Files
PINA/tests/test_data/test_graph_dataset.py
Filippo Olivo ab6ca78d85 Simplify Graph class (#459)
* Simplifying Graph class and adjust tests

---------

Co-authored-by: Dario Coscia <dariocos99@gmail.com>
2025-03-19 17:46:36 +01:00

133 lines
3.5 KiB
Python

import torch
import pytest
from pina.data.dataset import PinaDatasetFactory, PinaGraphDataset
from pina.graph import KNNGraph
from torch_geometric.data import Data
x = torch.rand((100, 20, 10))
pos = torch.rand((100, 20, 2))
input_ = [
KNNGraph(x=x_, pos=pos_, neighbours=3, edge_attr=True)
for x_, pos_ in zip(x, pos)
]
output_ = torch.rand((100, 20, 10))
x_2 = torch.rand((50, 20, 10))
pos_2 = torch.rand((50, 20, 2))
input_2_ = [
KNNGraph(x=x_, pos=pos_, neighbours=3, edge_attr=True)
for x_, pos_ in zip(x_2, pos_2)
]
output_2_ = torch.rand((50, 20, 10))
# Problem with a single condition
conditions_dict_single = {
"data": {
"input_points": input_,
"output_points": output_,
}
}
max_conditions_lengths_single = {"data": 100}
# Problem with multiple conditions
conditions_dict_single_multi = {
"data_1": {
"input_points": input_,
"output_points": output_,
},
"data_2": {
"input_points": input_2_,
"output_points": output_2_,
},
}
max_conditions_lengths_multi = {"data_1": 100, "data_2": 50}
@pytest.mark.parametrize(
"conditions_dict, max_conditions_lengths",
[
(conditions_dict_single, max_conditions_lengths_single),
(conditions_dict_single_multi, max_conditions_lengths_multi),
],
)
def test_constructor(conditions_dict, max_conditions_lengths):
dataset = PinaDatasetFactory(
conditions_dict,
max_conditions_lengths=max_conditions_lengths,
automatic_batching=True,
)
assert isinstance(dataset, PinaGraphDataset)
assert len(dataset) == 100
@pytest.mark.parametrize(
"conditions_dict, max_conditions_lengths",
[
(conditions_dict_single, max_conditions_lengths_single),
(conditions_dict_single_multi, max_conditions_lengths_multi),
],
)
def test_getitem(conditions_dict, max_conditions_lengths):
dataset = PinaDatasetFactory(
conditions_dict,
max_conditions_lengths=max_conditions_lengths,
automatic_batching=True,
)
data = dataset[50]
assert isinstance(data, dict)
assert all([isinstance(d["input_points"], Data) for d in data.values()])
assert all(
[isinstance(d["output_points"], torch.Tensor) for d in data.values()]
)
assert all(
[
d["input_points"].x.shape == torch.Size((20, 10))
for d in data.values()
]
)
assert all(
[
d["output_points"].shape == torch.Size((20, 10))
for d in data.values()
]
)
assert all(
[
d["input_points"].edge_index.shape == torch.Size((2, 60))
for d in data.values()
]
)
assert all(
[d["input_points"].edge_attr.shape[0] == 60 for d in data.values()]
)
data = dataset.fetch_from_idx_list([i for i in range(20)])
assert isinstance(data, dict)
assert all([isinstance(d["input_points"], Data) for d in data.values()])
assert all(
[isinstance(d["output_points"], torch.Tensor) for d in data.values()]
)
assert all(
[
d["input_points"].x.shape == torch.Size((400, 10))
for d in data.values()
]
)
assert all(
[
d["output_points"].shape == torch.Size((400, 10))
for d in data.values()
]
)
assert all(
[
d["input_points"].edge_index.shape == torch.Size((2, 1200))
for d in data.values()
]
)
assert all(
[d["input_points"].edge_attr.shape[0] == 1200 for d in data.values()]
)