Files
PINA/examples/run_poisson_deeponet.py
SpartaKushK 625a77c0d5 Codacy Small Bug Fixes:
- cleaned up imports
- cleaned up some code
- added docstrings
2023-11-17 09:51:29 +01:00

121 lines
3.4 KiB
Python

import argparse
import logging
import torch
from problems.poisson import Poisson
from pina import PINN, LabelTensor, Plotter
from pina.model import DeepONet, FeedForward
class SinFeature(torch.nn.Module):
"""
Feature: sin(x)
"""
def __init__(self, label):
super().__init__()
if not isinstance(label, (tuple, list)):
label = [label]
self._label = label
def forward(self, x):
"""
Defines the computation performed at every call.
:param LabelTensor x: the input tensor.
:return: the output computed by the model.
:rtype: LabelTensor
"""
t = torch.sin(x.extract(self._label) * torch.pi)
return LabelTensor(t, [f"sin({self._label})"])
class myRBF(torch.nn.Module):
def __init__(self, input_):
super().__init__()
self.input_variables = [input_]
self.a = torch.nn.Parameter(torch.tensor([-.3]))
# self.b = torch.nn.Parameter(torch.tensor([0.5]))
self.b = torch.tensor([0.5])
self.c = torch.nn.Parameter(torch.tensor([.5]))
def forward(self, x):
x = x.extract(self.input_variables)
result = self.a * torch.exp(-(x - self.b)**2/(self.c**2))
return result
class myModel(torch.nn.Module):
""" Model for the Poisson equation."""
def __init__(self):
super().__init__()
self.ffn_x = myRBF('x')
self.ffn_y = myRBF('y')
def forward(self, x):
result = self.ffn_x(x) * self.ffn_y(x)
result.labels = ['u']
return result
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run PINA")
parser.add_argument("-s", "--save", action="store_true")
parser.add_argument("-l", "--load", action="store_true")
parser.add_argument("id_run", help="Run ID", type=int)
parser.add_argument("--extra", help="Extra features", action="store_true")
args = parser.parse_args()
problem = Poisson()
# ffn_x = FeedForward(
# input_variables=['x'], layers=[], output_variables=1,
# func=torch.nn.Softplus,
# extra_features=[SinFeature('x')]
# )
# ffn_y = FeedForward
# input_variables=['y'], layers=[], output_variables=1,
# func=torch.nn.Softplus,
# extra_features=[SinFeature('y')]
# )
model = myModel()
test = torch.tensor([[0.0, 0.5]])
test.labels = ['x', 'y']
pinn = PINN(problem, model, lr=0.0001)
if args.save:
pinn.span_pts(
20, "grid", locations=["gamma1", "gamma2", "gamma3", "gamma4"]
)
pinn.span_pts(20, "grid", locations=["D"])
while True:
pinn.train(500, 50)
print(model.ffn_x.a)
print(model.ffn_x.b)
print(model.ffn_x.c)
xi = torch.linspace(0, 1, 64).reshape(-1,
1).as_subclass(LabelTensor)
xi.labels = ['x']
yi = model.ffn_x(xi)
y_truth = -torch.sin(xi*torch.pi)
import matplotlib.pyplot as plt
plt.plot(xi.detach().flatten(), yi.detach().flatten(), 'r-')
plt.plot(xi.detach().flatten(), y_truth.detach().flatten(), 'b-')
plt.plot(xi.detach().flatten(), -y_truth.detach().flatten(), 'b-')
plt.show()
pinn.save_state(f"pina.poisson_{args.id_run}")
if args.load:
pinn.load_state(f"pina.poisson_{args.id_run}")
plotter = Plotter()
plotter.plot(pinn)