179 lines
6.0 KiB
Python
179 lines
6.0 KiB
Python
""" Module for SupervisedSolver """
|
|
import torch
|
|
try:
|
|
from torch.optim.lr_scheduler import LRScheduler # torch >= 2.0
|
|
except ImportError:
|
|
from torch.optim.lr_scheduler import _LRScheduler as LRScheduler # torch < 2.0
|
|
|
|
from torch.optim.lr_scheduler import ConstantLR
|
|
|
|
from .solver import SolverInterface
|
|
from ..label_tensor import LabelTensor
|
|
from ..utils import check_consistency
|
|
from ..loss import LossInterface
|
|
from torch.nn.modules.loss import _Loss
|
|
|
|
|
|
class SupervisedSolver(SolverInterface):
|
|
"""
|
|
SupervisedSolver solver class. This class implements a SupervisedSolver,
|
|
using a user specified ``model`` to solve a specific ``problem``.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
problem,
|
|
model,
|
|
extra_features=None,
|
|
loss=torch.nn.MSELoss(),
|
|
optimizer=torch.optim.Adam,
|
|
optimizer_kwargs={'lr': 0.001},
|
|
scheduler=ConstantLR,
|
|
scheduler_kwargs={
|
|
"factor": 1,
|
|
"total_iters": 0
|
|
},
|
|
):
|
|
'''
|
|
:param AbstractProblem problem: The formualation of the problem.
|
|
:param torch.nn.Module model: The neural network model to use.
|
|
:param torch.nn.Module loss: The loss function used as minimizer,
|
|
default :class:`torch.nn.MSELoss`.
|
|
:param torch.nn.Module extra_features: The additional input
|
|
features to use as augmented input.
|
|
:param torch.optim.Optimizer optimizer: The neural network optimizer to
|
|
use; default is :class:`torch.optim.Adam`.
|
|
:param dict optimizer_kwargs: Optimizer constructor keyword args.
|
|
:param float lr: The learning rate; default is 0.001.
|
|
:param torch.optim.LRScheduler scheduler: Learning
|
|
rate scheduler.
|
|
:param dict scheduler_kwargs: LR scheduler constructor keyword args.
|
|
'''
|
|
super().__init__(models=[model],
|
|
problem=problem,
|
|
optimizers=[optimizer],
|
|
optimizers_kwargs=[optimizer_kwargs],
|
|
extra_features=extra_features)
|
|
|
|
# check consistency
|
|
check_consistency(scheduler, LRScheduler, subclass=True)
|
|
check_consistency(scheduler_kwargs, dict)
|
|
check_consistency(loss, (LossInterface, _Loss), subclass=False)
|
|
|
|
# assign variables
|
|
self._scheduler = scheduler(self.optimizers[0], **scheduler_kwargs)
|
|
self._loss = loss
|
|
self._neural_net = self.models[0]
|
|
|
|
def forward(self, x):
|
|
"""Forward pass implementation for the solver.
|
|
|
|
:param torch.Tensor x: Input tensor.
|
|
:return: Solver solution.
|
|
:rtype: torch.Tensor
|
|
"""
|
|
# extract torch.Tensor from corresponding label
|
|
x = x.extract(self.problem.input_variables).as_subclass(torch.Tensor)
|
|
# perform forward pass (using torch.Tensor) + converting to LabelTensor
|
|
output = self.neural_net(x).as_subclass(LabelTensor)
|
|
# set the labels for LabelTensor
|
|
output.labels = self.problem.output_variables
|
|
return output
|
|
|
|
def configure_optimizers(self):
|
|
"""Optimizer configuration for the solver.
|
|
|
|
:return: The optimizers and the schedulers
|
|
:rtype: tuple(list, list)
|
|
"""
|
|
return self.optimizers, [self.scheduler]
|
|
|
|
def training_step(self, batch, batch_idx):
|
|
"""Solver training step.
|
|
|
|
:param batch: The batch element in the dataloader.
|
|
:type batch: tuple
|
|
:param batch_idx: The batch index.
|
|
:type batch_idx: int
|
|
:return: The sum of the loss functions.
|
|
:rtype: LabelTensor
|
|
"""
|
|
|
|
dataloader = self.trainer.train_dataloader
|
|
condition_idx = batch['condition']
|
|
|
|
for condition_id in range(condition_idx.min(), condition_idx.max()+1):
|
|
|
|
condition_name = dataloader.condition_names[condition_id]
|
|
condition = self.problem.conditions[condition_name]
|
|
pts = batch['pts']
|
|
out = batch['output']
|
|
|
|
if condition_name not in self.problem.conditions:
|
|
raise RuntimeError('Something wrong happened.')
|
|
|
|
# for data driven mode
|
|
if not hasattr(condition, 'output_points'):
|
|
raise NotImplementedError('Supervised solver works only in data-driven mode.')
|
|
|
|
output_pts = out[condition_idx == condition_id]
|
|
input_pts = pts[condition_idx == condition_id]
|
|
|
|
loss = self.loss(self.forward(input_pts), output_pts) * condition.data_weight
|
|
loss = loss.as_subclass(torch.Tensor)
|
|
|
|
self.log('mean_loss', float(loss), prog_bar=True, logger=True)
|
|
return loss
|
|
|
|
|
|
def training_step_(self, batch, batch_idx):
|
|
"""Solver training step.
|
|
|
|
:param batch: The batch element in the dataloader.
|
|
:type batch: tuple
|
|
:param batch_idx: The batch index.
|
|
:type batch_idx: int
|
|
:return: The sum of the loss functions.
|
|
:rtype: LabelTensor
|
|
"""
|
|
|
|
for condition_name, samples in batch.items():
|
|
|
|
if condition_name not in self.problem.conditions:
|
|
raise RuntimeError('Something wrong happened.')
|
|
|
|
condition = self.problem.conditions[condition_name]
|
|
|
|
# data loss
|
|
if hasattr(condition, 'output_points'):
|
|
input_pts, output_pts = samples
|
|
loss = self.loss(self.forward(input_pts),
|
|
output_pts) * condition.data_weight
|
|
else:
|
|
raise RuntimeError(
|
|
'Supervised solver works only in data-driven mode.')
|
|
|
|
self.log('mean_loss', float(loss), prog_bar=True, logger=True)
|
|
return loss
|
|
|
|
@property
|
|
def scheduler(self):
|
|
"""
|
|
Scheduler for training.
|
|
"""
|
|
return self._scheduler
|
|
|
|
@property
|
|
def neural_net(self):
|
|
"""
|
|
Neural network for training.
|
|
"""
|
|
return self._neural_net
|
|
|
|
@property
|
|
def loss(self):
|
|
"""
|
|
Loss for training.
|
|
"""
|
|
return self._loss
|