Files
PINA/tests/test_data/test_graph_dataset.py
FilippoOlivo 8440a672a7 fix tests
2025-11-13 17:03:31 +01:00

139 lines
4.3 KiB
Python

# import torch
# import pytest
# from pina.data.dataset import PinaDatasetFactory, PinaGraphDataset
# from pina.graph import KNNGraph
# from torch_geometric.data import Data
# x = torch.rand((100, 20, 10))
# pos = torch.rand((100, 20, 2))
# input_ = [
# KNNGraph(x=x_, pos=pos_, neighbours=3, edge_attr=True)
# for x_, pos_ in zip(x, pos)
# ]
# output_ = torch.rand((100, 20, 10))
# x_2 = torch.rand((50, 20, 10))
# pos_2 = torch.rand((50, 20, 2))
# input_2_ = [
# KNNGraph(x=x_, pos=pos_, neighbours=3, edge_attr=True)
# for x_, pos_ in zip(x_2, pos_2)
# ]
# output_2_ = torch.rand((50, 20, 10))
# # Problem with a single condition
# conditions_dict_single = {
# "data": {
# "input": input_,
# "target": output_,
# }
# }
# max_conditions_lengths_single = {"data": 100}
# # Problem with multiple conditions
# conditions_dict_multi = {
# "data_1": {
# "input": input_,
# "target": output_,
# },
# "data_2": {
# "input": input_2_,
# "target": output_2_,
# },
# }
# max_conditions_lengths_multi = {"data_1": 100, "data_2": 50}
# @pytest.mark.parametrize(
# "conditions_dict, max_conditions_lengths",
# [
# (conditions_dict_single, max_conditions_lengths_single),
# (conditions_dict_multi, max_conditions_lengths_multi),
# ],
# )
# def test_constructor(conditions_dict, max_conditions_lengths):
# dataset = PinaDatasetFactory(
# conditions_dict,
# max_conditions_lengths=max_conditions_lengths,
# automatic_batching=True,
# )
# assert isinstance(dataset, PinaGraphDataset)
# assert len(dataset) == 100
# @pytest.mark.parametrize(
# "conditions_dict, max_conditions_lengths",
# [
# (conditions_dict_single, max_conditions_lengths_single),
# (conditions_dict_multi, max_conditions_lengths_multi),
# ],
# )
# def test_getitem(conditions_dict, max_conditions_lengths):
# dataset = PinaDatasetFactory(
# conditions_dict,
# max_conditions_lengths=max_conditions_lengths,
# automatic_batching=True,
# )
# data = dataset[50]
# assert isinstance(data, dict)
# assert all([isinstance(d["input"], Data) for d in data.values()])
# assert all([isinstance(d["target"], torch.Tensor) for d in data.values()])
# assert all(
# [d["input"].x.shape == torch.Size((20, 10)) for d in data.values()]
# )
# assert all(
# [d["target"].shape == torch.Size((20, 10)) for d in data.values()]
# )
# assert all(
# [
# d["input"].edge_index.shape == torch.Size((2, 60))
# for d in data.values()
# ]
# )
# assert all([d["input"].edge_attr.shape[0] == 60 for d in data.values()])
# data = dataset.fetch_from_idx_list([i for i in range(20)])
# assert isinstance(data, dict)
# assert all([isinstance(d["input"], Data) for d in data.values()])
# assert all([isinstance(d["target"], torch.Tensor) for d in data.values()])
# assert all(
# [d["input"].x.shape == torch.Size((400, 10)) for d in data.values()]
# )
# assert all(
# [d["target"].shape == torch.Size((20, 20, 10)) for d in data.values()]
# )
# assert all(
# [
# d["input"].edge_index.shape == torch.Size((2, 1200))
# for d in data.values()
# ]
# )
# assert all([d["input"].edge_attr.shape[0] == 1200 for d in data.values()])
# def test_input_single_condition():
# dataset = PinaDatasetFactory(
# conditions_dict_single,
# max_conditions_lengths=max_conditions_lengths_single,
# automatic_batching=True,
# )
# input_ = dataset.input
# assert isinstance(input_, dict)
# assert isinstance(input_["data"], list)
# assert all([isinstance(d, Data) for d in input_["data"]])
# def test_input_multi_condition():
# dataset = PinaDatasetFactory(
# conditions_dict_multi,
# max_conditions_lengths=max_conditions_lengths_multi,
# automatic_batching=True,
# )
# input_ = dataset.input
# assert isinstance(input_, dict)
# assert isinstance(input_["data_1"], list)
# assert all([isinstance(d, Data) for d in input_["data_1"]])
# assert isinstance(input_["data_2"], list)
# assert all([isinstance(d, Data) for d in input_["data_2"]])