG4ePhh07g46CDmrfTcZyv9js5onoQb4R2Zj7qcl182Q9bJgQcCJ5wQu7YoiqL0R6N81apVCAaDeOaZZzB27FgpB8Ud27q6OplEOgo95DabU4znRJsDFFX3B82cclvIMPcGKLRmx+jcFBRVe8xQ8NoyBE48Bq61q3Ft2Q68sv9/m53XFzTfw5B4yzsYbpjvPzpHDPKz9huGPQZnRDQ4Ouq1i9aQUXYflhfjrT0OPPBAMa6ZJ77vvvvKc9xQYh/evxUhGh7H+rRz5swRY4KsXr0aBQUFcr5o4bHcrKL3g+cj9IZMmDChzXxyluQJL8sTDSktPNYtVdNZucBht4uxHm1JsfYMaOuYrowSafk9WqL1yXsHvdL7R+HGO+4w7z/2mBrkSlxqnoQLif7rX/8Sw/ykk07Cbbfd1uZ46UxaVKu8+y7l6s37V19t1iVXFEXpQ/SKVeaxxx4rt3BvJA2Wp556qlNGORfwjV4zj5zevNQEap4baPQZYpAT5pSPzk1GWZ1XFvknuKtg//GpsG/ZgorsfMz6/aNmEnoYND5olDNU3fIOhkOvPI0WGuStGR6d8dpFY8goPQcV09lfudinx40GAsubnXPOOU1eiG3btmHmzJn45z//iRkzZkgJtEsvvVS81cw9T09PF68fjexwkbd169ahtrZWIkYaGhqa6pRPnjxZokbOO+88CUPnuW666SbZwKK38BGq1HYxkTzWlmo6xw1D2ZmXzXwPGs9dmVLRlVEiWp+899MrvX///Cdw7bXmfaaO0NBQlDjUPCGcW0aMGCFjiZU/OL9wHdZWDfXOpEVFhNEsZ54JBALAT38KPPqohq0ritLn6BVGeSRYQoqTSGcYmZOMhtKAGA8pCQ447XZRibaBxnRAjmHZJeaTsxTZSZ4tGPaTM4GyMvjGjsfj1z0KDByOlst+egoZEl/Y6IerheER7eI+Rb12fQJ6FGiI0/C2QmmtcmaEhjoXNPX1pro+oeFsHUvvAlXTn2T+XBg///nPm4XbTps2Tf7duHEjRo4cKcb9hx9+iCuvvFK877m5ubj99tu7pRxaJI91epIT4/JSsGx7NYJBm2xUVTX4uyWloquiRLra8670PL3O+8fyTVb++HXXAbfd1vFzKEoPap6EzyFTp07FoEGDZH5bv349xowZ02VpUbuwaBFw0klAYyNw8snAs8/u4hBRFEXpC/RKy47eQnpB2vOSt7Z42mtoFuqNemytaBDj125jmK0pTOULOJCXniD541MGZWDIgrmwn3EaUFcH7LcfHO/OQs6yqoheNUJDnqrPDHnnIr6ji3v12vUNuGHUVtgsDWj+PcNJTEzEE088IbfW+IyqzO2w55574ssvv0RP0JrH+id7DcZewzKlekFKN6ZUdFWUiOoz9G56lfdvzRrg7LNNrx81Kh56SL1+SlxrnkTCSsXieqw1o7wzaVHNqKoCjjsOqKmhAATw2mtAKC1LURSlr+HsDTu7rNdswbBfhgafeeaZEh7cFq0tnmZOzkOFv1wMZoq51Xh8CAQYum5gaFYSrpk5DjMn5ZvKbY88bBrkRx0FvPkm7KksS5bYqldteE4yjpiYh1WFNaKivrHUC7vNLmG9p+87pN3FvXrtlN5GX9E16Cvfoy/RJ71/48bxiwGLFwN//7t6/ZS41zyJhJU6xTHTbWRkAA88AFB48b//5c51932WoihKjLEZLd11PUhJSQnKysra3dm1FNa3b98uarnMsX3hhRdCyucd85Rz8cTQ9+JGm3jFaDhXNjQ3nMfnp+88Cb3rf/6zGV4YtuMbXkecOeT0qvH9lldtTVEN3li0RV4PGEBWkqupjFk0Xrf2zt/X4d+Kodj8WzG/WulZ9PfvXfTVv1e0cwTDz+kprKioaOb9Y/TJ66+/3mb4ejgUD6VaO/PTmT7Srb89PeUOR/THK11CXx0rHeG4446TqhyW5glFEZn6YUV3tdQ84SYVX6NGQ05OjkSVXH/99Rg6dOgu1QvaQsdK70LHiqL0I095tDu71iRx+OGHy87u888/365B3l7oVKteMTrFPv6YCYnmgbwQ/eEP0b/fbhOD+sWvzTrjI3JSJKQ9Up3xtlCvnaIo/Z0+4/3btMkUc/vrX4GUFPM5NTKUXqJ5QsfIxx9/jEcffVQ2rujc4HtuvfXWrm9cZaUpesj0xPx88zkdK4qi9AN6RU45DXJ6yJn7xzxyek8sdkc1d5d81GAQuOZac+FE7/iNN3bs/R2sM96ega2q6ooSHRx3uoHVf+lMxYPWvH+HHHKI6DJ0Gcxp5ybv+vVmqDqFqhSlF2me0AjviEe803ATgKJuc+eaG1lffKF6C4qi9Bt6hVHOurMUE+GN4VLhdFn0vddriu78+9/mJJDUOSG1jtYZVxRl9whP9WA5QVYvoFhitKkiSt8gLr1/DKdnGDwN8lGjgHvu6bpzK0pfgmuwM84wDfLMTNM5oga5oij9iF5hlFNRtD1V0d2CQm6nnw588AEle836seee27lTdaLOuKIonTfIn59npopww4vjrqOpIkrfIO68f5xXTjgBWLKEIV3cXQbaqJeuKP0W5oxfeCHw/vumQ2TWLGCvvWLdKkVRlB5FZV/Ly83QQhrkrE377rudNshJSlid8UhonXFF6RpapoowRYSlDfkvH/N5porwOEXpUSgwetppLKAOZGUBH34ItKLmrij9Gm6U/epXO8udvfUWcNBBsW6VoihKj9O/jXKGSx16KPDNN3SzAHPmmKGGu4FVZ5zly1qG1lt1xqmirnXGFWX36EiqiKL0KL/8pWmIc6P3vfdYby3WLVKU+IQlD//2NzNU/eWXd3sNpiiK0lvp30Y5S6394hfAkCHAl18CBxyw26e06oyznjhF3WoaffAHg/IvH2udcUXpGnamijhbTRVhOUFNFVF6nCuvNOeVt9/uknlFUfos550HjB8PPPMMcOaZsW6NoihKzNAY6quuAn76UyAjo8tOyRxW5rJa4lPMIWfI+tQhGf2mzriidDcpYakiDFlviaaKKDGDZdnWrQMSE2PdEkWJb4YPBxYv1rGiKEq/R1erpAsNcgutM64o3YuVKkJRN5YbDA9ht1JFuBGmqSJKTFAjQ1GiQ8eKoiiKGuXdidYZV5Tuw0oVoco6U0OYQ86QdXrIaZBrqoiiKIqiKIrSG+jfOeWKovRqrFSRPQZnoLLeh02ldfIvPeRaDk1RFEVRFEXpDfQrT7mlhl5dXR3rpijtYP2NWirYKz1DbxoreYnA+fsMwPbKVNT7/Eh2OTFYUkWMXtH+rkDHS+zoTWNF0bESS3Ss9C50rChKz9KvjPKamhr5d9iwYbFuitKBv1lGN+T8K22jY6V3ouOl59Gx0jvRsdLz6FjpnehYUZSewWb0oy2wYDCI7du3Iy0trUkUijuBnCC2bNmC9PR09DZ6e/tb+w7slpwIBg8eDLtdsyziYax0Nb2178Zju3W89K6xEo99qL+0S8dK75xX+kPfjLc26VhRlJ6lX3nKeVEZOnRoxNd44YqXC2pn6O3tj/QddGc2drQ1Vrqa3tp3463dOl5631iJtz7UX9qlY6X3zit9vW/GW5t0rChKz6FbX4qiKIqiKIqiKIoSI9QoVxRFURRFURRFUZQY0e+N8oSEBNxxxx3yb2+kt7e/r3wHpf/83Xtru5X4IV77kLZLiVfitQ/EY7visU2KorRPvxJ6UxRFURRFURRFUZR4ot97yhVFURRFURRFURQlVqhRriiKoiiKoiiKoigxQo1yRVEURVEURVEURYkR/coo37RpEy699FKMGjUKSUlJGDNmjIhheL3eNt932GGHwWazNbtdccUVPdbuJ554AiNHjkRiYiL2339/fPvtt20e//rrr2PixIly/NSpU/Hee+8hVtx3333Yb7/9kJaWhry8PJxyyilYvXp1m+954YUXdvm9+V2U+Ka8vBznn3++1EXNzMyUsVZbW9vmexobG3HllVciJycHqampOP3007Fjx45mxxQUFOCEE05AcnKy9KEbb7wRfr8/4vnmzZsHp9OJvffeO+7bPXfuXBx88MFyDl6POGYfeeSRqNut9C4608+6Y+6J1/mkI+3SOaJ/oGOma9qk40VReglGP+L99983Lr74YuODDz4w1q9fb7zzzjtGXl6eccMNN7T5vkMPPdS47LLLjMLCwqZbVVVVj7T51VdfNdxut/Hcc88Zy5cvl3ZkZmYaO3bsiHj8vHnzDIfDYfz5z382VqxYYdx6662Gy+Uyli5dasSCY445xnj++eeNZcuWGT/88INx/PHHG8OHDzdqa2tbfQ+PT09Pb/Z7FxUV9Wi7lY5z7LHHGnvttZfxzTffGF9++aUxduxY49xzz23zPVdccYUxbNgwY86cOcbChQuNAw44wDjooIOaXvf7/cYee+xhHHnkkcb3339vvPfee0Zubq5xyy237HKuiooKY/To0cbRRx8t7Yj3dn/33XfGK6+8ImNj48aNxksvvWQkJycbzzzzTNRtV3oPnelnXT33xOt80tF26RzRP9Ax0zVt0vGiKL2DfmWUR4IXzlGjRrV7kb/22muNWDBjxgzjyiuvbHocCASMwYMHG/fdd1/E48866yzjhBNOaPbc/vvvb/ziF78w4oHi4mKq/Ruff/55q8dwAsnIyOjRdim7Bxcf/LsuWLCg2SaYzWYztm3bFvE9lZWVslh5/fXXm55buXKlnOfrr7+WxzRm7XZ7swXEU089JQsMj8fT7Hxnn322LIDuuOOOqI3yeGh3OKeeeqpxwQUXRNV2pffQmX7WHXNPvM4nHW2XzhF9Hx0zXdcmHS+K0jvoV+HrkaiqqkJ2dna7x7388svIzc3FHnvsgVtuuQX19fXd3jaG1S9atAhHHnlk03N2u10ef/311xHfw+fDjyfHHHNMq8fH4vcm7f3mDFEbMWIEhg0bhp/85CdYvnx5D7VQ6QzsXwwvnD59etNz7Ifsr/Pnz4/4HvZtn8/XrL8y5G/48OFN/ZX/MvwvPz+/WX+urq5u1ieef/55bNiwQdJRelO7w/n+++/x1Vdf4dBDD+3Qd1Din870s66ee+J1PulMu4jOEX0bHTNd1yai40VR4h8n+jHr1q3D448/jgcffLDN48477zy5mA0ePBhLlizBTTfdJHnRb775Zre2r7S0FIFAoNnCnvDxqlWrIr6nqKgo4vF8PtYEg0Fcd911kkfLybI1JkyYgOeeew577rmnGPH8+xx00EEyiQwdOrRH26xEB/sX86bDYW43N19a63t83u12y8Krtf7aWn+2XiNr167FzTffjC+//FI+s7e024J9uqSkRPLN77zzTvz85z/v0HdQ4p/O9LOunnvidT7pTLt0juj76JjpujbpeFGU3kGfMMq5IL///vvbPGblypXizbLYtm0bjj32WJx55pm47LLL2nzv5Zdf3nSf3q9BgwZh5syZWL9+vYjFKdFBYaxly5aJwFVbHHjggXKz4OQxadIkPPPMM7jnnnt6oKVKR8dWrODihIuwu+66C+PHj296fvv27SJmE6/tDoebCfRifPPNN/J7jx07Fueee26sm6XEwfjQuScyOkf0XnTM9Dw6XhSld9AnjPIbbrgBF198cZvHjB49utmC/fDDD5cL09/+9rcOfx6VLi1Pe3de5Bl+5XA4dlF15uOBAwdGfA+f78jxPcVVV12Fd999F1988UWHd2ZdLhemTZsmv7cSn2OL/au4uLjZ8/T8Uj23rb7KULzKyspmXufw/sp/W6rKWv2br9XU1GDhwoUS+s0+ZkVkUC+DIX3PPvssDjjggLhrdzisBmEtIHkMveVqlPcOunN8dPXcE6/zSWfa1RKdI3oPOmZ2Dx0vitKHMfoZW7duNcaNG2ecc845opDcGebOnSsCJIsXLza6Gwp6XHXVVc0EPYYMGdKmyMiJJ57Y7LkDDzwwZkJvwWBQBEkoQrJmzZpOnYN/pwkTJhjXX399l7dP6VpRHiqRW7DKQTSCaW+88UbTc6tWrYoomBauKkt1cgqmNTY2ynigqm347Ze//KX0F95vS+U/lu1ujbvuussYMWJEm21Weh+d6WfdMffE63zS0Xa1ROeIvoeOma5rU0t0vChKfIL+ZpCzpMbMmTPlfnh5iPBjeLGaP3++PF63bp1x9913y8TAskUso8ayS4ccckiPtJmlLxISEowXXnhBJqnLL79cSl9Yqs4//elPjZtvvrlZOQ6n02k8+OCDoghNJepYlkSjgUTVz88++6zZ711fX990TMvvQMPEKlu3aNEi2UBJTEyU0h9KfJevmTZtmowdLoS4+RVevqbl2LJKi7FE3ieffCJjjIsX3lqWFmOZM5bUmz17tjFgwICIJdEsOqK+Hst2//WvfzX++9//ymYVb//4xz+MtLQ04/e//33UbVd6Dx3tZ90x98TrfNLRdukc0T/QMdM1bdLxoii9g35llLMsBHdMI90seCHn408//VQeFxQUyAU9OztbLoI06m+88cYeq1NOHn/8cTEAWJeSO6Ss2Rle/uOiiy5qdvx//vMfY/z48XL8lClTjFmzZhmxorXfm3+L1r7Ddddd1/R98/PzpbY5azor8U1ZWZksmFJTU8UjfMkllxg1NTWtji3S0NBg/OpXvzKysrKkRjdLgoVvkpFNmzYZxx13nJGUlCS1vm+44QbD5/N1mVEeq3b/5S9/kfHJ9/Nzufh88sknxeuh9D062s+6a+6J1/mkI+3SOaJ/oGOma9qk40VRegc2/i/WIfSKoiiKoiiKoiiK0h/p93XKFUVRFEVRFEVRFCVWqFGuKIqiKIqiKIqiKDFCjXJFURRFURRFURRFiRFqlCuKoiiKoiiKoihKjFCjXFEURVEURVEURVFihBrliqIoiqIoiqIoihIj1ChXFEVRFEVRFEVRlBihRrmiKIqiKIqiKIqixAg1yhVFURRFURRFURQlRqhR3sPYbLY2b3feeWdM2/b222/H7PMVJRwdK4oSHTpWFCU6dKwoihKvOGPdgP5GYWFh0/3XXnsNt99+O1avXt30XGpqaofO5/V64Xa7u7SNihIP6FhRlOjQsaIo0aFjRVGUeEU95T3MwIEDm24ZGRmyM2o9rqurw/nnn4/8/HyZGPbbbz98/PHHzd4/cuRI3HPPPbjwwguRnp6Oyy+/XJ7/+9//jmHDhiE5ORmnnnoqHn74YWRmZjZ77zvvvIN99tkHiYmJGD16NO666y74/f6m8xK+l22yHitKrNCxoijRoWNFUaJDx4qiKHGLocSM559/3sjIyGh6/MMPPxhPP/20sXTpUmPNmjXGrbfeaiQmJhqbN29uOmbEiBFGenq68eCDDxrr1q2T29y5cw273W488MADxurVq40nnnjCyM7ObnbuL774Qt73wgsvGOvXrzc+/PBDY+TIkcadd94prxcXFxvsDmxTYWGhPFaUeEHHiqJEh44VRYkOHSuKosQTapTH0YQQiSlTphiPP/54swnhlFNOaXbM2WefbZxwwgnNnjv//PObnXvmzJnGvffe2+yYl156yRg0aFDTY04Ib731Vqe/j6J0FzpWFCU6dKwoSnToWFEUJZ7Q8PU4ora2Fr/5zW8wadIkCXti+NTKlStRUFDQ7Ljp06c3e8x8qBkzZjR7ruXjxYsX4+6775ZzWrfLLrtM8qvq6+u78VspStejY0VRokPHiqJEh44VRVFiiQq9xRGcDD766CM8+OCDGDt2LJKSknDGGWeIkEg4KSkpnZpsmL902mmn7fIa85sUpTehY0VRokPHiqJEh44VRVFiiRrlccS8efNw8cUXi9CHdRHftGlTu++bMGECFixY0Oy5lo8pLsLdXE40reFyuRAIBDrdfkXpKXSsKEp06FhRlOjQsaIoSixRozyOGDduHN58802cdNJJor552223IRgMtvu+q6++GocccoioffK9n3zyCd5//305hwXLfpx44okYPny47Pza7XYJp1q2bBn+8Ic/yDFU+5wzZw4OPvhgJCQkICsrq1u/r6J0Fh0rihIdOlYUJTp0rCiKEks0pzyO4AWdF+GDDjpILuzHHHOM7K62By/gTz/9tLx/r732wuzZs3H99dc3C4niud599118+OGHUubjgAMOwCOPPIIRI0Y0HfPQQw9J6BbLekybNq3bvqei7C46VhQlOnSsKEp06FhRFCWW2Kj2FtMWKN0CBURWrVqFL7/8MtZNUZS4RseKokSHjhVFiQ4dK4qidBQNX+8jUJjkqKOOEgEShk29+OKLePLJJ2PdLEWJO3SsKEp06FhRlOjQsaIoyu6invI+wllnnYXPPvsMNTU1GD16tOQ4XXHFFbFulqLEHTpWFCU6dKwoSnToWFEUZXdRo1xRFEVRFEVRFEVRYoQKvSmKoiiKoiiKoihKjFCjXFEURVEURVEURVFihBrliqIoiqIoiqIoihIj1ChXFEVRFEVRFEVRlBihRrmiKIqiKIqiKIqixAg1yhVFURRFURRFURQlRqhRriiKoiiKoiiKoigxQo1yRVEURVEURVEURYkRapQriqIoiqIoiqIoCmLD/wPQXxshrQT4IwAAAABJRU5ErkJggg==",
|
||
"text/plain": [
|
||
"<Figure size 1000x800 with 19 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"import matplotlib.pyplot as plt\n",
|
||
"\n",
|
||
"# Set up the plot grid\n",
|
||
"num_properties = 19\n",
|
||
"fig, axes = plt.subplots(4, 5, figsize=(10, 8))\n",
|
||
"axes = axes.flatten()\n",
|
||
"\n",
|
||
"# Outlier removal using IQR (with torch)\n",
|
||
"for idx in range(num_properties):\n",
|
||
" target_vals = target_test[:, idx]\n",
|
||
" pred_vals = prediction_test[:, idx]\n",
|
||
"\n",
|
||
" # Calculate Q1 (25th percentile) and Q3 (75th percentile) using torch\n",
|
||
" Q1 = torch.quantile(target_vals, 0.25)\n",
|
||
" Q3 = torch.quantile(target_vals, 0.75)\n",
|
||
" IQR = Q3 - Q1\n",
|
||
"\n",
|
||
" # Define the outlier range\n",
|
||
" lower_bound = Q1 - 1.5 * IQR\n",
|
||
" upper_bound = Q3 + 1.5 * IQR\n",
|
||
"\n",
|
||
" # Filter out the outliers\n",
|
||
" mask = (target_vals >= lower_bound) & (target_vals <= upper_bound)\n",
|
||
" filtered_target = target_vals[mask]\n",
|
||
" filtered_pred = pred_vals[mask]\n",
|
||
"\n",
|
||
" # Plotting\n",
|
||
" ax = axes[idx]\n",
|
||
" ax.scatter(\n",
|
||
" filtered_target.detach(),\n",
|
||
" filtered_pred.detach(),\n",
|
||
" alpha=0.5,\n",
|
||
" label=\"Data points (no outliers)\",\n",
|
||
" )\n",
|
||
" ax.plot(\n",
|
||
" [filtered_target.min().item(), filtered_target.max().item()],\n",
|
||
" [filtered_target.min().item(), filtered_target.max().item()],\n",
|
||
" \"r--\",\n",
|
||
" label=\"y=x\",\n",
|
||
" )\n",
|
||
"\n",
|
||
" ax.set_title(properties[idx])\n",
|
||
" ax.set_xlabel(\"Target\")\n",
|
||
" ax.set_ylabel(\"Prediction\")\n",
|
||
"\n",
|
||
"# Remove the extra subplot (since there are 19 properties, not 20)\n",
|
||
"if num_properties < len(axes):\n",
|
||
" fig.delaxes(axes[-1])\n",
|
||
"\n",
|
||
"plt.tight_layout()\n",
|
||
"plt.show()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"By looking more into details, we can see that $A$ is not predicted that well, but the small values of the quantity lead to a lower MAE than the other properties. From the plot we can see that the atomatization energies, free energy and enthalpy are the predicted properties with higher correlation with the true chemical properties."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## What's Next?\n",
|
||
"\n",
|
||
"Congratulations on completing the tutorial on chemical properties prediction with **PINA**! Now that you've got the basics, there are several exciting directions to explore:\n",
|
||
"\n",
|
||
"1. **Train the network for longer or with different layer sizes**: Experiment with various configurations to see how the network's accuracy improves.\n",
|
||
"\n",
|
||
"2. **Use a different network**: For example, Equivariant Graph Neural Networks (EGNNs) have shown great results on molecular tasks by leveraging group symmetries. If you're interested, check out [*E(n) Equivariant Graph Neural Networks*](https://arxiv.org/abs/2102.09844) for more details.\n",
|
||
"\n",
|
||
"3. **What if the input is time-dependent?**: For example, predicting force fields in Molecular Dynamics simulations. In PINA, you can predict force fields with ease, as it's still a supervised learning task. If this interests you, have a look at [*Machine Learning Force Fields*](https://pubs.acs.org/doi/10.1021/acs.chemrev.0c01111).\n",
|
||
"\n",
|
||
"4. **...and many more!**: The possibilities are vast, including exploring new architectures, working with larger datasets, and applying this framework to more complex systems.\n",
|
||
"\n",
|
||
"For more resources and tutorials, check out the [PINA Documentation](https://mathlab.github.io/PINA/)."
|
||
]
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "pina",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.9.21"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 2
|
||
}
|