Files
PINA/tutorials/README.md
Dario Coscia 4cfd90b904 PBC Layer (#252)
* update docs/tests
* tutorial and device fix

---------

Co-authored-by: Dario Coscia <dariocoscia@Dario-Coscia.local>
Co-authored-by: Dario Coscia <dariocoscia@dhcp-015.eduroam.sissa.it>
Co-authored-by: Dario Coscia <dariocoscia@Dario-Coscia.lan>
Co-authored-by: Dario Coscia <dariocoscia@Dario-Coscia.Home>
2024-03-01 18:15:45 +01:00

31 lines
2.6 KiB
Markdown
Vendored

# PINA Tutorials
In this folder we collect useful tutorials in order to understand the principles and the potential of **PINA**. Please read the following table for details about the tutorials. The HTML version of all the tutorials is available also within the [documentation](http://mathlab.github.io/PINA/).
## Getting started with PINA
| Description | Tutorial |
|---------------|-----------|
Introduction to PINA for Physics Informed Neural Networks training|[[.ipynb](tutorial1/tutorial.ipynb),&#160;[.py](tutorial1/tutorial.py),&#160;[.html](http://mathlab.github.io/PINA/_rst/tutorial1/tutorial.html)]|
Building custom geometries with PINA `Location` class|[[.ipynb](tutorial6/tutorial.ipynb),&#160;[.py](tutorial6/tutorial.py),&#160;[.html](https://mathlab.github.io/PINA/_rst/tutorials/tutorial6/tutorial.html)]|
## Physics Informed Neural Networks
| Description | Tutorial |
|---------------|-----------|
Two dimensional Poisson problem using Extra Features Learning &nbsp; &nbsp; |[[.ipynb](tutorial2/tutorial.ipynb),&#160;[.py](tutorial2/tutorial.py),&#160;[.html](http://mathlab.github.io/PINA/_rst/tutorials/tutorial2/tutorial.html)]|
Two dimensional Wave problem with hard constraint |[[.ipynb](tutorial3/tutorial.ipynb),&#160;[.py](tutorial3/tutorial.py),&#160;[.html](http://mathlab.github.io/PINA/_rst/tutorials/tutorial3/tutorial.html)]|
Resolution of a 2D Poisson inverse problem |[[.ipynb](tutorial7/tutorial.ipynb),&#160;[.py](tutorial7/tutorial.py),&#160;[.html](http://mathlab.github.io/PINA/_rst/tutorials/tutorial7/tutorial.html)]|
Periodic Boundary Conditions for Helmotz Equation |[[.ipynb](tutorial9/tutorial.ipynb),&#160;[.py](tutorial9/tutorial.py),&#160;[.html](http://mathlab.github.io/PINA/_rst/tutorials/tutorial9/tutorial.html)]|
## Neural Operator Learning
| Description | Tutorial |
|---------------|-----------|
Two dimensional Darcy flow using the Fourier Neural Operator &nbsp; &nbsp; &nbsp;&nbsp; &nbsp;|[[.ipynb](tutorial5/tutorial.ipynb),&#160;[.py](tutorial5/tutorial.py),&#160;[.html](http://mathlab.github.io/PINA/_rst/tutorials/tutorial5/tutorial.html)]|
## Supervised Learning
| Description | Tutorial |
|---------------|-----------|
Unstructured convolutional autoencoder via continuous convolution |[[.ipynb](tutorial4/tutorial.ipynb),&#160;[.py](tutorial4/tutorial.py),&#160;[.html](http://mathlab.github.io/PINA/_rst/tutorials/tutorial4/tutorial.html)]|
POD-NN for reduced order modeling| [[.ipynb](tutorial8/tutorial.ipynb),&#160;[.py](tutorial8/tutorial.py),&#160;[.html](http://mathlab.github.io/PINA/_rst/tutorials/tutorial8/tutorial.html)]|